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ABSTRACT

We consider the use of conjugate-gradient-like iterative
methods for the solution of integral equations arising from
an inverse problem in acoustics in a bounded three dimen-
sional region. The inverse problem is the computation of the
normal velocities on the boundary of a region from pressure
measurements on an interior surface. The pressure satisfies
the Helmholtz equation in the region. Two formulations
are considered: one based on the representation of pres-
sures by a single layer potential and the other based on the
Helmholtz-Kirchhoff integral equation. Both formulations
can be used to approximate the Neumann Green’s function
as an alternative. The integral equations are all ill-posed
and are discretized by a boundary element method. The
resulting linear systems are ill-conditoned and a (smooth)
regularized solutions must be sought. Two regularization
rules, including a new one, for conjugate-gradient-like meth-
ods are applied and found to have advantages over a stan-
dard method based on the truncated singular value decom-
position using generalized cross validation. Due to the oc-
curence of multiple singular values for our integral opera-
tors, conjugate gradient methods compute the optimal so-
lution in the first few iterations and prove to be particularly
fast for these large scale acoustics problems.

INTRODUCTION

In the last two decades, the method of reconstructing
the acoustical field and the normal velocities of a vibrat-
ing structure using pressure measurements from an array
of microphones in the nearfield, known as nearfield acous-
tical holography (NAH), has become a standard technique
of acousticians seeking to locate sources of noise produced
by aircraft, automobiles, and other machinery; see [14] for
an introduction to this field. The standard mathematical
formulations of this inverse problem are in terms of first-
kind integral equations for the Helmholtz equation and are
ill-posed. The numerical solution of the integral equations
therefore requires regularization techniques to filter the ef-
fects of limited accuracy in the pressure measurements.
During the last two decades a great deal of theoretical and
numerical work has also been done on inverse problems, in
general; see e.g. [8], [9], [10], [11]. In [4], [5], [6], [7], the
present authors and their colleagues have formulated and in-
vestigated the use of a single layer potential representation
for solutions to the Helmholtz equation for inverse problems
in two and three dimensions. The present paper extends
this work to include the Helmholtz-Kirchhoff integral equa-
tion, the Neumann-Green’s function (see, e.g., [16] for an
example of a practical computation), and the application
of a new stopping rule for regularization using the conju-
gate gradient method [4]. In the following sections, we will
recall the mathematical formulation, review the numerical
and regularization methods, and report on computations
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for two geometries, the interior of a sphere and a fuselage,
using an exterior point source as a test case.

MATHEMATICAL FORMULATION
We consider the problem of identifying the source of the

acoustical noise on the surface Γ = ∂D of an R3 domain
D. The acoustical field p of frequency k in D satisfies the
Helmholtz equation

∆p + k2p = 0, in D (1)

In our applications D represents the cabin of an air-
craft and Γ represents the fuselage. Acoustical sensors are
located on a surface Γ0 inside the cabin. These sensors mea-
sure the field p and the problem is to recover from these
measurements the so-called normal velocity

v =
∂p

∂ν
, in Γ = ∂D, (2)

where ν is the unit exterior normal to Γ.
The approaches used to solve this inverse problem will

depend on the representation of the solution to (1) and (2).
The first approach, using a single layer potential to rep-
resent the acoustical pressure, was discussed in [6]. The
second is a popular approach based on the representation
of the pressure as a combination of single and double layer
potentials. The solution then will be given by solving the
Helmholtz-Kirchhoff system of integral equations. Both ap-
proaches can be used to derive the Neumann Green’s func-
tion. Theoretical results on existence, uniqueness, and sta-
bility are discussed in [5], [6], and [12].

The Single Layer approach
In [5] and [6] it was shown that p can be represented in

D by a single layer potential

p (x) = (Sϕ) (x) :=
∫

Γ

Φ (x, y) ϕ (y) dS (y) x ∈ D. (3)

The inverse problem is reduced to finding the density ϕ,
which solves the Fredholm integral equation of the first kind∫

Γ

Φ (x, y) ϕ (y) dS (y) = p (x) , x ∈ Γ0. (4)

The normal velocity will be obtain using the density ϕ in
the integral equation

v (x) = (S′ϕ) (x) := ϕ (x) /2+
∫

Γ

∂Φ (x, y)
∂ν (x)

ϕ (y) dS (y) (5)

x ∈ Γ, which follows from (2) and the jump relations for
the normal derivative of single layer potentials.

Equation (5) will allow us to obtain explicitly the Neu-
mann Green’s function

(
G2ϕ

)
(x) :=

(
S (S′)−1

ϕ
)

(x) ,

by inverting the well-posed operator S′. The solution of
the inverse problem will be reduced to the solution of the
integral equation

(
G2v

)
(x) = p (x) , x ∈ Γ0. (6)

The Helmholtz-Kirchhoff Approach
The classical approach (see [3]) uses the representation

p (x) = (Sv) (x)− (Dp) (x) , x ∈ D, (7)

where

(Dϕ) (x) :=
∫

Γ

∂Φ (x, y)
∂ν (y)

ϕ (y) dS (y)

is the double layer potential and

Φ (x, y) =
eik|x−y|

4π |x− y|
,

is the free space radiating fundamental solution to the
Helmholtz equation. Using the jump relations for the dou-
ble layer potential we obtain

p (x)
2

=
(
S−v

)
(x)−

(
D−p

)
(x) , x ∈ Γ, (8)

where S− and D− denote the single and double layer oper-
ator respectively in Γ.

When D is a separable geometry, we can obtain an ex-
plicit formula for the Neumann Green’s function of this rep-
resentation (see [14].) For general domains, equation (8)
will allow us to obtain the Neumann Green’s function

(
G1ϕ

)
(x) := (Sϕ) (x)−

(
D

(
1
2
I + D−

)−1

S−ϕ

)
(x) ,
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by inverting the well-posed operator
(

1
2I + D−). The solu-

tion of the inverse problem will be reduced to the solution
of the integral equation

(
G1v

)
(x) = p (x) , x ∈ Γ0. (9)

A different but close related approach will be to solve
the Helmholtz-Kirchhoff system

(
Sv −Dp
S−v −D−p− 1

2p

)
(x) =

(
p
0

)
(x) , x ∈ Γ0, (10)

for v and p on Γ. In principle this method will avoid the
explicit inversion of any operator and will be useful for it-
erative methods.

NUMERICAL SOLUTION OF THE INTEGRAL EQUA-
TIONS AND REGULARIZATION METHODS

We consider the numerical solution of the integral equa-
tions (9), (10), (4) and (6) for a range of wave numbers k.
Recall that k = ω/c, where ω denotes the frequency and c
is the speed of sound. In the case of the interior aircraft
cabin noise c = 340 m/ sec and the range of interest of ω is
typically in the range of human speech

20π/ sec < ω = 2πf < 1000π/ sec,

where f is the frequency in Hertz. This leads to a range of
k of

0.06π/m < k < 3π/m.

Since the cabin dimensions a are on the order of meters, the
dimensionless quantity ka has a similar range.

Numerical Algorithms
All the programing has been done in MATLAB and

run on 900 MHz pentium PCs with 512 MB of RAM mem-
ory. The different approaches for the solution to the inverse
acoustical problem require the numerical solution of inte-
gral equations. In [5] a Nyström method was used for the
discretization of S and S′ in the two dimensional space. For
our case of three dimensions we apply the boundary element
method described in [6], [7] [1], [2] to discretize the opera-
tors S, S′, D, D− and S− into N × N complex matrices
SN , S′N , DN , D−

N and S−N .

The single layer approach will require us to solve equa-
tion (4) for the density ϕ and then use (5) to recover the
normal velocity. The numerical method is reduced to the
solution of the linear system

SN ϕ̃ = p̃ (11)

where ϕ̃ and p̃ are N×1 vectors. The numerical calculation
of the acoustic velocity on Γ is given by

ṽ = S′N ϕ̃, (12)

where ṽ is an N × 1 vector. For the purpose of labeling in
the numerical methods, we will call this method SN , S′N .

Another method based on the single layer representa-
tion will be to use equation (6). This equation will be re-
duced to the linear system

G2
N ṽ = p̃, (13)

where G2
N is the N ×N matrix defined as

G2
N = SN (S′N )−1

.

For the representation (7) one method for computing
the solution will be to solve equation (9), which will be
reduced to the solution of the linear system

G1
N ṽ = p̃, (14)

where G1
N is the N ×N matrix defined as

G1
N = S−N −DN

(
1
2
IN + D−

N

)−1

S−N .

The other method will be to solve the discretization of sys-
tem (10)

HN

(
ṽ
p̃−

)
=
(

p̃
0

)
, (15)

where

HN =
(

SN −DN

S−N −D−
N − 1

2IN

)
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is a 2N × 2N matrix, 0 is an N × 1 vector, and p̃− is the
N × 1 vector for the pressure on the boundary Γ.

In a real situation the data p̃ will contain errors and we
will denote

p̃δ = p̃ + e,

where e is an N × 1 random vector with ‖e‖2 = δ ‖p̃‖2
and δ is the percentage of error. It is well known that the
discretized linear systems (11), (13), (14) and (15) are ill-
posed, i.e. the presence of errors in p̃δ will be amplified in
the solution ṽ, and in most cases the recovery of ṽ will be
useless. Hence regularization methods for (11), (13), (14)
and (15) are required.

Numerical Regularization
Consider the solution of the ill-posed linear matrix sys-

tem

Ax̃ = p̃, (16)

where x̃, p̃ are N × 1 vectors and A is an N × N complex
matrix. A standard numerical implementation of regular-
ization methods is based on the Singular Value Decomposi-
tion (SVD). The SVD of A will give a decomposition of the
form

A = UΣV ∗ =
N∑

i=1

uiσiv
∗
i (17)

where U = (u1, ..., uN ) ∈ CN×N and V = (v1, ..., vN ) ∈
CN×N are matrices with orthonormal columns, U∗U =
V ∗V = IN , and where the diagonal matrix Σ =
diag (σ1, ..., σN ) has nonnegative diagonal elements appear-
ing in nonincreasing order. In our case σN > 0 and so
rank(A) = N.

The decay rate of the singular values of operators deter-
mine the ill-posedness of the resulting linear systems. (Note
that the singular values of, for instance, SN approximate
the first N singular values of S and limN→0 σN = 0.) The
system is mildly ill-posed if σn = O (n−α) for α > 0, and
severely ill-posed otherwise (see [8]). In [6] it was found that
for the sphere of radius r less than 1, the singular values for
SN had the asymptotic behavior σn = O

(
rn (2n + 1)−1

)
.

This result shows that the system in (11) is ill-posed. Simi-
lar results can be found for the systems (13), (14) and (15).

It is instructive to recall the (least squares) solution of
(16) using the SVD,

x̃LS =
N∑

i=1

u∗i p̃

σi
vi, (18)

where in the case of ill-posed linear systems |u∗i p̃| decreases
with the same rate as σi. If we use the representation (18)
for the noisy pressure p̃δ then we can expand the series in
two terms

x̃δ
LS =

N∑
i=1

u∗i p̃

σi
vi +

N∑
i=1

u∗i e

σi
vi. (19)

Large i correspond to high frequency components. The first
term in (19) corresponds to the noiseless solution, while the
second term is the error term. The error term will have the
property that |u∗i e| will be of roughly the same magnitude
δ for all i (see [11]). Due to the decay of the singular values
of SN , the quantity |u∗i e| /σi will increase significantly with
i, affecting the solution. A regularization method is used
to reduce the effect of the high frequency components of e
term in the solution.

In the next subsections we will describe the regular-
ization methods used in the numerical experiments of this
paper.

Truncated Singular Value Decomposition The
Truncated Singular Value Decomposition (TSVD) solution
x̃l, with regularization parameter l, of (16) using the SVD
is given by

x̃l =
l∑

i=1

u∗i p̃
δ

σi
vi, 1 ≤ l ≤ rank (A) . (20)

We can see clearly that in the TSVD solution the truncation
level l avoids the small singular values that can affect the
solution in the presence of noise.

Conjugate Gradient for the Normal Equations The
conjugate gradient method is known as one the most pow-
erful algorithms for the solution of the selfadjoint, positive
definite well-posed linear equations. We will be interested
in the iterative solution of the normal equations of an ill-
posed problem. This is called the Conjugate Gradients for
the Normal Equations (CGNE).
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CGNE for solving equation (16) will be implemented
by the iteration for l = 1, 2, ...

αl =
∥∥∥A∗r(l−1)

∥∥∥2

2
/
∥∥∥Ad(l−1)

∥∥∥2

2
,

x̃l = x̃l−1 + αld
(l−1),

r(l) = r(l−1) − αlAd(l−1), (21)

βl =
∥∥∥A∗r(l)

∥∥∥2

2
/
∥∥∥A∗r(l−1)

∥∥∥2

2
,

d(l) = A∗r(l) + βld
(l−1),

where r(l) is the residual vector r(l) = p̃δ − Ax̃l and d(l) is
an auxiliary N vector. The CGNE algorithm is initialized
with the starting vector x̃0 (that can be 0), residual r(0) =
p̃δ −Ax̃l, and d(0) = A∗r(0).

One of the main advantages of CGNE is that it does not
require the computation of the SVD, which is expensive (of
order N3). Rather, the computational cost is O(N2) per it-
eration step for multiplication by A and A∗. For CGNE the
regularization parameter l will be the number of iterations.
For our problems l << N for the optimal solution, making
conjugate gradient particularly efficient.

Methods for the Choice of Regularization Parameter
In all regularization methods, the selection of the cor-

rect regularization parameter is crucial. In the case of
TSVD, an l close to the rank of A will give the least squares
solution and a small l will eliminate all the small singular
values and will miss important features of the solution. A
similar phenomena, called “semiconvergence”, occurs with
CGNE. The solution of CGNE will approximate the exact
solution after a few iterations and further iterations will ap-
proximate the least squares solution (19); see Figures 1, 2,
4.

In this section we will present a some methods for the
selection of the regularization parameter.

The Discrepancy Principle In 1966, Morozov sug-
gested the discrepancy principle (DP) as means for choos-
ing the regularization parameter in Tikhonov regularization
(see [8]). His idea was to allow an error of magnitude δ in
the data fit of the computed approximation to prevent un-
wanted magnification of noise components of the right-hand
side. A good estimate of δ is required.

For TSVD and CGNE we terminate at iteration l
(
δ, p̃δ

)
when, for the first time,

∥∥Ax̃δ
l − p̃δ

∥∥ ≤ τδ, for τ > 1.

Hanke and Raus Method As the previous method,
this method will be based on the estimation of the error

∥∥x̃− x̃δ
α

∥∥
2
. For CGNE, Hanke and Raus [9] found the esti-

mate

∥∥x̃− x̃δ
l

∥∥
2
≈ |Pl|1/2 ∥∥Ax̃l − p̃δ

∥∥
2
. (22)

The quantity Pl will be found using the recursion

Pl =
(

αlβl−1

αl−1
+ 1
)

Pl−1 −
αlβl−1

αl−1
Pl−2 + αl, (23)

with initial parameters P−1 = P0 = 0. The quantities αj

and βj , j = 0, 1, 2, ... are taken from the recursion (21) and
lead to the following stopping rule:
Compute

ηHR(0) =
∥∥p̃δ
∥∥

2
, ηHR(l) = |Pl|1/2 ∥∥Ax̃l − p̃δ

∥∥
2
, k ≥ 1,

(24)
and terminate the iteration after lm steps, provided
ηHR(lm) ≤ ηHR(l), for all l ≥ 0.

Note that ηHR(l) is conveniently computed within the
conjugate gradient iteration and an estimate of δ is not
needed.

DeLillo and Hrycak method [4] presents a parame-
ter choice strategy for the conjugate gradient method which
does not require knowledge of δ. Conjugate gradient for the
normal equations A∗Ax = A∗p is implemented using Lanc-
zos bidiagonalization [11] with reorthogonalization. The
regularization imitates TSVD on the Krylov subspaces. We
list the pseudo-code for the computation of the approximate
solution vectors, x1, . . . , xk. The optimal parameter choice
is l such that ηDH(l) is minimized:

β = ‖p‖
u = p/β
q = A′ ∗ p
a = ‖q‖
q = q/a
Q(:, 1) = q
u = A ∗Q(:, 1)
T (1, 1) = ‖u‖
U(:, 1) = u/T (1, 1)
y1 = (U(:, 1)′ ∗ p)/T (1, 1)
x1 = Q(:, 1) ∗ y1

ηDH(1) = |y1|
for i = 2 : k

q = A′ ∗ U(:, i− 1)− T (i− 1, i− 1) ∗Q(:, i− 1)
q = q−Q(:, 1 : i−1)∗(Q(:, 1 : i−1)′∗q) (reorthogonalize)
T (i− 1, i) = ‖q‖
Q(:, i) = q/T (i− 1, i)

5 Copyright c© 2002 by ASME



u = A ∗Q(:, i)− T (i− 1, i) ∗ U(:, i− 1)
u = u−U(:, 1 : i−1)∗(U(:, 1 : i−1)′∗u (reorthogonalize)
T (i, i) = ‖u‖
U(:, i) = u/T (i, i)
[UT, ST, V T ] = svd(T (1 : i, 1 : i))
yi = ST\(UT ′ ∗ U(:, 1 : i)′ ∗ p)
xi = Q(:, 1 : i) ∗ V T ∗ yi

ηDH(i) = |yi|
end

Generalized Cross-Validation Generalized cross-
validation(GCV) is a popular and successful method for
choosing the regularization parameter without requiring an
estimate of δ. The GCV method is based on statistical con-
siderations, namely, that a good value of the regularization
parameter should predict missing data values (see [13]).

The GCV method is a predictive method which seeks to
minimize predictive mean-square error ‖Ax̃α − p̃‖. Since p̃
is unknown, the GCV method works instead with the GCV
function

G (l) =

∥∥Ax̃l − p̃δ
∥∥2

trace (I −ARl)
2 , (25)

where Rl is the operator of the regularizer. The optimal
regularization parameter will be the minimum of G.

For TSVD with discrete parameter l, we obtain explic-
itly G (l) using

trace (I −ARl) = N − l. (26)

There is not a simple representation of the denominator for
CGNE (see [11] for references). We will not use this method
with CGNE.

NUMERICAL EXAMPLES
We now give the results of our numerical calculations for

two different geometries and various values of k to demon-
strate the regularization techniques. Specifically, we will
use as our test case the exact acoustical pressure and nor-
mal velocity given by a point source located at z,

p (x) =
exp (ik |x− z|)

4π |x− z|
, x ∈ Γ0, (27)

v (x) =
∂

∂ν (x)

(
exp (ik |x− z|)

4π |x− z|

)
, x ∈ Γ, (28)

where z ∈ R3\D. We will denote by ṽ and p̃ the N × 1
vectors of the exact pressure and normal velocity calculated

using (27) and (28) respectively. Our tests will be based on
the recovery of the known normal velocity ṽ by solving the
linear systems (11), (13), (14) and (15) with the acoustical
pressure p̃δ. The recovered normal velocity for parameter l
is denoted by ṽδ

l .

The Sphere
The surface Γ will be the unit sphere, Γ0 is the sphere

with radius 0.9 and the source is located at z = (0, 2, 0). We
use a BEM [6] with piecewise linear elements which gives
a discretization error of O

(
h2
)

with h = O
(
1/
√

N
)
. The

time required to generate the operatorsHN and G1
N for N =

1026 is approximately 25 minutes, while the time required
to generate SN , S′N and G2

N for the same N is approximately
15 minutes. This is one advantage of using the single layer
representation.

In Tables 1 and 2, we show the optimal relative er-
rors

∥∥ṽδ
l − ṽ

∥∥ / ‖ṽ‖ for different noise levels δ for TSVD and
CGNE regularization for the four linear systems used to find
the normal velocity for k=1, 3, 6.

The first thing we encounter is that for different noise
levels δ, the method of solving for SN and S′ will give
larger relative errors than the other methods for smaller
wave number k. As we increase k, this method will have
smaller relative errors than the other methods. Notice that
TSVD regularization will give a smaller relative error for
different noise levels δ in the four methods. The relative
error of the CGNE solutions is close to the relative error of
TSVD.

Although we show that TSVD regularization will give
the smaller relative errors, it requires the computation of
the SVD which is expensive. For this particular example
the computation of the SVD will take about 4 minutes while
the computation of 100 CGNE iterations will take approx-
imately 2 minutes. For noisy data we usually require just
a few iterations to obtain the optimal solution (see Table
2). Note, in particular, that in all our examples, the op-
timal l for the iterative methods is small compared with
TSVD. This behavior is due the favorable grouping of the
singular values for the integral operators of acoustics and is
discussed further in [4] and [6].

Figure 1 compares methods for choosing the regular-
ization parameter for TSVD regularization. We plot the
function log (G (l)) with the relative error function. Note
that DP and GCV have a slight tendency to oversmooth
the solution. Still the chosen regularization parameters will
give an error close to the optimal, since the choice of regu-
larization parameter is not as sensitive as the case of CGNE.

Figure 2 compares methods for choosing the regulariza-
tion parameter for CGNE regularization. We plot the func-
tions ηHR (l) and ηDH (l) with the relative error function.
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Figure 1. TSVD regularization using GCV(O) and DP(∇) to estimate the

optimal solution(∆) for the sphere.

Figure 2. CGNE regularization using HR(O), DH(O) and DP(∇) to esti-

mate the optimal solution(∆) for the sphere.

Figure 3. View of the boundary triangulation of the fuselage Γ

Here HR and DP tend to oversmooth the solution, while
DH slightly undersmooths the solution. It is important to
remark that for CGNE, DP will require a good approxi-
mation of the noise level. For CGNE the errors are more
sensitive to an underestimate or overestimate of the noise
level.

The Fuselage

The surface Γ will be a cylinder of radius 1 and length
5 with flat endcaps and a floor at a distance 0.74 from the
center. The boundary triangulation with 2048 boundary
elements and 1026 nodes is show in Figure 3. This geome-
try approximately models a Cessna 650 cylindrical fuselage
with floor. Γ0 will be Γ with dimensions reduced by a ratio
of 0.9. The source is located at z = (0,−1.5,−0.5).

For the error of the recovery of the regularized solutions
we don’t consider the corners and edges of the fuselage, be-
cause the recovered velocities are not expected to be accu-
rate. In Tables 3 and 4 we show the relative errors of TSVD
and CGNE regularization for the four linear systems used
to find the normal velocity and k = 1, 3, 6.

In contrast to the example of the unit sphere, we ob-
serve that, for different noise levels δ, the single layer
method SN , S′N gives smaller relative errors compared with
the other methods for all wave numbers.

Figure 4 compares the methods for choosing the regu-
larization parameter for CGNE regularization for the single
layer approach of SN , S′N for various noise levels δ. Observe
that HR, DH and DP oversmooth the solution, but DH is
closer to the optimal solution. As in the unit sphere the pa-
rameter chosen by HR is the smallest, the parameter chosen
by DP is next largest, and the parameter chosen by DH is
the largest.

Figure 4. CGNE regularization using HR(O), DH(O) and DP(∇) to esti-

mate optimal solutions(∆) for SN , S′N for the fuselage for various δ.

CONCLUSIONS
We have demonstrated that conjugate-gradient-like it-

erative methods methods, as compared to traditional meth-
ods such as the truncated singular value decompostion,
can be effective and particularly efficient for the integral
equations based on single layer, Helmholtz-Kirchhoff, and
Green’s function formulations of near-field acoustical holog-
raphy problems. Regularized solutions can be computed in
a few iterations with little dependence on the size of the
linear systems or the wave number. A new stopping rule
[4] for the Lanczos-based iteration was tested and shown to
be advantageous. In future work, we plan more extensive
comparisons of these methods with other methods such as
Tikhonov regularization, the Landweber iteration, and GM-
RES (see also [15]).

ACKNOWLEDGMENT
This research was supported by the U. S. National Sci-

ence Foundation ITR/ACS grant number 0081270.

REFERENCES

[1] K. E. Atkinson, 1997; ‘The Numerical Solution of Inte-
gral Equations of Seconds Kind’, Cambridge University
Press.

[2] K. E. Atkinson, 1998; ‘User’s Guide to a Boundary El-
ement Package for Solving Integral Equations on Piece-
wise Smooth Surfaces, Release No. 2’, University of
Iowa.

[3] D. Colton and R. Kress, 1992; ‘Inverse Acoustics and
Electromagnetic Scattering Theory’, Applied Mathe-
matical Science 93, Springer-Verlag, New York.

[4] T. DeLillo and T. Hrycak, 2001; ‘A stopping rule for the
conjugate gradient regularization method for ill-posed
problems’, submitted for publication.

[5] T. DeLillo, V. Isakov, N. Valdivia, and L. Wang, 2001;
‘The Detection of the source of acoustical noise in two
dimensions’, SIAM Journal of Applied Math, 61, 2104–
2121.

[6] T. DeLillo, V. Isakov, N. Valdivia, and L. Wang, 2001;
‘The detection of the source of interior acoustical noise’,
submitted for publication.

[7] T. DeLillo, V. Isakov, N. Valdivia, and L. Wang, 2000;
‘Computational methods for the detection of the source
of acoustical noise’, Proceedings of the ASME Noise

7 Copyright c© 2002 by ASME



Control Acoustics Division–2000, NCA-Vol. 27, 359–
366.

[8] H. W. Engl, M. Hanke, and A. Neubauer, 1996; ‘Regu-
larization of inverse problems’, Kluwer Academic Pub-
lishers, Boston.

[9] M. Hanke, 1995; ‘Conjugate gradient methods for ill-
posed problems’, Pitmann Research Note in Mathemat-
ical Series.

[10] P. C. Hansen, 1998; ‘Regularization Tools: A Mat-
lab Package for Analysis and Solution of Discrete Ill-
Posed Problems’, version 2.0 for Matlab 4.0 (1992, re-
vised 1998); see Numer. Algor. 6 (1994) 1–35; soft-
ware available via netlib@research.att.com from direc-
tory NUMERALGO.

[11] P. C. Hansen, 1998; ‘Rank-Deficient and Discrete Ill-
Posed Problems–Numerical Aspects of Linear Inver-
sion’, SIAM.

[12] V. Isakov, 2001; ‘On detecting the source of acoustical
noise’, Proceedings of the 5th International Conference
on Theoretical and Computational Acoustics, Beijing,
China.

[13] G. Wahba, 1990; ‘Spline Models for Observational
Data’, CBMS-NSF Regional Conference Series in Ap-
plied Mathematics, Vol. 59, SIAM Philadelphia.

[14] E. G. Williams, 1999; ‘Fourier Acoustics: Sound Radi-
ation and Nearfield Acoustical Holography’, Academic
Press, NY.

[15] E. G. Williams, 2001; ‘Regularization methods for near-
field acoustical holography’, J. Acoust. Soc. Am., 110,
1976–1988.

[16] E. G. Williams, B. H. Houston, P. C. Herdic, S. T.
Raveendra, and B. Gardner, 2000; ‘Interior near-field
acoustical holography in flight’, J. Acoust. Soc. Am.,
108, 1451–1463.

8 Copyright c© 2002 by ASME



Method k\δ 0.001(l) 0.005(l) 0.01(l) 0.05(l)

HN 1 0.059(1203) 0.078(1094) 0.085(1094) 0.136(1064)

G1
N 1 0.059(178) 0.078(68) 0.085(68) 0.136(38)

SN , S′N 1 0.074(198) 0.099(126) 0.105(69) 0.140(37)

G2
N 1 0.056(198) 0.075(84) 0.081(69) 0.120(38)

HN 3 0.054(1289) 0.066(1204) 0.079(1125) 0.100(1076)

G1
N 3 0.054(264) 0.066(178) 0.079(99) 0.101(70)

SN , S′N 3 0.051(322) 0.064(150) 0.071(99) 0.106(63)

G2
N 3 0.051(351) 0.066(173) 0.079(99) 0.109(49)

HN 6 0.059(1402) 0.070(1290) 0.076(1203) 0.095(1129)

G1
N 6 0.059(376) 0.070(264) 0.076(166) 0.096(103)

SN , S′N 6 0.048(391) 0.057(198) 0.062(150) 0.074(98)

G2
N 6 0.051(392) 0.064(264) 0.073(150) 0.093(103)

Table 1.
∥∥ṽ − ṽδ

l

∥∥ / ‖ṽ‖ of TSVD regularization for the sphere.

Method k\δ 0.001(l) 0.005(l) 0.01(l) 0.05(l)

HN 1 0.059(34) 0.076(16) 0.087(13) 0.149(9)

G1
N 1 0.058(18) 0.076(9) 0.085(8) 0.150(5)

SN , S′N 1 0.074(20) 0.097(10) 0.106(7) 0.167(5)

G2
N 1 0.058(17) 0.074(9) 0.083(8) 0.146(5)

HN 3 0.052(66) 0.066(33) 0.074(26) 0.112(16)

G1
N 3 0.052(35) 0.066(18) 0.075(13) 0.116(8)

SN , S′N 3 0.050(28) 0.062(14) 0.068(11) 0.099(7)

G2
N 3 0.050(33) 0.065(17) 0.073(13) 0.103(8)

HN 6 0.058(140) 0.068(62) 0.074(45) 0.100(27)

G1
N 6 0.058(68) 0.068(32) 0.075(23) 0.099(15)

SN , S′N 6 0.047(40) 0.055(21) 0.059(17) 0.078(9)

G2
N 6 0.050(65) 0.062(33) 0.069(23) 0.099(15)

Table 2.
∥∥ṽ − ṽδ

l

∥∥ / ‖ṽ‖ of CGNE regularization for the sphere.
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Method k\δ 0.001(l) 0.005(l) 0.01(l) 0.05(l)

HN 1 0.182(1288) 0.185(1195) 0.190(1195) 0.238(1132)

G1
N 1 0.183(262) 0.187(170) 0.192(170) 0.243(106)

SN , S′N 1 0.060(352) 0.082(236) 0.101(186) 0.188(107)

G2
N 1 0.190(588) 0.215(343) 0.234(254) 0.299(156)

HN 3 0.134(1701) 0.160(1382) 0.171(1330) 0.275(1263)

G1
N 3 0.134(675) 0.161(356) 0.173(304) 0.278(241)

SN , S′N 3 0.050(422) 0.058(281) 0.065(225) 0.134(178)

G2
N 3 0.200(839) 0.249(552) 0.263(385) 0.337(276)

HN 6 0.165(1840) 0.224(1834) 0.276(1679) 0.425(1295)

G1
N 6 0.166(814) 0.224(808) 0.277(652) 0.427(270)

SN , S′N 6 0.090(789) 0.147(787) 0.203(548) 0.359(348)

G2
N 6 0.189(866) 0.253(819) 0.331(689) 0.470(319)

Table 3.
∥∥ṽ − ṽδ

l

∥∥ / ‖ṽ‖ of TSVD regularization for the fuselage.

Method k\δ 0.001(l) 0.005(l) 0.01(l) 0.05(l)

HN 1 0.152(33) 0.15572(28) 0.162(25) 0.218(14)

G1
N 1 0.156(32) 0.160(30) 0.167(25) 0.220(18)

SN , S′N 1 0.054(43) 0.070(25) 0.089(22) 0.183(13)

G2
N 1 0.185(150) 0.208(65) 0.223(47) 0.289(26)

HN 3 0.130(150) 0.139(78) 0.153(70) 0.276(39)

G1
N 3 0.131(150) 0.141(93) 0.155(82) 0.281(49)

SN , S′N 3 0.047(53) 0.054(40) 0.066(34) 0.177(22)

G2
N 3 0.240(150) 0.244(150) 0.256(124) 0.361(64)

HN 6 0.292(150) 0.297(150) 0.309(150) 0.405(57)

G1
N 6 0.331(150) 0.332(150) 0.336(150) 0.408(75)

SN , S′N 6 0.122(150) 0.153(146) 0.197(70) 0.346(25)

G2
N 6 0.421(150) 0.421(150) 0.421(150) 0.451(114)

Table 4.
∥∥ṽ − ṽδ

l

∥∥ / ‖ṽ‖ of CGNE regularization for the fuselage.
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