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Abstract. This paper compares some methods for computing conformal maps
from simply and multiply connected domains bounded by circles to target do-

mains bounded by smooth curves and curves with corners. We discuss the use

of explicit preliminary maps, including the osculation method of Grassmann,
to first conformally map the target domain to a more nearly circular domain.

The Fourier series method due to Fornberg and its generalization to multiply

connected domains are then applied to compute the maps to the nearly circular
domains. The final map is represented as a composition of the Fourier/Laurent

series with the inverted explicit preliminary maps. A method for systemati-

cally removing corners with power maps is also implemented and composed
with the Fornberg maps. The use of explict maps has been suggested often

in the past, but has rarely been carefully studied, especially for the multiply

connected case. Using Fourier series to represent conformal maps from do-
mains bounded by circles to more general domains has certain computational

advantages, such as the use of fast methods. However, if the target domain

has elongated sections or corners, the mapping problems can suffer from severe
ill-conditioning or loss of accuracy. The purpose of this paper is to illustrate

some of these practical possibilites and limitations.

1. Introduction. This paper compares some methods for computing conformal maps from simply

and multiply connected domains bounded by circles to target domains bounded by smooth curves

and curves with corners. We discuss the use of explicit preliminary maps, including the osculation
method of Grassmann [17], to conformally map the target domain to a more nearly circular domain.

The Fourier series method due to Fornberg [15] and its generalization to multiply connected
domains [3] are then applied to compute the maps to the nearly circular domains. The final map

is represented as a composition of the Fourier/Laurent series with the inverted explicit preliminary

maps. A novel method for systematically removing corners with power maps is also implemented
and composed with the Fornberg maps (which require smooth boundaries) and the level of error

that can be expected when using Fourier series to treat domains with corners is illustrated by
comparing the results with the Schwarz-Christoffel mapping from SC Toolbox [14] .

We also report some preliminary attempts to combine the Fornberg-like method with Karman-

Trefftz method for removing trailing edge corners in multi-element airfoils. This is a classic method

for computing potential flow over airfoils; see, e.g., [9, 21, 45].
Preliminary explicit maps which map a given domain to a more nearly circular domain or

smooth corners have been used frequently [18, 21, 25, 29, 32, 40]. However, systematic comparisons
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of various approaches are difficult to find. Here we revisit some of the calculations from [4] (see
also [5, 6]) and extend them to multiply connected domains and domains with corners. Parts of

this work appeared in the first author’s PhD dissertation [2] where sections of our Matlab code

are included to show specific examples of the implementations. General introductions to numerical
conformal mapping and collections of maps are given in [16, 22, 24, 28, 39]. Wegmann [44] gives

an overview and many computational examples and references.
Most applications of conformal mapping involve transplanting boundary value problems for the

Laplace equation to a domain, such as the unit disk, where the problem can be solved efficiently.

For domains far from the disk, such as an elongated or pinched domain, the map can have large
distortions making the numerical problem highly ill-conditioned and requiring many mesh points

to achieve sufficient accuracy. We give examples of such domains below in order to illustrate the

limits of usefulness of the methods. However, for moderate geometries with sufficiently smooth
boundaries and data, these series-based methods lead to fast, spectrally accurate methods.

This paper is organized as follows. Section 2 treats simply connected domains. After recalling

the Riemann Mapping Theorem, a short exposition of our modification of Fornberg’s original
method [15] for the simply connected case is given along with a brief review of a method for fitting

points on the boundaries with a periodic cubic spline parametrized by chordal arc length. This is

necessary, since the explicit maps transform a (finite) distribution of points along the boundaries
and Fornberg’s method requires the final boundary to be defined as a smooth, parametrized curve.

Grassmann’s method [17] for mapping the original boundary to a more circular boundary using a
composition g = gigm ◦· · · g2 ◦g1 of explicit preliminary maps gi is explained. Numerical examples

are then discussed illustrating our calculations for simply connected domains. We then compute

the Fornberg map h from the unit disk to the near circle domain and compose it with the inverted
Grassmann map g−1 , so that the final map is f = g−1 ◦ h; see Figure 1 for an example. This

approach is compared with the direct calculation of f from the disk to the original domain by

Fornberg’s method. The errors were calculated and graphed for several values of N = 2M Fourier
points for some popular families of test cases, including inverted ellipses, where the explicit maps

are known and problems can be made more difficult by making the domains “thinner”. The rest

of the section discusses a method for smoothing corners by power maps using a new Koebe-like
method. In Example 5, we remove the corners of the square, apply Fornberg’s method to the

resulting domain, and finally invert the Koebe-like maps. In Table 4, the results are compared

to the Schwarz-Christoffel map from SC Toolbox [14], which gives essentially exact results for
polygonal domains.

Section 3 discusses the extension of Fornberg’s method to the exterior multiply connected case
of connectivity m ≥ 2 developed in [3]. The first numerical example uses the region containing

the point at infinity and bounded by three inverted ellipses and one ellipse. We apply Grassmann

mappings to each inverted ellipse and the ellipse successively to conformally map the target domain
to a more nearly circular domain. The process is a composition of Fornberg maps and inverted

Grassmann maps g similar to the simply connected cases in Section 2. The second part covers
a method for removing corners in exterior multiply connected domains. The Koebe-like method
from Section 2 is used to remove multiple corners from each boundary curve of three rectangles

after first inverting in a circle; see Figure 24, below.

In Section 4, we discuss the classical Karman-Trefftz transformation k for removing single
trailing-edge corners from an airfoil domain and calculating potential flow. The final map is then

k−1 ◦ h, where h is the Fornberg map to the smooth domain. Flow over a single-element and a
two-element airfoil are shown, similar to the setup in [21].

Section 5 briefly discusses the bounded, multiply connected case and Section 6 states some

conclusions and directions for future research.

2. Simply connected domains. We recall the Riemann mapping theorem for a simply con-
nected domain.

Theorem 2.1. Let Ω be a simply connected region which is not the whole plane or the Riemann
sphere, and let a be a point of Ω. Then there exists in Ω a unique analytic function g satisfying

the conditions

g(a) = 0 and g′(a) > 0,

and assuming every value in the unit disk D = {w : |w| < 1} exactly once.

Recall that for conformal maps, g′(z) 6= 0, so that the directions of the curves passing through

any point are unchanged. For the proof of the mapping theorem, see, e.g., [1, pp. 325–326]. We
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Figure 1. The composition f = g−1 ◦ h of Fornberg map h
using N = 256 Fourier points from unit disk to the near cir-
cle g(Γ) (left), where Γ is the inverted ellipse with α = 0.2
(right), produced with composition of 10 Grassmann maps
g = g10 ◦ · · · g2 ◦ g1.

will mainly be interested in numerically approximating the inverse of the Riemann map, f = g−1.
(In fact, the composition of the explicit maps can be viewed as an approximation to g.)

2.1. Fornberg’s method for the disk. Fornberg [15] proposed a method for computing the
conformal map f from the interior of the unit disk to the interior of a smooth, closed curve.

We use a slight modification of Fornberg’s original formulation which we review briefly here;

see [8, 13, 43, 44] for details.
We want to find the conformal map from the interior of unit disk D onto the interior Ω of a

Jordan curve Γ. Consider the boundary Γ of Ω to be parametrized by S (e.g., arclength or polar

angle), Γ : γ(S), 0 ≤ S ≤ L, γ(0) = γ(L). The normalization imposed on f is f(0) = a ∈ Ω and
f(1) = γ(0). Finding f is equivalent of finding the boundary correspondence, S = S(θ) such that

f(eiθ) = γ(S(θ)). If f has the expansion

f(eiθ) =
∞∑

k=−∞
ake

ikθ,

then f extends analytically into D if and only if

a−k =
1

2π

2π∫
0

f(eiθ)eikθdt = 0, k = 1, 2, . . . ;

see [24, Sec. 14.3.1].

A Newton-like method is used for numerically solving for the boundary correspondence function

S(θ). Let Sk(θ) be an approximation to the boundary correspondence function S(θ) at the kth
Newton step. We need to find a 2π-periodic correction Uk(θ) such that f(eiθ) = γ(Sk(θ)+Uk(θ))

are the boundary values at eiθ of the conformal mapping f . Since it is difficult to find the desired
correction Uk(θ), we compute the correction by linearizing about Sk(θ),

f(eiθ) ≈ γ(Sk(θ)) + γ′(Sk(θ))Uk(θ).

The condition that the values should have negatively indexed Taylor coefficients leads to a linear
problem for the unknown Uk. The system is discretized with N -point trigonometric interpolation

and results in a symmetric positive definite system,

AU = b,

where A is the discretization the identity plus a low rank operator. The system can be solved
efficiently with the conjugate gradient method with matrix-vector multiplication using the fft at

a cost of O(N logN). The Newton update is then

Sk+1(θ) = Sk(θ) + Uk(θ)

and near-quadratic convergence is generally observed for a sufficiently close initial guess; see Ta-
bles 1 and 5. Usually S0(θ) = Lθ/2π will work for domains that aren’t too far from circular.
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Once the boundary correspondence is found, we can easily find the Taylor series,
f(z) =

∑∞
k=0 akz

k, for the map. For |z| < |ζ| = 1, ζ = eiθ, dζ = ieiθdθ

f(z) =
1

2πi

∫
|ζ|=1

γ(S(θ))

ζ − z
dζ

=
1

2πi

∫
|ζ|=1

γ(S(θ))

(
1 +

z

ζ
+

(
z

ζ

)2

+ · · ·
)
dζ

ζ

=

∞∑
k=0

(
1

2π

∫ 2π

0
γ(S(θ))e−ikθdθ

)
zk =

∞∑
k=0

akz
k.

Therefore the Taylor coefficients of f(z) are the Fourier coefficients of the 2π-periodic function,

γ(S(θ)), ak := 1
2π

∫ 2π
0 γ(S(θ))e−ikθdθ.

2.2. Parametrizing the boundary. Piecewise smooth boundaries may be given by analytic
formulas. However, the preliminary maps are constructed by successively conformally transforming

a finite set of boundary points. The resulting curve must be parametrized in order to apply

Fornberg’s method. We fit the points by two periodic cubic splines—one for the x coordinates and
one for the y coordinates—parametrized by the chordal arclength between two successive points

(xk, yk), k = 1, . . . , Ns along the boundary. Our Matlab code is based on [26]. A smoother fit to

the boundary points may be computed with trigonometric interpolation. However, as we show in
an example below, this does not to result in much improvement in our computations.

2.3. Numerical examples using Fornberg’s method for analytic boundaries. In this sec-

tion, we apply the Fornberg map directly and in combination with preliminary Grassmann maps

to some explicity known test cases. The calculated errors for the direct Fornberg (Taylor series)
map for analytic parametrization of the boundary exhibit spectral accuracy, that is, doubling the

number of Fourier points N (or equivalently, the number of Taylor coefficients N/2), squares the

error, as expected, since the Taylor coefficients decay geometrically. We consider two examples of
test cases for families of curves: the family of inverted ellipses and the family of ellipses; see [7] for

other test cases. Each family has a parameter, such as the “thinness” 0 < α ≤ 1 of the domain,

that can be changed to make a more poorly conditioned problem requiring larger N to maintain
accuracy as α → 0; see [7] for details. Fornberg’s method may not converge using the standard

initial guess, whereas, Fornberg maps to near circles produced by preliminary Grassmann maps

don’t require special initial guesses. One could use the preliminary map procedure to generate a
good initial guess to Fornberg’s direct method for difficult domains, but we have not tried this.

Example 1 (Inverted Ellipse). The boundary curve for the inverted ellipse is

Γ : γ(S) = ρ(S)eiS , 0 ≤ S ≤ 2π, where ρ(S) =

√
1− (1− α2) sin2 S.

0 < α < 1 is the distance of 0 to the nearest boundary point. The exact map is

w = f(z) =
2αz

1 + α− (1− α)z2
.

Note: This map can be derived from the Joukowski map f(z) = z + 1/z which maps exteriors
of circles to exteriors of ellipses by inverting, normalizing properly, and rotating. The images

of a polar coordinate grid in the interior of the disk under the conformal mapping is displayed
in Figure 2. In this case Fornberg’s method usually converges with 10 Newton iterations or

fewer when the initial guess for the boundary correspondence is given as the standard initial
guess, S0(θ) := Lθ/2π, where here L = 2π. Quadratic convergence for this analytic boundary
parametrization is shown in Table 1. The convergence rate is generally somewhat slower for spline
boundaries; see Table 5. The errors in Figure 3 for an analytic parametrization of the boundary

exhibit spectral accuracy and are better than the results using preliminary Grassmann maps,
Figure 11. However, for α = 0.1 and N = 64, 128, Fornberg’s method did not converge using the

standard initial guess, whereas, Fornberg maps to near circles produced by preliminary Grassmann
maps don’t require special initial guesses.

In practice, a boundary curve might be represented by a finite set of points fitted with a periodic
cubic spline and spectral accuracy will not be a possibility. Boundary points can be fitted using

trigonometric interpolation in an effort to achieve higher accuracy; see, e.g., [37, Fig. 13]. Table 2
gives errors and timings for inverted ellipses, with 10 preliminary Grassmann maps, comparing ac-
curacy and timings for trigonometric interpolation and cubic spline interpolation of the Ns nearly
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circular mapped points. There is only a slight gain in accuracy in some cases using trigonometric
interpolation. The points interpolated are not equidistant. Also, the interpolant must be evaluated

at the N Fourier points at each Newton iteration of the Fornberg map to the near-circles. For

the cubic spline interpolant, this costs O(N) flops. Since the conjugate gradient iterations for the
inner linear systems for Fornberg’s method generally converges superlinearly, Fornberg’s method

costs O(N logN) using splines (or analytic formulas) for γ(S). (In general, computing the direct
map to the domain is slightly faster than using preliminary Grassmann maps with spline interpo-

lation.) However, it costs O(N ·Ns) flops per Newton step to evaluate the Ns-point trigonometric

interpolant at the N Fourier points, since the fft cannot be used for the non-equidistant points and
it would cost more than O(N), in any case. The timings in Table 2 for trigonometric interpolation

are nearly 10 times greater than for spline interpolation. The small advantage of generating a

smoother interpolant with trigonometric interpolation of the very unevenly distributed mapped
points thus seems to be lost. It is also necessary to do an additional spline fit to generate a good

initial guess of equally distributed points for the Fornberg map to the near circle, since equally

distributed points in the trigonometric parameter are not equally distributed on the near circle.
If this is not done, the Fornberg iteration will usually not converge. If higher accuracy is needed

using the Grassmann maps, it can be achieved by taking large values of Ns (and N) as shown in

Figure 12.
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Figure 2. Fornberg maps to inverted ellipses with
α = 0.8, 0.4, 0.2, 0.1 and N = 64, 128, 256, 256, resp..

Example 2 (Ellipse). See Figure 4. This is an example of an elongated region analyzed in [7].

Maps from the disk to an elongated region have distortions that increase exponentially with the
aspect ratio of the region causing very severe ill-condtioning and limiting the applicability of Fourier

series methods. It was originally hoped that the use of preliminary maps might circumvent this ill-

conditioning, but the large distortions are transferred to the preliminary maps which then amplify
any errors in the Fourier series map to the near circle. Two crescent maps are generally enough
to map ellipse domains to very-nearly circular domains.

For our calculations, we use the analytic, starlike parametrization of the boundary of the ellipse,

γ(S) = ρ(S)eiS , where ρ(S) = α/
√

1− (1− α2) cos2(S) and 0 < α ≤ 1. However, for thin ellipses,

using the parametrization γ(S) = cos(S) + iα sin(S) or using a spline fit with, say Ns = 2000

knots makes little difference. Note that the conformal map satisfies f(0) = 0, f(±1) = ±1, and
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Figure 3. Errors for Fornberg maps to inverted ellipse with ana-
lytic boundary.

Table 1. Convergence of successive iteration errors at the Fourier
points for the map to an inverted ellipse with α = 0.2 and N = 128.
Note that the discrete problem is solved to machine precision but
the truncation error is limited by N .

Iteration ‖Sk+1 − Sk‖∞ ‖fcomputed − fexact‖∞
1 6.0e-01 6.6e-01
2 3.3e-01 3.3e-01

3 7.0e-02 6.9e-02

4 2.6e-03 2.6e-03
5 4.0e-06 4.9e-06

6 4.2e-11 1.2e-06

7 0.0e+00 1.2e-06
8 0.0e+00 1.2e-06

f(±i) = ±iα. In [7], we showed that

‖f ′‖∞ = |f ′(±1)| =
α2

2π
eπ

2/4α.

This is an example of the severe ill-conditioning of the conformal mapping problem due to the
elongated shape known as the “crowding phenomenon”[35], since images of points at the ends of

the ellipse under f−1 are crowded together on the unit circle exponentially in the aspect ratio of

the domain as α ↓ 0. For α approaching about 0.2 a large number of Fourier points N are required
to achieve any resolution near the ends of the ellipse, if, indeed, the method converges at all;

see Figures 15 and 16. For “pinched” domains, such as the inverted ellipses above, the crowding
is generally algebraic in 1/α. Note that this ill-conditioning is due to overall shape and not to
the presence of corners or high curvature, as discussed in [7], and represents a severe limitation

on the use of Fourier series and the unit disk as a computational domain; see, e.g., [11] for an

alternative. This ill-conditioning has limited the use of these methods for applications, such as the
computation of breaking waves [34] or Rayleigh-Taylor instabilities [35], where highly elongated

geometries evolve. In this sense, methods mapping from the physical domain to the disk are much
more robust; see [36, 38].

Example 3. In practice, there may not be an analytic formula defining the boundary. In Figure 5,
the boundary is formed by fitting 10 points in the plane distributed around the origin with a

periodic cubic spline using Ns = 100 points to parametrize the final curve. The Grassmann maps
below can also be applied to this example, but the results look much the same. Note that here the

level of error can be no better than the accuracy of the cubic spline used to determine the curve.
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Table 2. Comparison of errors and approximate timings in sec-
onds on a laptop using Matlab for cubic spline and trigonometric
interpolation for the inverted ellipse with igm = 10 preliminary
Grassmann maps and 10 Newton iterations for Fornberg’s method.
Interpolation is needed to provide a good initial guess for the trig
interpolation parameter.

trig interp spline interp

α Ns N error time error time

0.4 2000 256 1.2e-04 0.37 1.2e-04 0.06

2000 512 5.5e-06 0.89 5.5e-06 0.07
2000 1024 2.3e-08 1.26 1.5e-07 0.07

2000 2048 1.3e-09 2.59 2.3e-07 0.08

2000 4096 1.3e-09 4.69 2.3e-07 0.11
4096 4096 6.9e-14 10.09 9.4e-09 0.13

0.2 2000 256 1.0e-04 0.43 1.0e-04 0.07

2000 512 2.0e-06 0.84 1.7e-06 0.08

2000 1024 1.5e-06 1.25 6.0e-07 0.08
2000 2048 1.3e-06 2.55 5.7e-07 0.09

2000 4096 1.2e-06 4.48 5.7e-07 0.12

4096 4096 3.4e-09 12.60 3.4e-08 0.16

0.1 2000 256 2.4e-03 0.39 2.5e-03 0.07
2000 512 2.3e-04 0.74 2.3e-04 0.08

2000 1024 7.2e-05 1.49 4.4e-06 0.08

2000 2048 7.9e-05 2.77 1.3e-06 0.09
2000 4096 6.6e-05 5.46 1.3e-06 0.15

4096 4096 7.9e-06 10.13 3.6e-07 0.16

Figure 4. Ill-conditioned map: α = 0.3 ellipse using N = 2048
with standard initial guess. Ns = 2000 spline points were used,
but an analytic parametrization yields similar results. 11 Newton
iteration gives an error in the successive iterates of 0 to machine
precision. With N = 1024, small oscillations can be seen near ±1.
Results with two crescent maps are slightly worse.

2.4. Grassmann’s method. This section reports several numerical examples for simply con-

nected domains with Grassmann’s routine [17], a method for producing a composition of elemen-
tary maps converging to the Riemann map to the unit disk. The domain Ω to be mapped must

be normalized so that it is contained in the unit disk with 0 ∈ Ω and at least two boundary points

of modulus 1. The elementary maps gradually expand the domain conformally to fill the disk
producing a nearly circular domain. These maps are in the class of osculation maps gi and their

composition gk ◦ · · · ◦ g2 ◦ g1 converges to the Riemann map at an very slow asymptotic rate of

O(1/k). However, they exhibit fast initial convergence as observed by Grassmann and others and
analyzed by Henrici [23, 24]. In our examples below, k ≤ 10 is generally sufficient to produce a

nearly circular domain which can be mapped by Fornberg’s method.

We illustrate the behaviour of the Grassmann maps on our two test cases. We will compare
the use of inverted Grassmann maps composed with Fornberg’s map to the near-circular domain

with the computation of the Fornberg map directly to the domain. The first example applies the
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Figure 5. Fornberg map to a curve with defined by Ns = 100
spline points using N = 256.

Grassmann method to map an inverted ellipse to a nearly circular curve after several iterations.
The second example is the map to an ellipse. Results for other examples from [7], such as the

Cassini oval and the arctanh region yield similar results. Fornberg maps to near circles produced

by preliminary Grassmann maps don’t require special initial guesses.
We consider two of Grassmann’s elementary mappings, the “circle” or “crescent mapping” and

the “Koebe mapping”. Grassmann used a third elementary map based on the Koebe function,

k(z) = z/(1 − z)2 and Porter [40] suggested other ways to accelerate the initial convergence.
However, we do not need these alternatives here.

To choose between the two maps at each iteration, we first find the point of modulus A on the

boundary of Ω closest to 0. Next, we find the circle K tangent to the boundary of Ω at that point.
Ω is rotated so that the point of modulus A goes to −A. If the unit disk containing Ω and the

circle K intersect, they form a crescent containing Ω. The crescent can be mapped to unit disk,
expanding the point of modulus A to the unit circle.

If K does not intersect the unit disk, then we use the Koebe mapping. Again, Ω is rotated so

that the nearest point to the origin maps to −A. Then −A is mapped to the origin by a self-map

of the disk, a square root is taken, and a self-map of the disk maps the origin to −
√
A. Since

0 < A < 1, we have −
√
A < −A, expanding the boundary out toward the unit circle.

2.4.1. Grassmann map calculation. We give a short review of some of the details in [17]. Let

zj , j = 1, . . . , Ns be points on the boundary Γ of Ω. Let zi0 ∈ Γ be the point on the boundary of
Ω nearest to 0. Let i1 = i0 − 1 and for j 6= i0, i1

Aj =
zj − zi0
zj − zi1

∣∣∣∣ zj − zi1zj − zi0

∣∣∣∣ = eiαj ,

where −π < αj < π. The approximate tangent circle K will be the circle through zj , zi0 , zi1 such

the Im Aj = sinαj is smallest. The calculations of the radius R and the center C of circle K are

given by

R =
1

2

|zi0 − zi1 |
|Im Aj |

and C =
1

2

[
zi0 + zi1 + i(zi0 − zi1 )

Re Aj

Im Aj

]
.

If Im Aj < 0, i.e., αj < 0, we delete the interior of K. Otherwise, if Im Aj > 0, i.e,. αj > 0, we
delete the exterior of K. We multiply the region Ω and circle K by C/ |C| so that the center lies

on the x-axis. If K intersects the unit circle in two points we will use the crescent map. Otherwise,

we use the second Koebe routine. The intersection points between K and unit circle are given by

x := Re Z1 = [(C +R)(C −R) + 1]/(2C) and Im Z1 =
√

1− x2

where Z1 and Z1 are the calculated points of intersection.
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2.4.2. Circle or crescent map. Let K be the disk that intersects the boundary of the simply
connected curve Ω. The crescent map will be constructed by the composition of the following

elementary mappings. Let Z1 and Z1 be the intersection points between K and Ω from the

previous calculations, and let zj0 be the intersection of circle K and the real axis. The first
elementary transformation of the crescent map is the Möbius transformation that will map the

crescent to a wedge with angle φ,

z −→ T (z) = tm
z − Z1

z − Z1

where tm =
zj0 − Z1

zj0 − Z1
.

The second elementary transformation maps to the half plane by raising the first elementary

transformation to the power π/φ

T (z) −−→ T (z)π/φ.

Finally, the half plane is mapped to the disk by the elementary transformation

T (z)π/φ −→ gc(z) = tm1

T (z)π/φ − t0
T (z)π/φ − t0

where t0 = T (0)π/φ and tm1 =
T (1)π/φ − t0
T (1)π/φ − t0

.

Therefore, the crescent map will be the composition of the all three elementary transformations,

z −→ T (z) = tm
z − Z1

z − Z1

−−→ T (z)π/φ −→ gc(z) = tm1

T (z)π/φ − t0
T (z)π/φ − t0

.

Figure 6 shows the result of a crescent map applied to an ellipse, where the center of the circle
tangent to the ellipse at the point nearest the origin lies to the right of the origin. Figure 7 shows

the result of a crescent map applied to an inverted ellipse, where the center of the circle tangent

to the inverted ellipse at the point nearest the origin lies to the left of the origin.
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Figure 6. One crescent map applied to an ellipse with α = 0.75.
The ’X’s on the left figure mark the centers of the unit and tangent
circles.

2.4.3. Koebe map. This map is based on the function used in the proof of the Riemann Mapping

Theorem; see [1, 24]. It moves the boundary to the unit circle more slowly than the crescent map,
but it can be applied to any boundary. Here the tangent circle K is entirely in the unit disk where

zi0 , the point closest to 0, is rotated to −A = −|zi0 |. R is the radius and C is the center of the
circle tangent to the boundary at −A. This means C < 0 and R+ |C| < 1. We map the unit disk
slit along negative x-axis to −P = −(C + γR) where 0 < γ < 1 and −1 < −P < 0 since 0 ∈ Ω.
Here we use γ = 0.9, so that square roots aren’t taken on the boundary. The first elementary
mapping is to map the point −P to the center 0 by a self-map of the unit disk,

z −−→ w =
z + P

1 + Pz
.
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Figure 7. One crescent map applied to an inverted ellipse with
α = 0.52.

The next elementary transformation is the square root that maps the slit to the half disk,

w −−→
√
w,

and the last transformation to the desired shape is

√
w −−→

√
w −
√
P

1−
√
w
√
P
.

The Koebe map will be the composition of the all three elementary transformations,

z −−→ w =
z + P

1 + Pz
−−→
√
w −−→ gk(z) =

√
w −
√
P

1−
√
w
√
P
.

Note that −P → 0→ −
√
P < −P and so that the boundary near −A ≈ −P will be moved toward

the unit circle. Figure 8 illustrates the steps in the construction for an inverted ellipse where the

tangent circle does not intersect the unit circle and the crescent map cannot be used.

2.4.4. Inverse Crescent Map. The inverse of the crescent mapping uses the following conformal

mapping transformations.

z −→ w =
t0z − t0tm1

z − tm1

−→ wφ/π −→
Z1wφ/π − Z1tm

wφ/π − tm

2.4.5. Inverse Koebe Map. The inverse of the Koebe mapping uses the following conformal map-

ping transformations.

z −→ w =
z +
√
Pz

1 +
√
P
−→ w2 −→ g−1 =

w2 + P

1 + Pw2

Example 4 (Grassmann iterations). Some iterations of the Grassmann maps applied to an in-
verted ellipse, Example 1 with “thinness” α = 0.2, are shown in Figures 9 and the rate of con-

vergence of the boundary to the unit circle for various α is illustrated in Table 3. Note that the
initial convergence rate is fast, as discussed in [23, 24, 40]. The resulting distribution of Ns = 400

points on the near-circle after igm := the number of Grassmann maps = 10 is shown in Figure 10.
The boundary of the nearly circular domain is parametrized by fitting a periodic cubic spline
parametrized by chordal arc length, as descibed above, through these points. To increase the
overall accuracy more spline points Ns can be mapped at a relatively cheap cost of order Ns× the

number of Grassmann iterations. Examples of other curve families, such as those discussed in [7],
have been computed in [2, 4] with similar results.

2.5. Removing Corners. In this section, we introduce a method for systematically removing
corners. The method is based on the Koebe map above for general curves. An example of a square

is used to calculate the error in removing its corners with our Koebe-like method compared to the
Schwarz-Christoffel map using SC Toolbox [14], which is highly accurate. See [9, 10, 18, 29, 30, 31,
44] for related papers. The domain Ω is normalized inside the unit disk such that 0 ∈ Ω and such

that none of the corners lie on the unit circle. We apply the following procedure, similar to the
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Figure 8. Steps for one Koebe map applied to an inverted ellipse
with α = 0.48. Note that the circle tangent to the boundary at
the point nearest the origin does not intersect the unit circle, so
that the crescent map cannot be applied. The square root is taken
at the origin slightly off of the boundary curve, so that the curve
remains smooth.
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Figure 9. Iterations 1, 3, and 6 of Grassmann maps applied to an
inverted ellipse with α = 0.2; see Table 3.

Koebe map above, successively to each corner. First, we rotate the corner zk with |zk| = A < 1
to −A. Next we apply the following sequence of maps, where βkπ is the corner angle,

z −−→ Z =
z +A

1 +Az
−−→W = Z1/βk −−→ w = k(z) =

W −A1/βk

1−A1/βkW
.

One step of this procedure is shown in Figure 17.
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Table 3. Convergence of the Grassmann maps (ig) for inverted
ellipses, α = 0.8, 0.4, 0.2, 0.1, ig = c = circle (crescent)map, ig
= k = Koebe map. Note the fast initial convergence, but slow
asymptotic convergence. Here Ns = 400 and γ = 0.9.

ig α ig α ig α ig α

0 .800 0 .400 0 .200 0 .100
c .804 k .416 k .239 k .150

c .950 k .571 k .449 k .361

c .594 k .464 k .388
c .770 k .535 k .484

c .775 c .563 c .528
c .912 c .717 c .704

c .912 c .725 c .713

c .961 c .885 c .917
c .962 c .886 c .918
c .968 c .957 c .960
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Figure 10. Inverted ellipse α = 0.2 with igm = 10 and Ns = 400.
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Figure 11. Errors for Grassmann maps to inverted ellipse Ns = 2000.

Example 5 (Examples and comparison with Schwarz-Christoffel Toolbox). In this section, we give

three examples of our corner-smoothing, Koebe-like method. The first is the map from the unit disk
to a square, Figures 18. The intermediate Fornberg map to the domain smoothed by four corner-
removing maps is displayed in Figure 19. The error is computed in Table 4 by comparison with the

map produced by SC Toolbox [14]. Even with N = 1024 Fourier points, we only get about 3 digit
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Figure 12. Errors for 10 Grassmann maps to inverted ellipse with
α = 0.2 and various numbers of splines points Ns demonstrating
that errors can be made smaller by increasing both N and Ns.
Note for fixed Ns the minimum achievable error is fixed for a given
domain.
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Figure 13. Inverted ellipse α = 0.2 with igm = 10 and Ns = 400:
distribution of N = 256 Fourier points.

Figure 14. Fornberg map for ellipse α = 0.6, N = 256 with two
preliminary crescent maps to near circle.

accuracy. This is consistent with our other experience computing maps to domains with corners

with methods based on Fourier series in [9, 10]. Typically one may see small oscillations of the
boundary near the corners. (A careful study of the behaviour of Theodorsen’s method, a Fourier
series method, combined with techniques for smoothing the series, such as Lanczos smoothing, for

domains with corners is given in [18].) A map to a polygon with 5 corners, including a re-entrant
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Figure 15. Ill-conditioned map: α = 0.2 ellipse using N = 32, 768
with standard initial guess. Ns = 4000 spline points were used, but
analytic parametrization yields similar results. 6 Newton iteration
gives error in successive iterates of 1.0 · 10−4. Note the poor reso-
lution near ±1.

Figure 16. The map to an ellipse with α = 0.2 is computed by
the Fornberg map to near circle composed with 2 inverted crescent
maps, N = 32, 768. Ns = 4000 spline knots were used.
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Figure 17. The steps for smoothing a corner: The domain is
placed slightly inside of the unit disk and each corner is successively
rotated to the negative real axis and mapped to the origin with a
Möbius map of the disk taking the corner to the origin. The corner
is smoothed with a power map, and the origin is mapped back to
the negative real axis.

corner, is shown in Figure 20. Also, a map to a crescent is shown in Figure 21. In this case the exact
map is known and the accuracy is only about 2 digits. This is a simple example of a curvilinear
domain with corners. SC Toolbox is restricted to polygonal domains. However, a “generalization”
of the Schwarz-Christoffel transformation to exterior curvilinear polygons was considered in [10],

but did not give high accuracy. To treat curvilinear domains with high accuracy, methods which
map to the disk and can refine the mesh in the target domain near the corners should be used; see,



NUMERICAL CONFORMAL MAPPING METHODS 15

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 18. Inverses of corner smoothing maps composed with
Fornberg’s map for a square.

Figure 19. Sequence of maps from the unit disk to smoothed
domain to a square N = 1024 for Fornberg’s method and Ns = 200
points per side.

Figure 20. Sequence of maps from the unit disk to a smoothed
domain to a polygon with N = 1024 for Fornberg’s method.

e.g., [36] and also [39, Remark 1.5.3] and [19, 20] for alternative methods which can treat corners
and even cusps using singular functions or adaptive methods.

Table 4. The calculated error of the Koebe-like corner-removing
method compared with the exact map to the square given by SC
Toolbox for several values of N for the Fornberg map.

N Error

64 .1497
128 .0697

256 .0246
512 .007

1024 .0019
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Figure 21. Sequence of maps from the unit disk to a smoothed
domain to a crescent with N = 256 for Fornberg’s method. The
exact map to the crescent is known The error using Fornberg’s
method is between 10−4 to about 1.5 · 10−2 near the prevertices
and changes very little with increased N and Ns.

3. Multiply connected domains. In order to clarify the existence and uniqueness for the con-
formal map w = f(z) for the multiply connected case, let us first consider unbounded regions

containing infinity. Let f be conformal map from the complement, D, of m closed nonintersect-

ing disks, Dk, onto a region Ω which is exterior to m nonintersecting smooth Jordan curves,
Γk, 1 ≤ k ≤ m. The following theorem (actually stated for f−1 in [24, 17.1b]) establishes the

existence and uniqueness of the circle map under suitable normalization conditions.

Theorem 3.1. Let Ω be a region of connectivity m ≥ 2 in the extended complex plane such that
∞ ∈ Ω. Then there exists a unique circular region D of connectivity m and a unique one-to-one

analytic function f in D satisfying

f(z) = z +O(1/z) for z ≈ ∞,

such that f(D) = Ω.

3.1. Extension of Fornberg’s method to exterior multiply connected domains. The

details of this method are presented in [3]. We review them briefly here. Boundaries of disks Dk
are the circles Ck : ck(θ) := zk + ρke

iθ and C = C1 + · · · + Cm. The target boundary of Ω is

Γ = Γ1+· · ·+Γm, where the Γk are (smooth) curves parametrized by S, e.g., arclength, Γk : γk(S).

f extends smoothly to the boundary f(Ck) = Γk. To compute the map, we must find the boundary
correspondences S = Sk(θ) and conformal moduli zk, ρk such that

f(zk + ρke
iθ) = γk(Sk(θ)), 1 ≤ k ≤ n,

where f is analytic and f(z) = z +O(1/z), z ≈ ∞. Therefore,

f(z) = z +
m∑
k=1

∞∑
k=j

ak,j

(
ρk

z − zk

)j
.

As in the simply connected case, we will linearize the problem about the current guesses for the
boundary correspondences and centers and radii and use a Newton-like iteration. For an initial
guess Sk(θ) and 2π periodic correction Uk(θ), we use the following linearization for Uk(θ)

γk(Sk(θ) + Uk(θ)) ≈ γk(Sk(θ)) + γ′k(Sν(θ))Uk(θ).

For an initial guess of zk and ρk with corrections δzk and δρk,

(f + δf)(zk + δzk + (ρk + δρk)eiθ) ≈ (f + δf)(zk + ρke
iθ) + f ′(zk + ρke

iθ)(δzk + δρke
iθ).

The above approximations gives

(f + δf)(zk + ρke
iθ) = γk(Sk(θ)) + γ′k(Sk(θ))Uk(θ)− f ′(zk + ρke

iθ)(δzk + δρke
iθ).

Requiring the functions to be boundary values of a function analytic in D gives a linear system

for the unknown Newton updates Uk, δzk, δρk denoted by U , of the form,

AU = b,

where A is a symmetric positive definite matrix of the form identity plus a low rank operator.
The system can be solved efficiently by the conjugate gradient method, as in the simply connected
case, except that the matrix-vector multiplication now costs O((mN)2) operations instead of

O(N logN).
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The i+ 1st Newton updates are then,

Si+1
k = Sik + U ik

zi+1
k = zik + δzik

ρi+1
k = ρik + δρik.

Example 6 (Preliminary Grassmann maps for multiply connected domains). In this section,

we apply Grassmann maps to multiply connected exterior domains and compose them with the

Fornberg maps. Figure 22 shows a domain of connectivity m = 4 mapped with Grassmann maps to
produce the near circles. The domains are successively inverted and the Grassmann maps for the

interior are used to produce the near circles. The extension of Fornberg’s method to the exterior

multiply connected case [3] is used to compute the map from the exterior of m = 4 circles to the
exterior of the near circles and then the inverse Grassmann maps map to the original domain. The

differences in the successive iterates of the Fornberg method are shown in Table 5 and indicate

that the discrete problems is solved accurately. Fornberg’s method to map directly to this domain
did not converge using the standard initial guess. For the domain in Figure 23, both the direct

map to the domain and the map computed with Grassmann maps converged.

Table 5. Convergence of successive Newton-iteration errors
‖Si+1 − Si‖∞ at the Fourier points for the Fourier series map to
the the near-circular region of connectivity m = 4 in Figure 22 for
N = 128, 256. Note that the convergence rate is nearly indepen-
dent of N . (The number of conjugate gradient iterations to solve
the inner linear systems was fixed at 30.)

Newton iterations N = 128 N = 256

1 1.6e+00 3.3e+00

2 7.5e-01 1.5e-00
3 1.3e-02 2.5e-02

4 5.5e-04 1.5e-03

5 5.6e-06 5.7e-06
6 3.7e-08 1.5e-08

7 3.4e-10 2.6e-11

8 2.2e-12 1.0e-13
9 3.1e-14 5.6e-14

10 1.8e-14 2.7e-14

In Figure 24 the Fornberg map is composed with successive applications of our corner smoothing
method to produce the map to the exterior of m = 3 rectangles. Table 7 shows the convergence

of the successive iterates for near circular domains resulting from domains with corners.

4. Karman-Trefftz transformations and potential flow. A popular method for removing

a single corner on the boundary curve of a domain exterior to the curve and containing ∞ is

the Karman-Trefftz transformation. This has been used often for computing potential flow over
the exterior of a multi-element airfoil [21]. If the exterior angle is then βπ, the Karman-Trefftz

transformation is given by

ζ − ζ1
ζ − ζ2

=

(
z − z1
z − z2

)β
,

where z1, the corner at the trailing edge, maps to ζ1 and z2, a point chosen interior to the curve

near the leading edge, maps to ζ2. Then

k(z) = ζ =

(
ζ1 − ζ2

(
z − z1
z − z2

)1/β
)
/

(
1−

(
z − z1
z − z2

)1/β
)

and its inverse is

k−1(ζ) = z =

(
z1 − z2

(
ζ − ζ1
ζ − ζ2

)β)
/

(
1−

(
ζ − ζ1
ζ − ζ2

)β)
.
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Table 6. Some typical sample timings for map to regions in Fig-
ure 22 with m = 4. The number of Newton iterations are fixed
at 10 and the number of conjugate gradient iterations are fixed at
30. For m = 2, we map to the exterior of the upper and right
inverted ellipses in Figure 22. We use igm = 8 Grassmann maps,
but times are similar with no preliminary maps. The dominant
operation count is the O((mN)2) matrix-vector multiplication for
solving the conjugate gradient solution for the inner linear systems
for the Fornberg map.

Ns N time (m=4) time (m=2)

200 128 1.45 0.77

200 256 3.65 1.64

200 512 15.92 3.36

400 128 1.71 0.73
400 256 3.54 1.11

400 512 15.66 3.28

800 128 1.56 0.81

800 256 3.62 1.16
800 512 15.73 3.30

The application of k(z) to the airfoil usually results in a nearly circular set of point which we

fit with our periodic cubic spline routine parametrized by chordal arclength, as in the application

of the osculation maps. For the multiply connected case, the Karman-Trefftz transformation can
be applied successively to the images of the m airfoils to produce a map k = km ◦ · · · ◦k2 ◦k1 from

the domain Ω bounded by airfoils to the domain k(Ω) bounded by nearly circular, smooth curves.

Note that each of these maps ki must be applied to all of the curves at each step. Fornberg’s
method for exterior multiply connected domains [3] can then be used to compute a Laurent series

map h from a conformally equivalent domain D exterior to m disks to k(Ω). The Karman-Trefftz
maps ki can be explicitly inverted. The final conformal map f from the circle domain D to the

domain Ω exterior to the m airfoils can be represented as a composition,

f = k−1 ◦ h = k−1
1 ◦ k−1

2 ◦ · · · k−1
m ◦ h.

The procedure is illustrated by two examples below, Figure 26 for a single Joukowski airfoil and

Figure 28 for m = 2 cosine curves. An X marks the z1, z2, ζ1, ζ2 for each (transformed) domain.

We compute the streamlines about the airfoils by adding circulation to streaming flow in order
to satisfy the Kutta-Joukowski condition at the trailing edge, as in [21, 45]. A more complete

discussion of this procedure will be given in future work.

Example 7. The first example is the map to the exterior of a Joukowski airfoil Figure 26. This

is a well-known case where the map from the exterior of a circle to the exterior of an airfoil with
given trailing edge angle is known explicitly; see [33]. Specifically, the map used here to an airfoil

with interior trailing edge angle 0.15π radians is given by the sequence of maps,

z = (1 + h)
√

(1 + b2) exp(i(θ + θ1))− h+ (1 + h)bi

Z = (z − 1)/(z + 1)

W = Z1.925

w = (2 + 2 ∗W )/(1−W ),

where b = 0.2, h = 0.2, θ1 = tan−1(−b). Figure 25 illustrates the case where Ns = 101 points,

equally spaced in θ, are distributed about the airfoil and mapped with k(z) to a smooth domain.
We deliberately do not just invert the Joukowski map to the circle in order to have an exact test

case. The errors between the exact Joukowski map and k−1 ◦ h for increasing values of N and

Ns are given in Figure 27. Note that the error can be made as small as we please, since the
preimage of the one vertex at the trailing edge can always be made to be a Fourier point. This is

not possible, in general, for connectivity greater than one.
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Figure 22. Fornberg composed with Grassmann maps for exterior
of m = 4 curves - 3 inverted ellipses and an ellipse with N =
128, igm = 8, Ns = 200. The Fornberg map directly to the domain
did not converge.

Example 8. The second example is the domain exterior to two cosine airfoils. The boundaries
are given by

γ(σ) = − cos(Kσ)eiσ , −
π

2K
≤ σ ≤

π

2K
with a trailing edge interior angle π

K
and K = 2. We apply this to a distribution of 400 points

along the cosine curve with angle βπ = 2π − π/K, and 1/β = K
2K−1

.

Table 7 lists the maximum error between the successive iterations of the boundary correspon-
dence functions Si1 and Si2, illustrating the near quadratic convergence of Fornberg’s method.

(Recall that this does not give the discretization error which depends on N , but only the accu-

racy of the solution to the discrete problem. This rate is independent of N .) In, e.g., [21] and
earlier work, linearly convergent Fourier series methods, such as those of Theordorsen or Tim-

man/James [27] for simply connected domains applied successively to each boundary, were used

for the maps to the smoothed domains; see [24] for a presentation of these methods and [9] for
comparisons with the methods of Fornberg and Wegmann for simply connected regions. In [9], a

discretization error of 10−4 was achieved with this approach for the simply connected case with

N = 256.

5. The bounded, multiply connected case. A version of our Fourier series method for map-

ping to bounded multiply connected regions with smooth boundaries has been developed in [12].
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Figure 23. This domain is the same as the domain above, except
that the thin ellipse and inverted ellipse are changed from α = 0.2
to α = 0.4. Both the Fornberg map directly to the domain and
composed with preliminary Grassmann maps converged for this
case with N = 128, Ns = 200, igm = 0 or 8.
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Figure 24. Fornberg is composed with corner smoothing maps to
the exterior of m = 3 rectangles with N = 128 and Ns = 50 points
per side.

Figure 25. Joukowski airfoil smoothed by Karman-Trefftz map.

We have not done much testing of this method with explicit preliminary maps, but we expect the

results to be much the same as the unbounded case, above. Figure 29 shows the map to the interior
of a diamond with elliptical holes, where the corners have been smoothed using our Koebe-like

method. The straight sides are well represented, but it is again difficult to resolve the corners very

sharply.

6. Concluding remarks. The results of our computations show that preliminary explicit maps
are marginally useful and lead to somewhat more robust methods. An accurate initial guess is

easily given for the near-circular regions in both the simply and the multiply connected cases.
However, the coding becomes somewhat complicated, especially in the multiply connected case,
and accuracy can be lost due to the necessity of parametrizing the nearly circular or smoothed

boundaries with curves of lower regularity, such as cubic splines. If the original curves are given by
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Figure 26. Joukowski map and k−1 ◦ h.
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spline fits to a finite number of points defining the boundary, the accuracy will be limited from the
start. For domains with corners only 3 or 4 digit accuracy can be expected when composing corner
smoothing with series methods, except in special cases such as a single airfoil. In future work we
plan to compare our results with linearly convergent projection methods described in [41, 42, 44]
which can be applied directly to regions with corners. Also, more comparison with Wegmann’s

Newton-like methods [44] based on solving Riemann-Hilbert problems would be useful and some
comparsions were given in [3]. However, we do not expect any significant advantages overall
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Figure 28. Streamlines for potential flow over two cosine airfoils
with using the Karman-Trefftz transformation k, k−1◦h, composed
with the extension of Fornberg’s method for connectivity 2 and
N = 128. Circulation is computed so that the Kutta condition is
satisfied at the trailing edges.

Table 7. Convergence of successive Newton-iteration errors
‖Si+1 − Si‖∞ at the Fourier points for the Fourier series map
to the the near-circular regions for examples with corners in Fig-
ures 24, 26, and 28.

Newton iterations 3 rectangles Joukowski airfoil Two cosine airfoils

N = 128, Ns = 201 N = 256, Ns = 101 N = 128, Ns = 101

1 2.3e+01 1.0e+00 3.4e+00

2 2.3e+01 3.0e-01 3.0e-01
3 3.1e+00 2.3e-02 3.0e-03

4 1.0e+00 1.2e-04 1.6e-05

5 5.2e-01 2.1e-09 3.4e-08
6 6.4e-02 5.4e-10 1.1e-10

7 6.9e-03 5.4e-10 3.3e-13
8 1.2e-04 5.4e-10 1.7e-15

9 1.9e-06 5.4e-10 4.1e-15

10 4.0e-08 5.4e-10 9.7e-15
11 6.2e-10

12 1.3e-11

13 1.8e-13
14 1.6e-14

Figure 29. The map from the interior of the unit disk (left) with
two circular holes to the interior of a diamond (right) with two
elliptical holes by smoothing corners on the diamond and using
N = 256 Fourier points for the map to the smooth region (middle).

(except that the Newton-like methods are faster), since these methods are all based on Fourier
series. Also, we plan more complete experiments on computations of potential over airfoils.



NUMERICAL CONFORMAL MAPPING METHODS 23

Acknowledgments. We thank the referees for several comments and corrections that led to
improvements to the paper.

REFERENCES

[1] L. Ahlfors, Complex Analysis, third edition, McGraw-Hill, New York, 1979.
[2] M. Badreddine, Comparison of Some Numerical Conformal Mapping Methods for Simply and

Multiply Connected Domains, Ph.D dissertation, Wichita State University, 2016.

[3] N. Benchama, T. DeLillo, T. Hrycak, and L. Wang, A simplified Fornberg-like method for the
conformal mapping of multiply connected regions– comparisons and crowding, J. Comput.

Appl. Math., 209 (2007), 1–21.

[4] T. K. DeLillo, A Comparison of Some Numerical Conformal Mapping Methods, PhD disser-
tation, Courant Institute, NYU, 1985.

[5] T. K. DeLillo On the use of numerical conformal mapping methods in solving boundary value

problems for the Laplace equation, in Advances in Computer Methods for Partial Differential
Equations-VII, eds. R. Vichnevetsky, D. Knight, and G. Richter, Seventh IMACS Symposium

Proceedings, Rutgers University, (1992), 190–194.

[6] T. K. DeLillo, Comparisons of some numerical conformal mapping methods, in Proceedings
of the 14th IMACS World Congress on Computation and Applied Mathematics, Vol. 1, ed.

W. F. Ames, Georgia Institute of Technology, Atlanta, Georgia, (1994), 115–118.
[7] T. DeLillo, The accuracy of numerical conformal mapping methods: a survey of examples

and results, SIAM J. Numer. Anal., 31 (1994), 788–812.

[8] T. DeLillo, Tutorial on Fourier series methods for numerical conformal mapping of smooth
domains, 2014, http://www.math.wichita.edu/~delillo/TD_tutorial.pdf

[9] T. DeLillo and A. Elcrat, A comparison of some numerical conformal mapping methods for

exterior regions, SIAM J. Sci. Stat. Comput., 12 (1991), 399–422.
[10] T. K. DeLillo and A. R. Elcrat, Numerical conformal mapping methods for exterior regions

with corners, J. Comput. Phys., 108 (1993), 199–208.

[11] T. K. DeLillo, A. R. Elcrat, and J. A. Pfaltzgraff, Numerical conformal mapping methods
based on Faber series, J. Comput. Appl. Math., 83 (1997), 205–236.

[12] T. K. DeLillo and E. H. Kropf, A Fornberg-like method for the numerical conformal mapping

of bounded multiply connected domains, submitted for publication.
[13] T. DeLillo and J. Pfaltzgraff, Numerical conformal mapping methods for simply and doubly

connected regions, SIAM J. Sci. Comput., 19 (1998), 155–171.
[14] T. A. Driscoll and L. N. Trefethen, Schwarz-Christoffel Mapping, Cambridge, 2002.

[15] B. Fornberg, A numerical method for conformal mappings, SIAM J. Sci. Stat. Comput, 1

(1980), 386–400.
[16] D. Gaier, Konstruktive Methoden der Konformen Abbildung, Springer, Berlin, 1964.

[17] E. Grassmann, Numerical experiments with a method of successive approximation for con-
formal mapping, ZAMP, 30 (1979), 873–884.

[18] M. H. Gutknecht, Numerical experiments on solving Theodorsen’s intergral equation for con-

formal maps with the fast Fourier transfomr and various nonlinear iterative methods, SIAM

J. Sci. Stat. Comput., 4 (1983), 1–30.
[19] H. Hakula, T. Quach, and A. Rasila, Conjugate function method for numerical conformal

mappings, J. Comput. Appl. Math., 237 (2013), 340–353.
[20] H. Hakula, A. Rasila, and M. Vuorinen, Conformal modulus on domains with strong singu-

larities and cusps, arXiv: 1501.06765.

[21] N. D. Halsey, Potential flow analysis of multielement airfoils using conformal mapping, AIAA
J., 17 (1979), 1281–1288.

[22] J. Heinhold and R. Albrecht, Zur Praxis der konformen Abbildung, Rend. Circ. Mat. Palermo

Ser. 2, 3 (1954), 130–148.
[23] P. Henrici, A general theory of osculation algorithms for conformal maps, J. Linear Alg.

Appl., 52/53 (1983), 361-382.

[24] P. Henrici, Applied and Computational Complex Analysis, vol. III, Wiley, New York, 1986.
[25] H.-P. Hoidn, Osculation methods for the conformal mapping of doubly connected regions,

ZAMP, 33 (1982), 640–652.

[26] W. D. Hoskins and P. R. King, Periodic cubic spline interpolation using parametric splines,
The Computer Journal, 15 (1972), 282–283.

[27] R. M. James, A general class of exact airfoil solutions, AIAA J., 9 (1972), pp. 574–580.

http://www.math.wichita.edu/~delillo/TD_tutorial.pdf


24 M. BADREDDINE, T. K. DELILLO, AND S. SAHRAEI

[28] W. Koppenfels and F. Stallmann, Praxis der konformen Abbildung, Springer, Berlin, 1959.
[29] L. Landweber and T. Miloh, Elimination of corners in the mapping of a closed curve, J.

Engrg. Math., 6 (1972), 369–375.

[30] R. S. Lehman, Development of the mapping function at an analytic corner, Pacific J. Math.,
7 (1957), 1437–1449.

[31] H. Lewy, Developments at the confluence of anaytic boundary conditions, Univ. of California
Publ. in Math., 1 (1950), 247–280.

[32] D. E. Marshall, Conformal welding for finitely connected regions, Comput. Methods Funct.

Theory, 11 (2011), 655–669.
[33] J. H. Mathews and R. W. Howell, Complex Analysis for Mathematics and Engineering,

Sixth edition, Jones and bartlett, W, C. Brown, 2010. http://mathfaculty.fullerton.edu/

mathews/complex.html

[34] D. I. Meiron, S. A. Orszag, and M. Israeli, Applications of numerical conformal mapping, J.

Comput. Phys., 40 (1981), 345–360.

[35] R. Menikoff and C. Zemach, Methods for numerical conformal mapping, J. Comput. Phys.,
36 (1980), 366–410.

[36] M. Nasser, Fast computation of the circular map, Comput. Methods Funct. Theory, 15 (2015),

187–223.
[37] M. Nasser, T. Sakajo, A. Murid, and L. K. Wei, A fast computational method for potential

flows in multiply connected coastal domains, Japan J. Indust. Appl. Math., 32 (2015), 205–
236.

[38] S. T. O’Donnell and V. Rokhlin, A fast algorithm for the numerical evaluation of conformal

mappings, SIAM J. Sci. Statist. Comput., 10 (1989), 475–487.
[39] N. Papamichael and N. Stylianopoulos, Numerical Conformal Mapping - Domain Decompo-

sition and the Mapping of Quadrilaterals, World Scientific, Singapore, 2010.

[40] R. M. Porter, An accelerated osculation method and its application to numerical conformal
mapping, Complex Variables, 48 (2003), 569–582.

[41] W. J. Prosnak, Computation of Fluid Motions in Multiply Connected Domains, G. Braun,

Karlsruhe, 1987.
[42] W. J. Prosnak, Conformal representation of arbitrary multiconnected airfoils, Bull. Acad.

Pol. Sci., 25 (1977), 25–36 (591–602).

[43] R. Wegmann, On Fornberg’s numerical method for conformal mapping, SIAM J. Numer.
Anal., 23 (1986), 1199–1213.

[44] , Methods for numerical conformal mapping, in Handbook of Complex Analysis, Geo-
metric Function Theory, Vol. 2, (ed. R. Kuehnau), Elsevier, Amsterdam, (2005), 351–477.

[45] B. R. Williams, An exact test case for the plane potential flow about two adjacent lifting

airfoils, RAE Technical Report No. 3717, London (1973).

Received xxxx 20xx; revised xxxx 20xx.

E-mail address: badreddine@math.wichita.edu

E-mail address: delillo@math.wichita.edu

E-mail address: sahraei@math.wichita.edu

http://mathfaculty.fullerton.edu/mathews/complex.html
http://mathfaculty.fullerton.edu/mathews/complex.html
mailto:badreddine@math.wichita.edu
mailto:delillo@math.wichita.edu
mailto:sahraei@math.wichita.edu

	1. Introduction
	2. Simply connected domains
	2.1. Fornberg's method for the disk
	2.2. Parametrizing the boundary
	2.3. Numerical examples using Fornberg's method for analytic boundaries
	2.4. Grassmann's method
	2.5. Removing Corners

	3. Multiply connected domains
	3.1. Extension of Fornberg's method to exterior multiply connected domains

	4. Karman-Trefftz transformations and potential flow
	5. The bounded, multiply connected case
	6. Concluding remarks
	Acknowledgments
	REFERENCES

