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Abstract 

DeLillo, T.K. and A.R. Elcrat, A Fornberg-like conformal mapping method for slender regions, Journal of 
Computational and Applied Mathematics 46 (1993) 49-64. 

A method is presented for approximating the conformal map from the interior of an ellipse to the interior of a 
simply-connected target region. The map is represented as a truncated Chebyshev series. Conditions that the 
mapping function be conformal are transplanted from the ellipse to an annulus with the Joukowski map. The 
resulting conditions on the Laurent coefficients then give a system of equations for the Newton update of the 
approximate boundary correspondence. This system is a generalization of Fornberg’s system for maps from the 
disk and is solved similarly in O(N log N) operations by the conjugate gradient method. Our numerical 
experiments demonstrate that the maps from the ellipse to a slender target region of similar aspect ratio can 
be constructed with far fewer mesh points than are required for maps from the disk, thus circumventing the 
ill-conditioning due to crowding in these cases. 

Keywords: Numerical conformal mapping; Fornberg’s method; Chebyshev series; crowding. 

0. Introduction 

In the extensive efforts to give a constructive and computational realization to the Riemann 
mapping theorem a central role has been given to finding the map from the unit disk to a 
domain bounded by a Jordan curve. One reason for this is the natural role played by the Taylor 
series for the mapping function inside the disk and the associated Fourier series on the 
boundary. The classic exposition of the development of ideas connected with this is given in 
[6, Chapter 21. More recently the Fourier series methods have been given a new perspective 
with the introduction of the use of the Fast Fourier Transform (FFT) algorithm to compute 
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discretizations of the conjugation operator (see [S]). The rapid expansion of computational 
power together with the use of FFTs made it possible to attempt much more ambitious 
problems than had been considered before. In some applications, e.g., time-dependent hydro- 
dynamic calculations, problems were encountered in which the global properties of the domain 
required a very large number of Fourier coefficients for an accurate solution. In particular, the 
map to a region which is slender in one direction has relative distortions which vary exponen- 
tially with the “aspect ratio”, hence the requirement of many Fourier components for 
resolution. This has come to be known as the crowding phenomenon [2,10,18]. For a 5-to-1 
ellipse the map is difficult to compute. In a related phenomenon the Schwarz-Christoffel map 
for a lo-to-l rectangle becomes nearly impossible. The suggestion that the disk is not a good 
canonical domain to use for such domains is natural. (In the case of thin polygonal domains this 
suggestion has been acted on by Howell and Trefethen [lo], and they.have used infinite strips 
and thin rectangles successfully for problems that could not have been done before.) The 
purpose of this work is to show how to deal with a smooth region elongated in one direction by 
using an ellipse with a similar aspect ratio. The map will be represented as a truncated 
Chebyshev series whose coefficients are computed using ideas analogous to Fornberg’s method 
for maps from the disk. Our numerical method is essentially a Newton method for finding the 
boundary correspondence from the ellipse to the region. Wegmann [13] has shown that such 
Newton methods converge if the initial guess is close enough. 

The main question to be dealt with here is how to give a discretization which leads to linear 
equations which can be solved efficiently and which resolve the map with a modest number of 
terms. Fornberg [5] solved the linear equations in a Newton step by projecting a function on the 
circle into the Hardy space of functions analytic in the interior. We will use the same idea 
except that functions analytic inside the ellipse are represented by the Faber series for this 
curve, the Faber polynomials being here the Chebyshev polynomials. A function defined on the 
ellipse decomposes into a sum of functions analytic inside and outside, respectively; the 
projection can be represented in terms of Laurent coefficients of the transplantation to an 
annulus by the Joukowski map. The discretization of the projection equation can be solved 
efficiently using FFTs to implement the conjugate gradient method for a related system of 
equations. 

An outline of the paper is as follows. In Section 1 we review the Newton method to be used. 
In Section 2 the equations to be solved in making a Newton step are derived. In Section 3 the 
discretization and associated linear algebra is given. In Section 4 numerical examples are 
presented. In Section 5 theoretical questions and possible extensions are discussed. 

1. Newton’s method 

Suppose that f is a conformal map from the domain D in the z-plane, bounded by the 
Jordan curve C, to the domain R in the w-plane, bounded by the Jordan curve r. Assume that 
both D and R contain the origin. Suppose further that C is described by a function t(0), 
0 G 8 < 2~, and r by y(s), s being arc length along r, and that t, y are Holder continuously 
differentiable with nonvanishing derivatives. The normalizations f(O) = 0 and f(z(O)) = y(O) 
uniquely determine f; further, finding f is equivalent to finding the function s(0) such that 
f(z(0)) := ((0) = r(s(6)). This function is called the boundary correspondence. Most methods for 
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constructing f are methods for finding s(0) (or its inverse); we will use one which may be 
thought of as Newton’s method for the nonlinear singular integral equation 

1 

-1 
Y(S(G) 

2ni c 6-z 
dl = ;Y(S( z)), z E C, 

for S(z) = S(z(19)) = S(e). More precisely, if S,(0) is known, we determine U,(0) = S,+,(e) - 
S,(6) by the condition that t(0) + e ‘fi(‘)U,(13>, ((0) = y(S,(e)), P(0) = arg r’(S,(0)>, extends 
into D as an analytic function continuous on D U C which vanishes at the origin. This function 
is a conformal map onto a (hopefully) nearby domain d. The function S,+,(e) is then taken to 
be the new approximation to the boundary correspondence; the boundary normalizations of the 
approximate maps are guaranteed by choosing U,(O) = 0. Wegmann has proven that this 
“equation” for U always has a unique solution, and that if the curves are twice Lipschitz 
continuously differentiable, this iteration converges for an initial guess which is close enough in 
a Holder norm [13]. Two closely related numerical methods for implementing this iteration 
have been given in [5] and in [13,14] for the case in which D is the unit disk. Fourier analysis 
plays a central role in these works and the difference lies mainly in the method used to solve 
the discrete version of the Newton update equation. In [14], it was shown that the discrete 
iterations follow the continuous ones for a fine enough discretization. It seems clear that such a 
theorem should hold also in the generality described above for a reasonable discretization. 

The purpose of this section has been to recall the basic idea of the Newton method for the 
boundary correspondence and to explicitly point out that Wegmann’s original convergence 
proof does not require that D be the unit disk. 

2. Fourier analysis of Newton update equations 

We will use as our canonical domain the ellipse E in the z-plane given by 

t(e) = +(pe” + p-‘eC”), 0 G 8 G 2~, 

where p > 1; this is the image of the circle I t I = p under the Joukowski map 

z = gt + t-l) =4(t), 

with inverse 

s=cp(t)=z+\/z*-1. 

We want to find f conformal in the interior of E mapping to a region of similar aspect ratio 
normalized by f(O) = 0, f(i(p + p-‘1) = y(O). 

Essential use will be made of the expansion of functions analytic inside E in terms of 
Chebyshev polynomials: 

f(2) = &T,(z) = $4, + 5 A&(z), 
k=O k=l 

where 

Tk(z) = cos(k arccos(2)) = +(tk + tCk). 
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Since {Tk(z)} are the Faber polynomials for this domain, this is the natural expansion to use, 
and the coefficients are given by [7], [S, Chapter 181 

A,=Q cp’ (4 
,+,f(s) ds, k a 0. 

-IT1 E (CPW) 
If we write g(t) =f(J/(t)), 1 6 1 t 1 up, then 

A, = 2ppkak) k > 0, 

where {ak} are the Laurent coefficients of g. Suppose now we consider a function h defined on 
E. For simplicity we assume that h is Lipschitz continuous on E. Together with h(z) we 
consider the function defined on 5 = ei8 by transplantation and denote it also by h(l). Then 
h(z) extends to an analytic function inside E if and only if [8, p.1141 

jEh(z)T&) dz = 0, k >/ 0. 

This is equivalent to 

= ~i[rh(eiO)[(pk+lei(k+l)tl _p-(k+l)e-i(k+l)O) 

_(pk&lei(k-l)fI _p-(k-l)e-i(k-l)O)] de, 

that is, 

P 
k+la 

-(k+l) -P 
-(k+Oa 

k+l =P 
k-la 

-(k-l) -P 
-(k-Oa 

k-l’ 

These equations can be solved inductively and the result is 

a_k =p-2kak, k&O. 

We write 

(2.1) 

h(l) = 2 aklk = 2 aklk + 5 a-kbpk = h,(l) + h,(c). 
--m k=l k=O 

Then (2.1) can be written as 

h,(l>=h, $Y +a,. ( i (2.2) 

We write, as in [15], 

where K 

h, =P+h = +(I+ iK--J)h, h,=P_h=i(I--iK+J)h, 

is the conjugation operator 

I#@) = & PVloz”cot($’ - $))h(+) d$, 
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and 

Jh(0) = a, = &[?@I) de. 

Then (2.2) can be written as 

P_h=Cl*P,h+Jh, 

where C(eike) = eWike, * denotes convolution and 

(2.3) 

Z(O) = 2 p-2keike = 1 _dleiS . 
k=O 

This is an operator equation which may be described convenicntll using infinite matrices acting 
on the Fourier coefficients of h. If h = h(B) and Fh = ( . . . , h,, ho, h_,, . . . IT, then 

l*h=F-‘AFh, 

where 

A= 

P 
-4 

0 

0 

P -2 0 

1 
0 0 

0 

for example. If we write L = Cl * P++ J = F-‘iF, then with 

i= 

0 
0 

P- 

P 
-4 

0 . 
0 

1 
7 

2 0 

0 

(2.3) can be written (3 - i)Fh = 0, where P_ = F-‘FF, and where 

p^-& 

0 

.p4 

0 

_p-2 

0 
0 

1 
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The Newton step equation, which requires that 5 + e’PU extend to a function analytic inside E, 
can be written then as 

(P^--i)F(eiPU) = -(F-i)F[. (2.4) 

In order to determine U, additional equations are required. For one thing no use has been 
made of the fact that U is real. In addition, the normalization condition on f(z) that f(O) = 0 
requires that 

0 =f(O) = ;A,, + g ( - l)k& = a, + 2 2 (- l)kpPzk$, , (2.5) 
k=l k=l 

since T,,(O) = (- l>k, TZktl(0) = 0, and 2akpPk = A,. We may think of this ^con_dition as 
replacing the one which corresponds to the middle row (of zeros) in the matrix P -L in (2.4). 
An equation similar to (2.4) can be obtained by taking complex conjugates and using the fact 
that U is real. This may be thought of as providing an infinite system in which “the count is 
right”. On the other hand, we expect the associated operator to have a one-dimensional null 
space since the normalization condition U(O) = 0 has not yet been applied. In the case of 
Fornberg’s method, clarification of this issue is a central theme of [15]. 

3. Discretization 

We discretize (2.4) using N Fourier points 8, = 2Tk/N, N even, with U, = [ZQ, 
Ul,. * * &N-l IT, FN the N-point discrete Fourier transform, and a^ = [a^,,,, . . . ,ahl, a^,, 

A 

a_l,...,~_N,2+l IT = F,a. Equation (2.4) is then replaced by 

(I%C)~F~E~U~= -(P-L),F~~,, 

where E, = diag(e,, . . . , eNPI), ek = e@(‘k), and 

(P-i),ii = 

0 -P 
-N+2 

1 

0 0 

. 0 0 0 

0 0 0 

-c2 0 1 

We denote by p, I’ the lower +N x +N blocks in <P^ -i),. In order to proceed we need to 
recall the Gauss doubling formula for the N-point discrete Fourier transform 

1 N/2-1 

d, = - C 12jw-2jv + i--v 

N/2-1 

N j=O 
C !i2j+IWp2j”> (3.3) 

j=O 

for - +N + 1 < v < +N, where w = eiZnjN. Observe that 

[FNlkv=WkL’, k=O ,..., N-l, V= -;N+l,..., ;N. 
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If, for a vector {, we write 6 = [lo, lllT, where lo contains the even-index components and {i 
those with odd indices, i.e., lo = [fh, 12,. . . , l,,_21T and l1 = [<i, 13, . . . , (N_l]T, then (3.3) can 
be written, for I, = - +N + 1,. . . ,O, 

where H denotes the Hermitian transpose, and W = diag(w’, wl,. . . , wN12- ‘); the matrix F&2 
has components 

[ 1 FH N/2 kl 
=wk’, k,l=O ,..., ;N-1. 

(This matrix is denoted by F in [5].) With some additional work we can show also 

These can be combined into 

where we have written F = FNH/2. If we let E, = diag(e,, e2,, . . 7 eN-2 ) and E, = 

diag(e,, e3,. . . , eN-1 >, then (3.1) can be written as 

that is, 

$(i+P)FE,u,+ +P)wFE,u, =g. (3.5) 

This is an &N x +N system with zeros across the top row. We replace this with the truncation of 
(2.51, i.e., 

pTFNENU, = -P~FNSN 7 (3.6) 

where P* = [ pN/2y 0, . . . , p4, 0, p2, 0, 1, 0, . . . , 01, and 

P 2k = 2( - l)kp-‘k. 

We denote by P the matrix obtained from P by putting [ pN/2, 0,. . . , p2, 01 in the first row of 
P. Then (3.5) together with (3.6) can be written 

$FE~U” + $IFE,U, = g, (3.7) 
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where A = I + P and B = (I - P>W. (We note here that as p + 03, P + 0 and (3.7) becomes 
[5, (1411.) We will show below that A-’ and B-’ can be computed explicitly and have the same 
structure as A and B. If we multiply (3.7) by E~F”A-r, we obtain, using 2F”F = NJ, 

U,, + CU, = 2E,HF”A-‘g, (3.8) 

where C = (2/N)E~F”A-‘BFE,. Multiplying (3.8) on the left by C-’ yields a similar system. 
Now, following [8,17], we take real parts of these equations to obtain 

&+R,U, =go, KJ&l+ u, =g1, (3.9) 

where R, = Re C, R, = Re C-‘, go = 2Re(EFF”A-‘g) and g, = 2Re(EyF”B-‘g). There are 
a number of possible approaches to solving this (nonsymmetric) system which use the fact that 
the matrix multiplications can be carried out in O(N log N) operations using FFTs. We report 
here results using only one of these; it is similar to a suggestion made in [17]. If we multiply 
(3.9) by 

we obtain the equivalent system 

(I-R,R~)Uo=DUo=d=go-R,g,, R,U, + u, =g,. 

We solve the first of these using the conjugate gradient method for the normal equations 
DTDUo = DTd. The matrix G = DTD is expected to have one very small eigenvalue correspond- 
ing to the expected one-dimensional null space in the infinite-dimensional problem, as 
discussed in Section 2, and our computations have borne this out. We have dealt with this, 
following [5], by writing GU, = DTd = b as 

setting u. = 0, and solving the ($V - l&dimensional system C% = 6 using conjugate gradient. 
We conclude this section with a discussion of the explicit inversion of A and B. Note that 

A=’ hT 
[ 1 0 d ’ 

where a = 1 +P~,~ and d =I- Q, where Q is a “backward diagonal” matrix with pP2, 

P 
-4 

>**.7 P -N+2 from upper right to lower left. A straightforward calculation shows that 

a-l = (1 -p-N)-l(I+ Q). 

Then the inverse of A is obtained in the form 
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where c = (1 + 2p- N/2)-1 and gT = -hTA^-‘/a. A straightforward calculation shows that 

2( _ 1)kp-2k(1 + (_ qN/4-5-w) 

g,k = (1+ 2p-N/2)(1 -p-N) 

and g2k_,=0, k=l,..., +N. We can find B-’ = W-‘( I - Pj-1 in a similar way. 

4. Numerical experiments 

We have tested our method for the regions discussed below and found that it works well for 
regions with aspect ratios up to 10 or 20 to 1 with moderate values of N. This is well beyond 
what can be achieved with maps from the disk. The application of the method to other and 
more extreme regions is under study. Our computations were done in double precision on an 
IBM ES 9000. 

Before we discuss the examples, let us give some programming details. The FFT routine we 
use is the radix-2 complex FFT routine from [l, p.4161. The boundary curves are defined by 
taking 1000 points yi, i = 1,. . . , 1000, along the boundary curve, given by certain analytic 
formulas and fitting a periodic cubic spline to them parametrized by the chordal approximation 
to arc length between the successive yi’s according to the algorithm [9]. Thus the regularity of 
the approximate boundary curve is different than that of the actual boundary curve. The spline 
fits to the regions are accurate to lop6 or less for the regions below. Also, our regions have 
-y(O) = 1 and aspect ratios (minor to major axis ratios) of (Y, 0 < (Y < 1. 

Using the relations between the Chebyshev and the Fourier coefficients, A, = 2ppkak, 
k 2 0, and (2.11, we have the Laurent series 

f(+(t)) = a, + 2 (a,p-ktk + a_,pkt-k), 
k=l 

for 1 G I t I G p. This is a map from the annulus to the target region slit along the image of 
I t I = 1. The discrete version of the sum above can be evaluated at equally spaced points on 

concentric circles, I t I = constant, using the FFT routines. The plots of the maps in the figures 
show the images of 5 concentric circles and 32 radial lines in the annulus. The image of I t I = p 

is plotted using 2N points. The images of the circles with ( t I near 1 often require $N or fewer 
terms to appear at all reasonable. This was particularly true for p large. 

The aspect ratio for the ellipse is (Y = (p2 - l)/(l + p2>. Except for Example 2, we choose 
(Y’S for the ellipse and for the target curve y(s) to be equal or nearly equal. The mesh points 
are images of Fourier points under the Joukowski map from the exterior of a disk to the 
exterior of an ellipse of aspect ratio a. It is easy to see that these mesh points crowd like O((Y) 
at the ends of the major axis. While this may eventually cause difficulties for small (Y, it is not 
so severe as the exponential crowding in Example 2; see also [3]. 

To monitor the outer Newton iterations, we compute the successive iteration error 
maxi I sk+l(6i) - sk(ei> I at the mesh points Bi, i = 1,. . . , N, the “residual” error 

max 
! 

max(a_k-p-2kak(, la,-22p-2a2+2p-4a,- ... I); 

and the exact dizcretization error max. I f(z -1 - fiz. -> I w h en available, at the mesh point zi, 
i=l ,***, N. Quadratic convergence is observed, bu; may degrade for the more extreme 
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Fig. 1. The identity map for an ellipse to itself with (Y = 0.4, 0.2, 0.1, and N = 64, 128, 64, respectively. 

regions. The successive iteration errors can often be iterated to 0 ( - lo-l5 in double precision), 
but in some cases the convergence rate may slow after the level of discretization error has been 
reached and they may then even begin to diverge. This “convergence/divergence” behavior 
has been observed with Wegmann’s method in [3] and discussed in [16]. For our initial guess, 
we use S,(Oj> proportional to S(ei> for the Joukowski map. 

The inner conjugate gradient interations usually converge rapidly, but their convergence rate 
may also be slower for more extreme cases. We have found it convenient to stop these 
iterations after either a tolerance of lOPi5 is achieved or after 10 iterations, which ever comes 
first. A check of the eigenvalues of DTD using the NAGLIB routine F02AAF shows that there 
are usually one or a few small and occasionally negative eigenvalues. The rest are between 0 
and 1, mainly near 1 with a few greater than 1. The largest eigenvalue is roughly l/a, 
indicating that the increase in the condition number of DTD as (Y IO accounts for the slowing 
of convergence for more slender regions. We plan to investigate the convergence/divergence 
behavior and the use of alternative solvers for the inner systems, such as GMRES, in the 
future. 

Next, we discuss the examples. 

Example 1 (Ellipse to ellipse, Fig. 1). This is just the identity map of an ellipse of aspect ratio (Y 
to itself. The level of discretization error is reached here in a few iterations and the successive 
iteration error can usually be driven to 0. The discretization error and residual error increase as 
(Y 10 to, for instance, - lop5 for (Y = 0.1. This is about the level of the error in the cubic spline 
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Fig. 2. Map from ellipse (Y = 0.8 to unit disk with N = 64. 

fit to the target ellipse. Note that all our maps to target regions are scaled so that f( f (p + 
p-‘)) = fl and f(+(p -p-‘1) = +icr. 

Example 2 (Ellipse to unit disk, Figs. 2-4). In this case the exact map is given in 18, p.5501 as 

(- lr~2m+1(4 
p4m+2 _P-4m-2 ’ 

Fig. 3. Map from ellipse (Y = 0.4 to unit disk with N = 128. 
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N 

ALPHA 

e .2 

2.3~~ + .4 

* .8 

(E-13 

K-14 

lE-15 

Fig. 4. Discretization error max, 1 f(z;)- &,>I at mesh points z, for maps from a family of ellipses to the unit disk. 

where 

(Note that it is easy to check that the Laurent coefficients satisfy (2.1) in this case.) In this case 
there is severe exponential crowding of the mesh points near k 1. The successive iteration error 
converges to about lo-l3 and then starts to diverge. The discretization error is displayed in Fig. 
4. It behaves like O(KN> as would be expected for an analytic boundary curve with R = R(a) 

the modulus of the nearest singularity R > p. For a = 0.8, N = 64 and 128, the error remains 
constant. This is approximately the error in the cubic spline fit to the disk. Replacing the 
analytic parametrization of the boundary by a cubic spline parametrization does not destroy the 
effects of the underlying regularity of the boundary, at least not up to the level of error in the 
fit. This is also observed in the next example and in experiments in [2] with Wegmann’s method. 

Example 3 (Ellipse to arctanh region, Fig. 5). The map f(z) = arctanh(rz) = ilog(l + rz)/(l - 
rz), 0 < Y < 1, maps the unit disk to a slender region (the infinite channel for r = 1). This is a 
standard example of a difficult map for Fourier series methods on the disk.. It is easy to show 
that ( f’(+ 1) ( grows exponentially with aspect ratio a JO (r T l), so that the images of the 
Fourier points do not resolve the boundary near f( f 1) very well even with very large N. 
Composing this map with the map in Example 2 from an ellipse of similar aspect ratio to the 
disk provides us with an exact map for this test case. The discretization error is given in Fig. 6. 
Since the boundary is analytic, the error again behaves like O(RpN> until the error in the spline 
fit is reached at - 10M6. For comparison, with Wegmann’s method, the map from the disk to 
the arctanh region with (Y = 0.29 (r = 0.991 requires N = 1024 for an error of - lop4 and many 
iterations (6.0 CPU-seconds), whereas our method achieved low6 accuracy with N = 64 in 0.6 
sec. (We have used a parametrization of the boundary, (1 + r2> cos y = (1 - r2) cash x, pro- 
vided by John Pfaltzgraff, to distribute knots for the spline along the boundary.) The successive 
iteration errors could often be decreased to - lo-l5 if enough iterations were taken here. 
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Fig. 5. Maps for the arctanh region with (Y = 0.29, 0.206, 0.108, 0.073, and N = 128, 128, 256, 512, respectively. 

Example 4 (Ellipse to sports ground, Fig. 7). This region of length 2 is bounded by two 
semicircles of radius Q connected by horizontal line segments. Thus the boundary here is C’; 
however, it is then approximated by a cubic spline. In Fig. 8, the residual error is displayed. It 
behaves roughly like O( W3). Some convergence/ divergence behavior is seen. 

N 

IEIOQ 
0 64 128 192 256 320 384 448 512 

I I I I I I I I 

& K-07 

& E-00 
ALPHA 

6 .073(R=.999999999) 
K-09 

K-10 
+ .108(R=.999999) 

K-11 + ,206 (R=.999) 

K-12 * .29 (R=.99) 
E-13 

E-14 

(E-15 

Fig. 6. Discretization error maxi 1 f(.z,)- fizi>I at the mesh points zi for maps from ellipses (Y = 0.3, 0.2, 0.1, 0.07 to 
arctanh regions (Y = 0.29, 0.206, 0.108, 0.073, respectively. 
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Fig. 7. Map from ellipse to sports ground with (Y = 0.4, 0.2, 0.1 (both regions), and N = 64, 128, 512. 

M (N = 2W) 

1EtW 
5 6 7 8 9 10 11 

I I I I I I 

lE-Dl- 

K-02- 

ALPHA 
e .05 

+3 .1 

+ .2 
lE-OB- 

* .4 

lE-W- 

lE-lo- 

Fig. 8. Residual error maxk I a _k - pmzk ak 1 in Laurent coefficients ak for maps from ellipse to sports ground. 

Fig. 9. Map from ellipse with (Y = 0.1 to a spline curve, N = 128. 
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Example 5 (Ellipse to spline curve, Fig. 9). In this example we construct the map from an ellipse 
with a = 0.1 to a slender “wavy” region produced by taking several points in the plane and 
fitting them with our spline routine. With N = 128 both the successive iteration error and the 
residual error decreased to less than 10e5 in four iterations. 

5. Remarks 

We have used only one of many possible methods for solving the (finite-dimensional) system 
in a Newton update. We plan to investigate others, in particular some of the generalizations of 
conjugate gradient to nonsymmetric systems such as GCR or GMRES. Our solution using 
conjugate gradient for the normal equations has the potential of degrading the convergence 
properties, but we have not had serious difficulties with this in our computations. 

The infinite-dimensional system discussed in Section 2 can be written in terms of integral 
operators, following [15,17], and the operators are compact. It should be possible to study the 
spectra of the integral operator and explain the behavior of the conjugate gradient method 
observed in Section 4. The details are more complicated than in [15], however; we have not 
succeeded in writing the updates explicitly in terms of a Riemann-Hilbert problem, for 
example. 

We expect that it can be proven that crowding in the map from an appropriate ellipse to a 
slender region is not too large, and that the obvious initial guess for Newton’s method is close 
enough for convergence. (We have in mind, in particular, [12, Theorem 5.11.) In a similar way 
we believe that results from approximation theory should enable us to show a Zemach-like rule 
[2,18] to the effect that N - 11 f’ 11 m f or a reasonable approximation. 

An immediate application of this method is to translate Dirichlet problems for harmonic 
functions to the ellipse and solve them with Chebyshev series; see, for example, [ll]. A formula 
for the Dirichlet integral can be derived in terms of Chebyshev coefficients, and this is 
potentially useful in solving resolution difficulties that we have experienced in solving free 
boundary problems using conformal mapping (cf. [4]). 

Finally, we remark on using the ideas here for domains which are slender in more than one 
direction, a cross, for example. On the face of it, our method depends on explicit properties of 
the Joukowski map and its Faber polynomials. On the other hand, for any curve for which the 
exterior map is known and the Faber polynomials can be generated conveniently, much of the 
above can be carried through, at least in principle. In particular, an operator equation 
expressed in terms of Fourier coefficients of a transplanted function can be used to express 
analytic extendibility of a function. It would be interesting to see how far this can be carried 
through in practice. 
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