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NUMERICAL COMPUTATION OF THE SCHWARZ–CHRISTOFFEL
TRANSFORMATION FOR MULTIPLY CONNECTED DOMAINS∗
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Abstract. We report on recent progress in the computation of Schwarz–Christoffel maps from
bounded or unbounded circular domains to conformally equivalent bounded or unbounded multiply
connected polygonal domains. The form of the transformation is given in terms of an integral of an
infinite product depending on unknown parameters, namely, the prevertices and the centers and radii
of the circles. A system of nonlinear equations, which forces the geometry of the given polygonal do-
main to be correct under the mapping function, is formulated for the unknown parameters and solved
by a continuation method. A transformation of the constrained parameters to an unconstrained set
of variables is crucial to the effective solution of the system. Several numerical examples are given.
The approach here proves to be very robust.
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1. Introduction. A Schwarz–Christoffel formula for conformal maps w = f(z)
from the exterior of a finite number of disks in the z-plane to the exterior of polygonal
curves in the w-plane was derived in [17] using the Schwarz reflection principle. A
similar formula for the bounded case was derived in [14]. Both of these formulas
express the derivative f ′(z) of the mapping function in terms of infinite products
which depend on the prevertices and the centers and radii of the circles. Once these
parameters are found for a given polygonal domain, the map can be computed by
numerically integrating f ′(z). A very effective method for solving this parameter
problem for simply connected domains was first developed in [27]. A Fortran package
was developed and later redone in MATLAB in [19]. A package for doubly connected
Schwarz–Christoffel maps was developed in [23]. However, little has been done for
domains of higher connectivity. The book [20] gives an introduction to Schwarz–
Christoffel maps and their computation; see also [22] for a broad overview of theory
and numerical methods for conformal mapping.

In this paper, we will discuss some recent progress in the numerical implemen-
tation of the formulas for higher connectivity derived in [14, 17]. Earlier work on
the computation of maps for the unbounded (exterior) case was presented in [15].
This paper significantly improves on the code developed there and extends it to the
bounded (interior) case. The key improvement here is the change of the unknown pa-
rameters from constrained to unconstrained variables adapting the transformation [3,
eq. (21)] to the multiply connected case. (This transformation is a slight revision of
the transformation used originally in [27], which is also discussed in [20, p. 25] and
adapted to similar problems in [2, eq. (5.5)] and [21, eq. (2.22)].) In [27], a nonlinear
system of equations was set up which forces the integral of f ′(z) between prevertices
to give the correct side lengths for the polygon. In [15], a similar system was set up
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which forces the side lengths of all the polygons to be correct and also forces positions
and orientations of the polygons to be correct. The resulting system is solved by a
continuation method. In [15], very accurate initial guesses were needed for all but
the simplest of domains in order to get the continuation method to converge to a
correct solution. Here the same nonlinear system is solved by the same continuation
method, but the change to unconstrained variables results in a very robust code that
nearly always converges rapidly to the correct map. The advantage of the uncon-
strained variables is that they prevent prevertices from crossing and getting out of
order. (Such crossings were apparently the main problem with [15], not the problem
of integration paths between circles crossing into the circles or through singularities,
as we had previously thought.) The approach here can be used to compute bounded
interior maps with a slight modification of the nonlinear system which allows the
map to be normalized by fixing one interior and one boundary point. We believe the
present code provides a useful tool for applications as it stands and sets the stage for
many possible future improvements and extensions.

Schwarz–Christoffel formulas for bounded and unbounded multiply connected do-
mains were also developed by Crowdy [7, 8] using the Schottky–Klein prime functions.
The relation of Crowdy’s formulas to the formulas used here is discussed in [14]. These
formulas also depend on the prevertices and the centers and radii of the circles. Some
remarks on their potential numerical use will be made in section 7.

This paper is organized as follows. In section 2, we state some preliminaries on
reflections and recall the mapping formulas. In section 3, we state the parameter
problem and the system of nonlinear equations. In section 4, we derive the transfor-
mations to unconstrained variables. In section 5, we briefly review the continuation
methods for solving the nonlinear systems. In section 6, we give a number of numeri-
cal examples demonstrating the robustness of the method. In section 7, we summarize
our results and suggest directions for future research.

2. Preliminaries. Here we recall the notation and formulas from [14, 17] where
infinite product formulas for f ′(z) for the unbounded ((2.2) below) and bounded
((2.3) below) cases are given in terms of repeated reflections of prevertices and circle
centers. Sufficient conditions for convergence of these infinite products are given in [14,
17]. These conditions are far from necessary in practice. We will only recall enough
details here so that the reader can understand the formulas we are implementing,
the violation of the sufficiency conditions in many of our examples, and a better
method in practice for estimating the convergence rate and error in the truncated
infinite products used in our computations. We emphasize here that the existence
of the conformal maps w = f(z) from the circle domains to the polygonal domains
is guaranteed by theorems on conformal mapping for general domains, such as [22,
Theorem 17.6a]. The purpose of the Schwarz–Christoffel formula is to give a specific
(and computationally useful) form of f for polygonal domains.

2.1. Reflections in circles and notation. We need some basic facts about
reflections in circles and some useful lemmas from [14, 17]. We first state some no-
tation. The conformal map from the (bounded or unbounded) circle domain Ω to
the (bounded or unbounded) polygonal domain P of connectivity m is denoted by
w = f(z). For i = 1, . . . ,m, ci and ri are the centers and radii of the (nonintersect-
ing) circles, Ci. C1 is the unit circle with c1 = 0, r1 = 1 for both the bounded and
unbounded case. For the unbounded case, the circles are mutually exterior. For the
bounded case, the circles C2, . . . , Cm are in the interior of C1. (Note that in [14] the
outer unit circle is denoted C0 and the connectivity ism+1.) The vertices (or corners)
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of the polygon are wk,i ∈ Γi, the ith polygon, with k = 1, . . . ,Ki, and wk,i = f(zk,i)
for the prevertices, zk,i = ci + rie

iθk,i ∈ Ci. In addition, αk,iπ are the interior angles
of the polygons at the corners, wk,i, and βk,iπ, i = 1, . . . ,m, are the turning angles of
the tangent at wk,i with βk,i = αk,i − 1. (The −βk,1π’s are the turning angles for the
outer polygon in the bounded case.)

Next, we give some details of our notation for reflections. We first recall that
reflection of a point z through a circle Cτ with center cτ and radius rτ is given by

zτ = ρτ (z) := cτ +
r2τ

z − cτ
,

i.e., z and zτ are symmetric points with respect to the circle Cτ . (Note that if z ∈ Cτ ,
then zτ = z.) We will define the following sets of multi-indices to label sequences of
repeated reflections.

Definition 2.1. The set of multi-indices ν of length |ν| = n is denoted

σn = {ν1ν2 · · · νn : 1 ≤ νj ≤ m, νk �= νk+1, k = 1, . . . , n− 1} , n > 0,

and σ0 = φ. (If ν ∈ σ0, then νi = i.) Also

σn (i) = {ν ∈ σn : νn �= i} ,

denotes sequences in σn whose last factor never equals i.
For example, for m = 3, σ3 = {121, 123, 131, 132, 212, 213, 231, 232, 312, 313, 321,

323} and σ3(1) = {123, 132, 212, 213, 232, 312, 313, 323}.
Our Schwarz–Christoffel formulas (2.2) and (2.3) are based on analytic extension

of the mapping function w = f(z) by Schwarz reflection across the arcs of circles
between prevertices zk,i and the corresponding sides of the polygons. The reflection
process is repeated across the reflected circles and polygons an infinite number of
times until the entire plane of the circle domain (minus some limit set) is covered. The
complete mathematical and notational details of the reflection process is given in [17].
We will give a summary and some examples here, especially in order to explain [17,
sect. 2.1] and our reflection algorithm. Consider the unbounded case with m = 3.
The reflections of the circles C2 and C3 through circle C1 are denoted C12 = ρ1(C2)
and C13 = ρ1(C3), respectively, and function w = f(z) is extended to the domain
bounded by C1 ∪C12 ∪C13 by Schwarz reflection of z through an arc on C1 between
two successive prevertices and w through the corresponding side of the polygon. If
another arc between two successive vertices on C1 is chosen, the same reflected z will
correspond to a different value of w = f(z) obtained by reflection through a different
side of the polygon. The extension of f(z) will therefore be multivalued. However,
as is shown in [17], the pre-Schwarzian, S(z) = f ′′(z)/f ′(z), is single-valued. The
reflection process is continued with, for instance, the circle C1 reflected through C12

to C121 = ρ12(C1) and C13 reflected through C12 to C123 = ρ12(C13) = ρ12(ρ1(C3)),
etc. An arbitrary reflected circle is denoted by Cν with a multi-index ν, defined above,
labeling the sequence of reflections. Some care is required to reconstruct the original
sequence of reflections from the index ν, as illustrated by C123. However, note that,
e.g., Cν = Cν1ν2···νn is in the interior of Cν1 and arises from a sequence of reflections
of Cνn ; see also, the remark at the end of this subsection.

The reflections of prevertices themselves are singularities (or branch points or
zeros) of the extended function and are needed in the formulas. These reflections are
denoted by zk,νi. For instance, for zk,2 ∈ C2, the kth prevertex on C2, its reflection
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through C1 is denoted zk,12 = ρ1(zk,2) ∈ C12. In general, zk,ν ∈ Cν . For the
unbounded case, the simple pole at infinity is also reflected and shows up as repeated
reflections, sνi, of the centers, si := ci. For instance, the reflection of s2 := c2, the
center of circle C2, through C1 is denoted s12. (Note that, e.g., s12 = ρ1(c2) =
ρ1(ρ2(∞)) �= c12 = ρ12(∞), the center of circle C12.) By the basic theorem for the
existence of the mapping function, given a polygonal domain, the circles are uniquely
determined up to a normalization and, therefore, the set of all reflections is also
determined.

It is a very useful fact for our computations that the set of all reflections through
our circles Ci, i = 1, . . . ,m, and through reflections of the circles, etc., can be gen-
erated entirely by compositions of reflections in the original circles, Ci. Note that
the reflections do not commute, so that the order in which they are carried out is
important. That is, given two circles Ci and Cj , if i �= j, then ρi(ρj(a)) �= ρj(ρi(a)).
However, if the reflection of circle j through circle i is denoted Cij = ρi(Cj), then [17,
Prop. 1] says that

(2.1) ρi(ρj(a)) = ρij(ρi(a)).

The proof of (2.1) from [17] is easy to see. Recall that Moebius transformations
preserve reflections in circles and straight lines, and let Ci be the real axis, where
reflection is just complex conjugation. Therefore,

ρi(ρj(a)) = ρj(a) = ρij(a) = ρij(ρi(a)).

Repeated use of (2.1) shows that reflection through any reflected circle, Cν , can be
factored into repeated reflections through the Ci’s. This is expressed in the following
“improved” form of [17, Lemma 1] and is the key to our notation and our computations
of reflections.

Lemma 2.2. For ν = ν1ν2 · · · νn ∈ σn(i),

Cνi = ρν1(ρν2(· · · (ρνn(Ci)) · · · )),
zk,νi = ρν1(ρν2(· · · (ρνn(zk,i)) · · · )), and

sνi = ρν1(ρν2(· · · (ρνn(si)) · · · )).

For example, C21 = ρ2(C1) and zk,21 = ρ2(zk,1). The proof of [17, Lemma 1]
uses (2.1) and an induction argument, which we will not repeat, to show that,
e.g., Cνi = ρν1(Cν2···νni). Repeated application of this to ν2 through νn gives our
Lemma 2.2.

Based on Lemma 2.2, we have developed a MATLAB code which performs the
reflections of centers and prevertices to a specified level |ν| = N . Only reflections
across the original circles are computed. For instance, s123 = ρ12(s23) is computed
as s123 = ρ1(ρ2(s3)). The code stores an expanding array of integers j ∈ {1, . . . ,m},
for each reflection such that ρj is the most recent reflection. For the next level of
reflections, ρj is then skipped, since ρj(ρj(a)) = a. A listing of a simplified version
of the code is given in [18, Alg. 2.2, p. 198] and can be viewed online. The code also
computes the centers and radii of the reflected circle which are needed for some of
our calculations below. (For the bounded case, the m − 1 inner circles are initially
reflected to the exterior of the (dashed) unit circle.)

Figure 2.1 illustrates the reflections of circles in circles for the bounded and un-
bounded cases and their truncation after one level. The dashed circle is always the
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Fig. 2.1. N = 1 levels of reflected circles for the bounded case (left) and the unbounded case
(right). The dashed circles are the unit circle and its reflections. The dots are the centers of the
outer circles and their reflections. For the bounded case, each reflection of a solid circle is paired
with a reflection of the (dashed) unit circle. For the unbounded case, each reflection of any circle is
paired with a corresponding reflection of its center.

unit circle and is the outer computational circle in the bounded case. For our compu-
tations, the infinite product formulas for f ′(z) must be truncated to a level of |ν| = N
reflections. The truncated products are given below in (3.2) for the unbounded case
and (3.3) for the bounded case. Note that for the unbounded case a reflection of
a center is always paired with a reflected circle. Correspondingly, in the bounded
case a reflection of the unit circle is always paired with a reflected (solid) circle,
Ci, i �= 1. (This is necessary in truncating the products because it ensures that the
total 2 (or −2) residues of the truncated singularity function, SN (z) ≈ f ′′(z)/f ′(z)
discussed below, accompanying the circles—center reflections or reflections of outer
circles in the bounded case—always sum to zero, thus yielding zero periods and hence
single-valuedness when integrating around circles.)

Remark : We wish to clarify some ambiguities of notation in [14, 15, 18]. In those
papers, we denote, e.g., ρν(a) := ρν1(ρν2(· · · (ρνn(a)) · · · )), so ρν(a) should not be
read as the reflection of a through Cν , especially in our infinite product formulas for
slit maps. Probably aν would have been more consistent notation than ρν(a).

2.2. Schwarz–Christoffel formulas for multiply connected domains. We
discuss formulas for Schwarz–Christoffel maps from bounded or unbounded circu-
lar domains to bounded or unbounded polygonal domains. Recall the framework
of [20] wherein the derivative of the mapping function, f ′(z), is expressed as a product
f ′ = A

∏
k fk of factors fk(z) that yield the correct behavior of the map at the kth

corner for the given geometry. For instance, for the case of simply connected maps
from the disk, the derivative is

f ′(z) = A
∏
k

fk(z) = A
∏
k

(z − zk)
βk ,

where fk(z) := (z − zk)
βk , −βkπ is the turning angle at prevertex zk, βk = αk − 1,

and
∑

k βk = −2. In this case, the mapping function is

f(z) = A

∫ z∏
k

(ζ − zk)
βkdζ +B,

where a normalization condition, such as fixing an interior point and one boundary
point, gives a unique map. (The numerical problem in this case is to find A,B, zk’s
by matching side lengths of the polygon.)
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To set the context for the paper, we will first review the existing formulas for
multiply connected Schwarz–Christoffel maps (MCSC). The MCSC formula for the
unbounded case [17] is

(2.2) f ′ (z) = A

m∏
i=1

Ki∏
k=1

∞∏
j=1

ν∈σj(i)

(
z − zk,νi
z − sνi

)βk,i

,

where zk,νi’s are reflections of the prevertices zk,i of the kth prevertex on the ith
circle, sνi are reflections of the centers si = ci of the ith circle, and the turning angles
βk,iπ at each vertex satisfy

∑Ki

k=1 βk,i = 2, i = 1, . . . ,m. In this case f(z) has a simple
pole at z ≈ ∞. Since ∞ is the reflected to the circle centers ci, the extension of f
by Schwarz reflection will have singularities at the reflections of the centers and the
prevertices. The corresponding MCSC formula for the bounded case from [14] is
(2.3)

f ′ (z) = A

K1∏
k=1

(z − zk,1)
βk,1

m∏
i=2

∞∏
j=0

ν∈σj(i)

(
K1∏
k=1

(z − zk,νi1)
βk,1

Ki∏
k=1

(z − zk,νi)
βk,i

)
,

where zk,1 are prevertices on the outer circle, taken to be the unit circle, and
∑K1

k=1 βk,1
= −2,

∑Ki

k=1 βk,i = 2, i = 2, . . . ,m. In this case, the map f(z) has no pole in its
domain and the reflections of the prevertices on the outer circle, in effect, replace the
reflections of the centers in the formula for the unbounded case.

The derivations use the following lemma, which says that the arcs between pre-
vertices map to straight sides.

Lemma 2.3. Re {(z − cj) f
′′ (z) /f ′ (z)}|z−cj |=rj = −1, j = 1, . . . ,m.

We also define

Δ := max
i,j;i�=j

ri + rj
|ci − cj | < 1, 1 ≤ i, j ≤ m,

the separation parameter of the circle domain. If C̃j denotes the circle with center cj
and radius rj/Δ, then geometrically 1/Δ is the smallest magnification of the m radii

such that at least two C̃j ’s just touch. The theorem for the unbounded formula is as
follows.

Theorem 2.4. If the unbounded m-connected circular domain Ω satisfies the
separation property Δ < (m− 1)−1/4 for m > 1, then the Schwarz–Christoffel map to
the polygonal domain P is

f (z) = A

∫ z m∏
i=i

Ki∏
k=1

⎡⎢⎢⎣ ∞∏
j=1

ν∈σj(i)

(
ζ − zk,νi
z − sνi

)⎤⎥⎥⎦
βk,i

dζ +B,

where −1 < βk,i ≤ 1 and
∑m

k=1 βk,i = 2.
Note that Δ < (m − 1)1/4 is a sufficient condition for convergence. It is not

necessary and is violated in many of our numerical examples.
Proof. We give only enough details of the convergence proofs in [17] for the reader

to understand our error estimate. The bounded case [14] is similar. The central idea
is to prove that the pre-Schwarzian f ′′(z)/f ′(z) = S(z) by means of the argument



SCHWARZ–CHRISTOFFEL MAPS FOR MULTIPLY CONNECTED DOMAINS 1375

principle, where S(z) is the singularity function, constructed from the poles of the
pre-Schwarzian. The pre-Schwarzian has simple poles at the zk,νi with residue βk,i
and at sνi with residue −2. We define S(z) by writing, for j = 0, 1, 2, . . . ,

Aj (z) =

m∑
i=1

∑
ν∈σj(i)

(
Ki∑
k=1

βk,i
z − zk,νi

− 2

z − sνi

)
=

m∑
i=1

∑
ν∈σj(i)

Ki∑
k=1

βk,i(zk,νi − sνi)

(z − zk,νi)(z − sνi)

and SN (z) :=
∑N

j=0Aj(z). Therefore, when the series converges, we define

S(z) := lim
N→∞

SN (z).

(In addition to the convergence of SN (z), it is also necessary to show that

Re {(z − sj)S(z)}z∈Cj
= −1, j = 1, . . . ,m,

so that S(z) satisfies the boundary conditions of Lemma 2.3 for the pre-Schwarzian.
However, we have no need to discuss the details here.)

Finally, since S(z) = d log f ′(z)/dz, we have

A exp

(∫
SN (z)dz

)
→ f ′(z) = A exp

(∫
S(z)dz

)
= A

m∏
i=0

Ki∏
k=1

∞∏
j=0

ν∈σj(i)

(
z − zk,νi
z − sνi

)βk,i

.

Note that the number of terms in the Aj(z) sum is O((m−1)j). This exponential
increase in the number of terms is the principal difficulty in establishing convergence.
Let rνi be the radius of Cνi, the νth reflection of circle Ci. We bound Aj(z), for
z ∈ Ω bounded away from the zk,ν ’s by δ, using −1 < βk,i ≤ 1, |zk,νi − sνi| < 2rνi,
Kmax := max

i
Ki, and the Cauchy–Schwarz inequality, as follows:

(2.4) |Aj(z)| ≤
∑

ν∈σj(i)

m∑
i=1

Ki∑
k=1

|βk,i||zk,νi − sνi|
|z − zk,νi||z − sνi| ≤

2Kmax

δ2

∑
ν∈σj(i)

m∑
i=1

rνi.

We will see below that the sum of the radii rνi at the j = Nth level of reflection gives
a much better estimate of the truncation error than the following estimate leading
to our sufficient condition. To estimate the rate of decrease of the radii and prove
convergence, we need to estimate how fast the reflected circles shrink. This is done
in [14, 17] with the following lemma.

Lemma 2.5 (see [22, p. 505]).∑
ν∈σn+1

r2ν ≤ Δ4n
m∑
i=1

r2i .

Applying Lemma 2.5 to
∑
rνi above, we have

∑
ν∈σj(i)

m∑
i=1

rνi ≤
⎛⎝ ∑
ν∈σj(i)

m∑
i=1

r2νi

⎞⎠1/2⎛⎝ ∑
ν∈σj(i)

m∑
i=1

1

⎞⎠1/2

≤ Δ2j

(
m∑
i=1

r2i

)1/2 √
m(m− 1)j/2 ≤ CΔ2j(m− 1)j/2.

Therefore, the series converges if Δ2
√
m− 1 < 1.
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Our MATLAB code produces the reflections of centers and prevertices to a fixed
level, along with the centers of the reflected circles, cνi. Our product formula uses
input from this code. In order to keep on the principal branches of the βk,i roots when
the variable of integration ζ is in the computational domain, the bounded Schwarz–
Christoffel formula is expressed as

f (z) = A

∫ z m∏
i=1

Ki∏
k=1

∞∏
j=0

ν∈σj(i)

(ζ − zk,νi)
βk,i dζ +B

= A′
∫ z K1∏

k=1

(
1− ζ

zk,1

)βk,1 m∏
i=2

Ki∏
k=1

∞∏
j=0

ν∈σj(i)

(
1− zk,νi − cνi

ζ − cνi

)βk,i

×
K1∏
k=1

∞∏
j=0

ν∈σj(i)

(
1− zk,νi1 − cνi

ζ − cνi

)βk,1

dζ +B.

(We use a similar expression for the unbounded case.)

3. Parameter problem. The Schwarz–Christoffel transformations above give
the form of the mapping functions f for polygonal domains P. Therefore, in order to
apply these formulas to the computation of the mapping function, we need to find the
prevertices zk,i, such that f(zk,i) = wk,i, along with the centers ci and radii ri of the
conformally equivalent circle domain. Recall that Ki for i = 1, . . . ,m are the number
of vertices on each Γi in ∂P. Parametrize the prevertices by zk,i = ci + rie

iθk,i for
k = 1, . . . ,Ki with

(3.1) θ1,i < θ2,i < · · · < θKi,i.

The unknown ci’s, ri’s, and θk,i’s amount to a total of

K1 + · · ·+Km + 3m

real parameters. This is exactly the number of real parameters needed to determine
the Schwarz–Christoffel product for f ′(z) in both the bounded and unbounded cases.
We truncate the infinite products to N levels for the unbounded case,

(3.2) pu(z) =
m∏
i=1

Ki∏
k=1

N∏
j=0

ν∈σµ(i)

(
z − zk,νi
z − sνi

)βk,i

≈
m∏
i=1

Ki∏
k=1

∞∏
j=0

ν∈σµ(i)

(
z − zk,νi
z − sνi

)βk,i

,

and the bounded case,

(3.3) pb(z) =

K1∏
k=1

(z − zk,1)
βk,1

m∏
i=2

N∏
j=0

ν∈σj(i)

(
K1∏
k=1

(z − zk,νi1)
βk,1

Ki∏
k=1

(z − zk,νi)
βk,i

)
.

We will apply the normalization conditions for conformal maps of multiply connected
domains and enforce conditions based on the geometry of the polygonal domains to
set up (complete) systems of (independent) nonlinear equations for these unknown
parameters. The choice of the geometric conditions is not unique, as we will demon-
strate, and the unbounded case is slightly different than the bounded case, due to the
different normalizations.
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3.1. Unbounded case. The nonlinear equations for this case were first given
in [15]. We recall them here. The theory of conformal maps for multiply connected
domains [22, 26] shows that, given P and the normalization condition, f(z) = z +
O(1/z) for z → ∞, there is a unique circle domain Ω such that f uniquely maps Ω
onto P. Since this normalization is difficult to impose, it is relaxed to

f(z) = Az +B +O(1/z), z → ∞,

and A and B are determined implicitly. To do this, we set c1 = 0, r1 = 1, and
θ1,1 = 0. We define

C =
w2,1 − w1,1∫ z2,1
z1,1

pu(ζ) dζ

and then write

f(z) = C

∫ z

z1,1

pu(ζ) dζ +D,

with D = w1,1 = f(z1,1). This normalization takes care of 4 of the real parameters,
leaving

(K1 − 1) +K2 + · · ·+Km + (3m− 3) = K1 + · · ·+Km + 3m− 4

real parameters to be determined.
The nonlinear conditions are derived from the geometry of the polygonal domain.

To ensure the correct side lengths of the polygons, we have the side-length conditions,

|f(zk+1,i)− f(zk,i)| = |wk+1,i − wk,i|,

for i = 1, . . . ,m and k = 1, . . . ,Ki, with zKi+1,i := z1,i, wKi+1,i := w1,i. This is a
total of K1 + · · · + Km equations, but the definition of C above fixes the first side
length of the first polygon, which removes one from this count. The positions of
polygons Γ2 through Γm in relation to Γ1 (the position of the first polygon Γ1 is fixed
by the normalization) are determined by

f(z1,i)− f(z1,1) = w1,i − w1,1

for i = 2, . . . ,m, which gives 2(m − 1) real equations. Finally, the orientations of
polygons Γ2 through Γm are determined by

arg(f(z2,i)− f(z1,i)) = arg(w2,i − w1,i)

for i = 2, . . . ,m (again the orientation of Γ1 is determined by the normalization),
which gives (m− 1) real equations. These equations can be combined with the side-
length conditions for k = 1 to obtain

f(z2,i)− f(z1,i) = w2,i − w1,i, i = 2, . . . ,m.

This set of conditions amounts to a system of K1 + · · ·+Km + 3m− 4 equations for
an equal number of unknowns.
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3.2. Bounded case. In this case, in order to guarantee uniqueness of the map-
ping function, the map can be normalized by fixing one boundary point, f(1) = w1,1,
and one interior point, f(z0) = w0, where z0 is in the interior of the circle domain
and w0 is in the interior of the polygonal domain. (The map can also be normalized
by fixing three vertices on the outer boundary, but we will not implement this here.)
Again letting

C =
w2,1 − w1,1∫ z2,1
z1,1

pb(z) dz
,

we have

f(z) = C

∫ z

z1,1

pb(ζ) dζ +D,

with f(z1,1) = D = w1,1. We again require that c1 = 0 and r1 = 1, and fixing
f(1) = w1,1 is equivalent to setting θ1,1 = 0. This amounts to fixing four of the real
parameters, so once again we have K1 + · · ·+Km + 3m− 4 unknowns parameters to
determine.

The remaining parameters are determined as follows. As in the bounded case we
have the side-length conditions,

|f(zk+1,i)− f(zk,i)| = |wk+1,i − wk,i|
for i = 1, . . . ,m and k = 1, . . . ,Ki. These are K1 + · · · + Km real equations, but
the calculation of C again removes one from this count. In addition, we leave off
the calculation of the last two side lengths of the outer boundary polygon (i = 1);
this works since the known turning angles of the polygon allow the last vertex to be
uniquely determined by the intersection of lines drawn from the adjacent vertices;
see [20, Fig. 3.1, p. 24]. The side-length conditions then add up to K1 + · · ·+Km− 3
real equations. The positions of Γ1 through Γm with respect to w0 are given by

f(z1,i)− f(z0) = w1,i − w0

for i = 1, . . . ,m. These position conditions give 2m real equations. Finally, the
orientations of Γ2 through Γm (the orientation of Γ1 is determined by the calculation
of C) are given by the (m− 1) real equations,

arg(f(z2,i)− f(z1,i)) = arg(w2,i − w1,i)

for i = 2, . . . ,m. Once again, the side-length, position, and orientation conditions
give

K1 + · · ·+Km + 3m− 4

real equations, exactly as needed.

4. Transformation to unconstrained variables. The constraint (3.1) is dif-
ficult to enforce directly on the θk,j ’s, and its violation can cause the nonlinear solver
to fail to converge to a good solution. Therefore, as in [3, 20, 27], we make a trans-
formation to a set of unconstrained variables which guarantees (3.1). This change
was not implemented in the initial attempt to compute multiply connected Schwarz–
Christoffel maps in [15], and it severely limited the robustness of the algorithm. With
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this change, our method is extremely robust and rarely fails, with very little care
needed in the selection on an initial guess. Fortunately, it does not seem to be neces-
sary, in practice, to constrain the circles from overlapping by enforcing Δ < 1. This
would be a difficult set of conditions to apply.

We use the unconstrained variables, Re{ci}, Im{ci}, and log ri in place of the
centers and radii. For the θk,i’s (denoted here by θk), the following transformation [3,
eq. (21)] is used. On any of the boundary circles in the computational domain with
K prevertices, we have the problem of finding the angles of these prevertices with
respect to the circle center. The angles, of course, must meet the constraint,

K∑
k=1

(θk+1 − θk) = 2π,

where we use the convention θK+1 = θ1 + 2π. Denoting

φk := θk+1 − θk for k = 1, . . . ,K,

the unconstrained variables (with ψk,j = ψk) for a given circle are

(4.1) ψk := log
φk+1

φ1
for k = 1, . . . ,K − 1.

In order to invert this transformation, note that

1 +

K−1∑
j=1

eψj = 1 +
φ2
φ1

+ · · ·+ φK
φ1

=
2π

φ1

and

1 +

k−2∑
j=1

eψj = 1+
φ2
φ1

+ · · ·+ φk−1

φ1
=
θ2 − θ1
φ1

+
θ3 − θ2
φ1

+ · · ·+ θk − θk−1

φ1
=
θk − θ1
φ1

,

so that

2π
1 +

∑k−2
j=1 e

ψj

1 +
∑K−1
j=1 eψj

= 2π
(θk − θ1)/φ1

2π/φ1
= θk − θ1.

Assume that θ1 is known for the circle in question. Then any angle θk, for
k = 2, . . . ,K, is given by

(4.2) θk = θ1 + 2π
1 +

∑k−2
j=1 e

ψj

1 +
∑K−1

j=1 eψj

.

Therefore, the transformation (4.1) gives K1 − 1 unconstrained parameters,

ψ1,1, ψ2,1, . . . , ψK1−1,1,

on C1 (recall θ1,1 is fixed at zero). On each of the other circles with Ki prevertices,
i = 2, . . . ,m, we allow the angle of the first prevertex θ1,i to be unconstrained (this
angle is easily renormalized to 2π) for exactly Ki unconstrained parameters:

θ1,i, ψ1,i, ψ2,i, . . . , ψKi−1,i.
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The remaining angles on all circles, θ2,i, . . . , θKi,i for i = 1, . . . ,m, are then recovered
by (4.2), and (3.1) is automatically satisfied.

Remark. The transformation [20, p. 25] was also tried and leads to similar re-
sults for most of the examples here. A more careful implementation of the ideas
in [3], including adaptive quadrature to subdivide integration intervals when other
singularities are close [3, 27], will most likely be necessary in cases of crowding.

5. Numerical continuation. The equations above can be expressed as a non-
linear system,

(5.1) F (x) = 0,

where F : Rn → R
n, with n = K1 + · · · + Km + 3m − 4. As in [15], we use the

continuation algorithm Contup from [1, Program 3]. We give a brief description
of this algorithm. It is assumed that F is smooth enough; that is, F has enough
derivatives to facilitate the required analysis. Let G be a trivial map G : Rn → R

n

with known zeros. Let x0, x1 ∈ R
n be such that G(x0) = 0 and F (x1) = 0. Define

the homotopy function

H(x, λ) = λF (x) + (1− λ)G(x)

for λ ∈ [0, 1]. Note then that

H−1(0) = kerH = {(x, λ) : H(x, λ) = 0} ⊂ R
n+1.

Define a curve c(s) ∈ kerH , i.e.,

c : R → kerH,

such that c(s0) = (x0, 0) and c(s1) = (x1, 1) for some s0 < s1 ∈ R. The idea then is
to simply trace the curve c from s = s0 to s1, at which point we have a solution to
(5.1).

For the implementation of the algorithm in our case, we let x0 ∈ R
n be an initial

guess and set F0 = F (x0). Define G(x) = F (x) − F0 so that the homotopy function
is given by

H(x, λ) = (1− λ)G(x) + λF (x) = F (x) + (λ− 1)F0.

A finite difference approximation to the Jacobian is used. The condition number of
the Jacobian has been generally found to be of order 10. A much larger condition
number generally indicates an incorrect formulation of the nonlinear equations leading
to nonconvergence or convergence to an incorrect solution, that is, a solution to an
incomplete set of conditions. In such cases, the plot of the grid for the corresponding
mapping function is usually obviously incorrect.

6. Numerical examples. We have developed a MATLAB code which is a revi-
sion and upgrade of the code used in [15] for the unbounded case and which extends
the code to the bounded case [14]. (A simple, highly symmetric example of a bounded
map was computed in [14]; however, the full set of equations for the bounded case
were not formulated there.) Some mfiles from [19] were used, such as a function
for automatically calculating the turning angles from input polygon vertices. The
evaluation of the Schwarz–Christoffel integrals needed for the nonlinear equations is
done using Gauss–Jacobi quadrature, gaussj from [19]. As in [15], a fixed number of
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Fig. 6.1. Example of a map to the exterior of m = 4 polygons.

Gauss–Jacobi points (typically 30) is generally sufficient for each integral. The inte-
grations are along circular arcs, to determine the lengths of the sides of the polygons,
and straight line paths between the circles, to determine the relative positions of the
circles, as given above. These straight line paths are indicated for our examples in the
figures below; see, e.g., Figure 6.2. Since the circles and radii change with each iter-
ation of the nonlinear solver, the integration paths also change. The positions of the
circles and the paths can be monitored during the solution. In many cases the circles
can move substantially from their initial to their final locations, and the integration
paths can often cross nearby circles and prevertices and the iteration still recovers
and converges. It was previously believed that such behavior would cause difficult
problems and that the integration paths would have to be specified carefully to re-
main within the computational domain. After numerous experiments with a variety
of domains, we have found this to rarely be the case. Just as for the simply connected
case [27], the algorithm is extremely robust and usually converges very rapidly, after a
few steps of the search method and a final Newton phase, in all but the most extreme
domains with no need for accurate initial guesses. The key improvement over previous
attempts was the change to unconstrained parameters.

In the following subsections, we give several examples to illustrate these observa-
tions. The image of a Cartesian grid in the circle domain is mapped to the polygonal
domain in our figures; see Figure 6.1. The final integration paths are plotted, along
with separation parameter Δ and its bound (m− 1)−1/4, which is sufficient for con-
vergence of the infinite products. This bound is often exceeded by Δ with little effect
on the algorithm.

6.1. Unbounded domains. In Figure 6.1, we plot a Cartesian grid in the circle
domain and its image in the polygonal domain for connectivitym = 4. The prevertices
on the circles are plotted. The open circles are the “first” (pre)vertices, and the
integration paths in between circles are plotted in Figure 6.2. These paths generally
connect the “first” vertices or C1 and the other circles Ci, i �= 1. However, variations
are possible, as we’ll see below. In this example, Δ = 0.6791 < (m− 1)−1/4 = 0.7598,
so the sufficient condition for convergence of the infinite products is satisfied. In most
of our examples N = 3 or 4 was sufficient for reasonable accuracy. In Figure 6.2, the
m− 1 = 3 small circles inside of the m = 4 large circles are the N = 1 level reflections
of the large circles in each other. The smallness of the reflected circles gives an
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(m−1)−1/4 = 0.7598      Δ = 0.6791

Fig. 6.2. Objective function integration paths for Figure 6.1.
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Fig. 6.3. Slits in a trough.

illustration of how fast the truncated products approximating f(z) are converging.
More careful analysis is given in section 6.4.

The geometry in Figures 6.3 was motivated by the work of van Deursen (see
[28, 29]) on printed circuit board design. The thin channels in the trough cause the
circles to crowd together in the circle domain. Here, Δ = 0.9470 > (m − 1)−1/4 =
0.8409, and the sufficient condition for convergence of the infinite products is violated.
Such geometries require larger levels of reflection N for sufficient accuracy. Similar
domains were calculated in [15, Figs. 5 and 6]. However, it was very difficult to
achieve convergence with the old code even for domains with wider channels. Note in
Figure 6.4, that one of the final integration paths passes inside the large circle. Since
pu(z) is defined there and no singularities are crossed, this causes no problem.

6.2. Bounded figures. Here we display some examples of maps for bounded
domains in Figures 6.5–6.8. Recall that for the bounded case we fix one boundary
point f(z1,1) = w1,1 and one interior point f(z0) = w0. All m polygons can then have
their positions fixed relative to f(z0) = w0, as indicated by the integration paths.

6.3. Integration paths for polygon positioning. As originally formulated,
the system of nonlinear equations used to solve the parameter problem relies on inte-
grating from the prevertex z1,1 to z1,j for 1 < j ≤ m to position polygons Γ2 through
Γm. If care is not taken this can lead to the difficulties shown in Figure 6.9 and
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Fig. 6.4. Objective function integration paths for Figure 6.3.
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Fig. 6.5. Simple bounded polygonal example.
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Fig. 6.6. Objective function integration paths for Figure 6.5.

Table 6.1. There the integration path used to fix polygon position passes too near the
singularities of the Schwarz–Christoffel product—in this case, the reflections of the
centers. This problem can be avoided by careful rearrangement of the order of the
polygons and the prevertices or by a change of the equations which dictate this posi-
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Fig. 6.7. Multiple slit example, m = 6.
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Fig. 6.8. Objective function integration paths for Figure 6.7.
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Fig. 6.9. By anchoring polygons 2 and 3 to z1,1, we create an integration path that passes too
close to singularities (reflections of the centers) of the Schwarz–Christoffel product. The resulting
grid fails to be orthogonal in some places.
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Table 6.1

Map parameters found for cases shown in Figures 6.9 and 6.10. It should be noted that contin-
uation was successful in the first case; i.e., the algorithm converged but evidently not to a solution
to the parameter problem.

Figure c2 r2 c3 r3
6.9 2.6015 − 0.0061i 0.6492 4.3150 + 0.1017i 0.2784
6.10 2.6042 − 0.0064i 0.6512 4.2119 − 0.0286i 0.2732
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Fig. 6.10. The order of the polygons is as in the first example, but for positioning we integrate
first from z1,1 to z1,2 and then from z1,2 to z1,3.
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Fig. 6.11. Integration paths for positioning need only connect the first prevertex on the target
polygon with another known prevertex, i.e., from z3,1 to z1,4. Note that the center polygon is Γ1

with the others, counterclockwise from the bottom, being Γ2, Γ3, and Γ4.

tioning. In the current example, we keep the triangle as Γ1 and change the equation,
which positions the third polygon (the slit on the right) from

f(z1,3)− f(z1,1) = w1,3 − w1,1 to f(z1,3)− f(z1,2) = w1,3 − w1,2,

using the position of Γ2 to dictate that of Γ3. This result is shown in Figure 6.10.
The polygons in Figure 6.11 provide an illustration of a case in which rearranging

the order of the polygons and vertices is not likely to produce an integration path
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Fig. 6.12. Integrating from the first polygon and between polygons may also be combined.

which is completely external to the figures and thus does not come near to possible
singularities. For instance, the path from z1,1 and z1,4 would pass inside of C1 (Γ4 is
the figure in the upper-left corner). In this case, we integrate from z3,1 to z1,4 instead
and the equations which fix the polygon positions are

f(z1,2)− f(z4,1) = w1,2 − w4,1,

f(z1,3)− f(z1,1) = w1,3 − w1,1,

and

f(z1,4)− f(z3,1) = w1,4 − w3,1.

The requirement that the integration path for positioning be to the first vertex of the
polygon being positioned is imposed by the constrained-unconstrained transformation,
(4.1) and (4.2); recall that the transformation relies on knowledge of the angle of
the first prevertex on a circle to recover the remaining angles. This could likely
be changed, but the definition of the first vertex on each polygon is flexible, which
effectively removes this concern. As an extension of the previous example, we add a
fifth polygon; see Figure 6.12. The addition to the positioning equations above is

f(z1,5)− f(z3,2) = w1,5 − w3,2.

This change to the system of equations for positioning polygons holds for the
bounded case as well. In Figure 6.13 we surround a previous example with a rec-
tangular boundary. The system of equations to position the polygons in this case is

f(z1,1)− f(z0) = w1,1 − w0,

f(z1,2)− f(z0) = w1,2 − w0,

f(z1,3)− f(z4,2) = w1,3 − w4,2,

f(z1,4)− f(z0) = w1,4 − w0,

and

f(z1,5)− f(z3,2) = w1,5 − w3,2.
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Fig. 6.13. A choice of integration paths for positioning in the bounded case. (Γ2 is the largest
inner polygon.)

Note that the map normalization serves as the polygon positioning anchor in both
the bounded and unbounded cases. The requirement that f(z) = A+Bz+O(1/z) for
z → ∞ in the unbounded domain makes the prevertex z1,1 an anchor point. In the
bounded domain the requirement that f(z0) = w0 makes z0 an anchor. Rewriting the
positioning equations requires attention to this condition, as any positioning equation
which does not directly or indirectly make use of this information will result in a
system for which, in our experience, a search algorithm will fail to find a valid set of
map parameters.

6.4. Some error analysis. Here we give a practical method for estimating the
error in the mapping function by using the sum of the radii

∑
rνi for the reflected

circles at level |ν| = j = N as in (2.4) above. Note that the radii rνi for the reflected
circles can be computed by our reflection routine and, therefore, provide a built-in
method for estimating truncation error. We illustrate this error estimate first with
the exterior map to three symmetric radial slits displayed in Figure 6.14. The errors
and the error estimate are given in Figure 6.15. The errors in the (constrained)
parameters (centers, radii, and θk,i’s at the Nth level denoted by a vector XN ) are
measured by log ‖XN −XN−1‖∞. The estimate log

∑
rνi − c at level N fits the data

very well. (In this case, due to the symmetry of the polygonal domain, the θk,i’s of
the prevertices are known exactly.) The radial slit maps used in this example can also
be computed “exactly” by infinite product formulas developed in [16]; see also [12]
for similar formulas for slit maps given explicitly in terms of Schottky–Klein prime
functions. Comparisons of the Schwarz–Christoffel map with the formulas from [16]
yield nearly identical errors. Figure 6.16 displays the error and the estimate for the
polygonal domain in Figure 6.1.

6.5. Nonlinear solvers. Numerical continuation was chosen for use during the
development of the numerics since the method is by design not sensitive to the ac-
curacy of the initial guess. It seems a worthwhile question to ask how other non-
linear equation solvers, specifically those built into MATLAB, handle the parameter
problem. Since conformally equivalent domains can have inherently large geometric
distortions, it is not clear how one would in general make an initial guess for the map
parameters which might be close to a solution. We settle on a reasonable geometry for
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Fig. 6.14. Geometry used to test numerical accuracy.

the circle domain for a given polygonal domain. For example, an easy-to-generate ini-
tial guess for the polygonal domain and associated circle domain shown in Figure 6.17
is given in Figure 6.18.

We tested the solvers in MATLAB’s Optimization Toolbox [25], which could be
applied to this problem. These were fsolve, lsqnonlin, fminunc, and fminsearch.
The fsolve function was tested with the trust-region-dogleg (t-r-d), trust-region-
reflective (t-r-r), and Levenberg–Marquardt (l-m) algorithms. The function lsqnonlin

was tested with the (t-r-r) and (l-m) algorithms. Since we did not supply the numer-
ical gradient for our system of equations, we tried the fminunc function with the
BFGS quasi-Newton algorithm only. Finally fminsearch was tried, which uses the
Nelder–Mead simplex algorithm. Results of these comparisons are shown in Table 6.2;
the infinity norm of the objective function (the system of equations for the parameter
problem) and the time in seconds each solver took to find this solution are shown.1

Note that fminunc and fminsearch were not tried with connectivity above m = 3,
since these functions failed to find a solution in the simplest case.

There is also the question of the sensitivity of the MATLAB solvers to the initial
guess. As a first attempt to address this question, we make the initial guess shown
in Figure 6.19 to solve the problem shown in Figure 6.17. Numerical continuation

1The solution time is obviously machine-dependent and is given here only for a sense of the rel-
ative speed of each algorithm.
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Fig. 6.15. The log of error vs. levels of reflection N for three examples of maps to the exterior
of three symmetric slits; see Figure 6.14. The solid-line approximations to the log of the errors are
log

∑
rνi − c, where c = 0.45, 0.64, 1.26, respectively. Note that the case a = 0.9999 violates the

separation condition, since Δ = 0.8999 > (m−1)−1/4 = 2−1/4 ≈ 0.8409, and the errors nonetheless
decrease, though quite slowly, as one would expect. The errors for the case a = .5 level off at about
10−12 due to the tolerance setting in the continuation algorithm, which is set here at 10−15, its
smallest feasible setting.
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Fig. 6.16. Error for Figure 6.1 approximated with log
∑

rνi − c.

handled this new initial guess with no problem, but only the Levenberg–Marquardt
algorithm as used in fsolve and lsqnonlin was able to find a solution; all other
attempts failed. The successful results are shown in Table 6.3.

Interestingly, a slight change in the previous poor initial guess (see Figure 6.20)
results in a starting point in which the Levenberg–Marquardt algorithm fails for both
fsolve and lsqnonlin. However, using the “trust-region-reflect” algorithm in either
of these functions allows a solution to be found; see Table 6.4.

We conclude that, out of the algorithms tried in MATLAB, the numerical contin-
uation algorithm is the most flexible algorithm for the multiply connected parameter
problem.
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Fig. 6.17. An example with m = 4 used to test the different nonlinear solvers.
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Fig. 6.18. Initial guess for Figure 6.17 used with the nonlinear solvers in Table 6.2.

Table 6.2

Different nonlinear solvers with an initial guess which was not near the solution. The last two
solvers in this table were not successful for m = 3, and thus were not used for higher values of m.
Shown are the infinity norm of the objective function and the time in seconds each solver took to
find this solution. Only Figure 6.17 for m = 4 is shown. The other domains just add or delete an
inner polygon. Note the increase in timings with m.

m = 3 m = 4 m = 5
Solver ‖F‖∞ Secs ‖F‖∞ Secs ‖F‖∞ Secs

continuation 2.88× 10−15 12.74 4.30 × 10−15 42.63 3.85× 10−15 153.97

fsolve (t-r-d) 2.32× 10−10 12.07 2.49 × 10−10 57.98 4.63× 10−12 278.89

fsolve (t-r-r) 1.00× 10−09 12.05 2.70 × 10−14 57.55 4.60× 10−14 443.19

fsolve (l-m) 4.73× 10−15 14.06 2.53 × 10−14 58.10 4.32× 10−15 274.27

lsqnonlin (t-r-r) 1.00× 10−09 11.84 2.70 × 10−14 57.36 4.60× 10−14 443.44

lsqnonlin (l-m) 4.73× 10−15 14.21 2.53 × 10−14 57.53 4.32× 10−15 273.25

fminunc 3.32× 10−2 242.55 - - - -

fminsearch 1.58× 10−1 266.55 - - - -
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Fig. 6.19. A poor initial guess.

Table 6.3

A comparison of the nonlinear solvers which were able to find the map parameters for Fig-
ure 6.17, given the initial guess in Figure 6.19.

Solver ‖F‖∞ Secs

continuation 8.160× 10−15 135.710
fsolve (l-m) 5.329× 10−15 170.573

lsqnonlin (l-m) 5.329× 10−15 165.974
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Fig. 6.20. A slightly modified but still poor initial guess.

Table 6.4

A comparison of the nonlinear solvers which were able to find the map parameters for Figure
6.17, given the initial guess in Figure 6.20.

Solver ‖F‖∞ Secs

continuation 8.049 × 10−15 121.571
fsolve (t-r-r) 3.220 × 10−11 171.911

lsqnonlin (t-r-r) 3.220 × 10−11 172.406
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7. Conclusions and future research. We have developed a numerical method
for the computation of Schwarz–Christoffel maps for multiply connected domains. The
method is very robust and capable of handling a variety of bounded and unbounded
domains. The sufficient conditions guaranteeing the convergence of the infinite prod-
ucts do not seem to be necessary in practice. The formulation in this paper is very
effective in most cases of moderate connectivity and sets the stage for numerous appli-
cations and future improvements. In this section, we will briefly outline some possible
alternative approaches to the numerics, which we hope will lead to further improve-
ments in the accuracy, efficiency, and range of applicability of the formulas. The
steady improvements over the last thirty years of methods for the simply connected
case can be traced in [20] and subsequent work and should be a reliable guide.

In order to efficiently compute domains with connectivities greater than roughly
m = 5, the reflection routine will have to be replaced by least squares or Laurent
series methods, such as those in [16] for slit maps, for approximating the infinite
products in f ′(z). There are a few different options for representing f ′(z) which we
are investigating as bases for such efficient series methods. The paper [18] gives an
overview and some indications of how f ′(z) can be represented in terms of finite prod-
ucts of slit maps, along with attempts to connect our formulas to those of Crowdy.
The Schwarz–Christoffel formulas of Crowdy [7, 8] represent f ′(z) as finite products
of Schottky–Klein prime functions. Crowdy and Marshall [13] show how to evaluate
the Schottky–Klein prime functions using Laurent series, so that convergence of the
infinite products is not an issue. (Indeed, a MATLAB code for the prime functions
can be downloaded from Crowdy’s homepage [11].) Factorizations of f ′(z) in terms
of slit maps (similar to [18]) using the properties of the Schottky–Klein prime func-
tions directly are discussed in [10] and should prove useful in practice. In addition, the
Schottky–Klein prime functions afford a natural tool for solving a number of problems
in multiply connected circle domains [9], and combining them numerically with con-
formal maps, such as the maps developed here or those in [5] for smooth boundaries,
will extend their range of applicability to more general domains.

Conformal maps between dissimilar domains can suffer from large geometric dis-
tortions, making the problem of computing such maps highly ill-conditioned. The
crowding phenomenon, where prevertices at the ends of long channels become close
exponentially in the aspect ratio of the channel, is a well-known problem for the
simply connected case and has been largely solved; see [3, 20]. In the multiply con-
nected case, elongated channels between boundary components can cause circles to
nearly touch; see [5] for examples. If crowding or the location of integration paths
places prevertices close to intervals of integration, a careful implementation of adap-
tive quadrature or of the ideas in [3] will be necessary to maintain accuracy. When
circles are close to touching, we expect that the Laurent series will converge slowly
and some combination of reflections and Laurent series expansions, as in [6], may be
useful.

Domains of very high connectivity will involve very large numbers of unknowns.
Here it might be possible to adapt ideas from [4], where the fast multipole method
is used to speed up the evaluations of f ′(z) and a side-length iteration is used to
solve the parameter problem with fewer computations per step than quasi-Newton
iterations in order to compute maps of simply connected polygons with thousands of
vertices.

Finally, general guidelines or procedures for selecting the integration paths should
be developed. For domains of moderate connectivity, allowing the user to select the
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paths might be best. In addition, an effective procedure for keeping the integration
paths inside of the computational domain would be useful in order to avoid rare
failures of convergence. Such a procedure is investigated in [24]. We will explore
some of these possibilities in future work. We hope to implement these ideas in a
publicly available code, such as Schwarz–Christoffel Toolbox [19], with options for
user-contributed upgrades and alternatives.

Acknowledgments. The authors thank Toby Driscoll, Alan Elcrat, and John
Pfaltzgraff for their interest in and encouragement of this work and for sharing parts
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