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Abstract. We consider the problem of detecting the source of acoustical noise inside the cabin of
a midsize aircraft from measurements of the acoustical pressure field inside the cabin. Mathematically
this field satisfies the Helmholtz equation. In this paper we consider the model two-dimensional case.
We show that any regular solution of this equation admits a unique representation by a single layer
potential, so that the problem is reduced to the solution of a linear integral equation of the first
kind. We prove uniqueness of reconstruction and obtain a sharp stability estimate. Finally, for two
geometries and sources of noise simulating the cabin of the aircraft and two engines, we give results of
the numerical solution of this integral equation, comparing regularization by the truncated singular
value decomposition and the conjugate gradient method.
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1. Introduction. We consider the problem of identifying the source of the
acoustical noise and the normal velocity of the sound on the surface of a domain
Ω. The acoustical field u of frequency k in Ω satisfies the Helmholtz equation

∆u+ k2u = 0 in Ω.(1)

In our application Ω is the cabin of an aircraft. Acoustical sensors are located on a
surface Γ0 inside the cabin. The sensors measure the field u and the problem is to
recover u inside Ω from these measurements and, in particular,

v = ∂νu on Γ,(2)

which is the boundary of Ω. Here ν is the unit exterior normal to Γ. We will represent
u by the single layer potential

u(x) =

∫
Γ

K(x, y)φ(y)dΓ(y), x ∈ Ω,(3)

where K(x, y) is the free space radiating fundamental solution to the Helmholtz equa-
tion. Now our problem is reduced to solving the linear integral equation∫

Γ

K(x, y)φ(y)dΓ(y) = Φ(x), x ∈ Γ0.(4)

After solving this equation for φ one can find the normal velocity from the formula

v(x) = φ(x)/2 +

∫
Γ

∇xK(x, y) · ν(x)φ(y)dΓ(y), x ∈ Γ,(5)
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which follows from (3) and the jump relations for the normal derivative of single
layer potentials. This approach in principle allows us to handle general domains Ω.
Methods such as those developed in [4], [18], [19], [21], and [20] are applicable only to
very special (rotationally symmetric) Ω when the Green’s function of the Neumann
problem for the Helmholtz equation can be found explicitly. More recently these
methods were adjusted to more general geometries related to the cabin of an aircraft
[21]. In these cases one still needs knowledge of the Neumann Green’s function which
is quite difficult to compute. Another widely used approach [3], [13], [22] is based on
a system of two integral equations for the unknown pressure and the normal velocity
(the Helmholtz–Kirchhoff equations) and instead of using the complicated Neumann
Green’s function it utilizes the simple free-space fundamental solution. We propose to
solve only one integral equation (4) and we expect our method to be more economical.
We think that the representation (4) is physical and reflects the essence of the problem
where one is looking for the source of noise: the function φ can be interpreted as the
density of a source distribution. The existing methods are used mostly for solving
practical problems and, as a rule, they are not justified mathematically. We give
a rigorous justification of our method including quite sharp and explicit stability
estimates for reconstruction of pressure and normal velocity.

The realistic problem is three-dimensional and not well posed (see [6]). This fact,
combined with the need to find about 1000 unknowns in the discretized problem,
creates serious computational difficulties. To test our algorithms and to compare
different approaches we first will consider a two-dimensional version of this problem.
In a forthcoming paper, we will handle the complete three-dimensional case. Most of
the theoretical results of this paper are also valid in the three-dimensional case with
rotational symmetry.

In section 2 of this paper we show that any (regular) solution to the Helmholtz
equation (disregarding possible eigenvalues of the Dirichlet or Neumann problems in
Ω) can be uniquely represented by a single layer potential. We use this representation
to record these solutions. To find the normal velocity (2) it suffices to compute an
integral with a bounded kernel. Section 3 contains stability estimates for recovery of
u on Ω or φ on Γ. These conditional estimates are of logarithmic type and we attempt
to find explicit formulas for constants in the estimates for the particular case when Ω
is the disk |x| < r1 and Γ0 is the circle |x| = r0. Section 4 exposes the results of our
numerical experiments.

2. Single layer potential representation. We will characterize the source of
an acoustical field u(x) in Ω ⊂ R

2 by its surface density φ on Γ. In other words, for
a solution u to (1) we would like to find a function φ such that (3) holds. Here

K(x, y) = i/4 H
(1)
0 (k|x− y|)(6)

is the well-known fundamental solution to the Helmholtz equation in the plane satis-
fying the Sommerfeld radiation condition

lim
r→∞ r1/2(∂ru− iku)(x) = 0,

where r = |x|. H
(1)
0 (s) is the Hankel function of the first kind (see [6]).

We will assume that ∂Ω ∈ C1,1, which means that tangent to ∂Ω at x is a
Lipschitz function of x. By H(k)(Ω) we will denote the Sobolev space of functions u
in Ω with the partial derivatives ∂αu of order |α| ≤ k in L2(Ω). The norm in this
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space is denoted by ‖u‖(k)(Ω) and the norm in L2(Ω) is

‖u‖2(Ω) =

(∫
Ω

|u(x)|2dx
) 1

2

.

The existence of the representation (3) is guaranteed by the following.
Theorem 2.1. For any solution u ∈ H(2)(Ω) to the Helmholtz equation (1) there

is an unique function φ such that (3) holds. Moreover, for some constant C depending
only on Ω we have

‖φ‖2(Γ) ≤ C‖u‖(2)(Ω)(7)

and if in addition u ∈ C1+λ(Ω), 0 < λ < 1, then

C−1|u|1+λ(Ω) ≤ |φ|λ(Γ) ≤ |u|1+λ(Ω).(8)

Proof. We will first show uniqueness of φ such that (3) holds. By using the jump
relations for the normal derivative of single layer potentials [6], [15] we obtain

∂νu
− + iu− = φ/2 +Wφ+ iSφ on Γ.(9)

By trace theorems the left side is well defined and contained in L2(Γ). We will
consider (9) as an integral equation with respect to φ. To establish the uniqueness
of φ it suffices to show that the function φ is zero when the left side in (9) is zero.
Letting S = Sφ we will then have

φ = −2Wφ− i2Sφ on Γ.(10)

By the smoothing properties of single and double layer potentials ([11, p. 19] or [15])
the right side in (10) is in Cγ(Γ) for any γ < 1. Hence the density function φ
itself is Hölder continuous. Again by regularity properties of single layer potentials
Sφ ∈ C1(Ω).

To show that φ = 0 it suffices to use the following.
Lemma 2.2. If (∆ + k2)u = 0 in a bounded Lipschitz domain Ω, u ∈ H(1)(Ω),

and ∂νu+ iu = 0 on ∂Ω, then u = 0 in Ω.
Proof. The definition of the (generalized) H(1)-solution to the Helmholtz equation

in Ω gives ∫
Ω

(∇u · ∇u− k2uu) = −
∫
∂Ω

∂νuu.

The boundary condition implies that ∂νu = −iu. Hence in the last integral equality
the right side is purely imaginary and the left side is real. Hence they are both zero,
and u = 0 on ∂Ω. Using the boundary condition again we conclude that ∂νu = 0 on
∂Ω.

Since u = 0 on the Lipschitz surface ∂Ω its zero extension u∗ onto R
2 \ Ω is an

H(1)(R
2)-function. Using the definition of a generalized solution and the integration

by parts formula (valid for Lipschitz domains and H(1)-functions on such domains)
we conclude that u∗ solves the Helmholtz equation on the whole plane. Since u∗ = 0
outside Ω by the uniqueness of the continuation it is zero in Ω. So u = 0 in Ω.

The proof is complete.



THE DETECTION OF THE SOURCE 2107

This lemma is well known for u ∈ C1(Ω) [5, Theorem 3.33], and we give a proof
for completeness.

Now we return to the proof of Theorem 2.1.
As shown before in Lemma 2.2 the single layer potential S = Sφ satisfies the

regularity conditions of this lemma, solves the Helmholtz equation in Ω and, according
to 10 and the jump relations ∂νS + iS = 0, on Γ. By Lemma 2.2 we have S = 0
on Ω. As known [11], [15], S = Sφ is continuous on the plane and according to
[6] it satisfies the Sommerfeld radiation condition at infinity. Since S = 0 on ∂Ω
by the uniqueness in the exterior Dirichlet problem we conclude that S = 0 outside
Ω (see [6]). Using again the jump relations for the normal derivatives of single layer
potentials we conclude that φ = 0 on Γ. In particular, we have uniqueness of a solution
to the integral equation (9) with respect to φ ∈ L2(Γ). Due to the known (see [15])
smoothing properties of the single and double layer potentials the operators Wφ and
Sφ are compact from L2(Γ) into itself. Hence the integral equation (9) is Fredholm
and the uniqueness of its solution implies its existence, so for any u ∈ H(2)(Γ) there
is a unique solution φ ∈ L2(Γ) to (9).

Now we claim that (3) holds. Indeed, let S be the single layer potential Sφ.
From jump relations for normal derivative of single layer potentials and from (9) we
conclude that ∂ν(u

−−S)+ i(u−−S) = 0 on Γ. Also the function u−−S satisfies the
Helmholtz equation (1) in Ω and is in H(1) because of regularity properties of single
layer potential of a L2-density. By Lemma 2.2 we have u− = S on Ω.

Now we will derive the bound (7). Since the integral equation (9) has a solution
for any left side in L2(Γ) and the operators in the right side are continuous in L2(Γ)
by the Banach closed graph theorem the solution operator is continuous from L2(Γ)
into L2(Γ). By trace theorems the operator mapping u in Ω into its trace on Γ is
bounded from H(2)(Ω) into L2(Γ), so we have the bound (7).

The bounds (8) can be proven similarly, when we replace Sobolev space by Hölder
space and use known regularity properties of potentials and solutions to elliptic bound-
ary value problems in these spaces collected for example in [11, section 1.6].

Observe that Theorem 2.1 is well known if k is not a Dirichlet or Neumann
eigenvalue of the Laplacian in Ω [5, Theorems 3.16 and 3.30]. We do not assume that
k is not such an eigenvalue.

3. Uniqueness and stability for the inverse source problem. In this sec-
tion we will derive sharp stability estimates for our inverse problem. The uniqueness
and stability problem is decomposed into the (well-posed) Dirichlet problem for the
Helmholtz equation in the domain Ω0 bounded by Γ0 and the problem of the con-
tinuation of a solution to this equation from Ω0 onto Ω. The Dirichlet problem,
however, can have eigenvalues (in particular for our specific application) which are
relatively easy to find for circular Ω and to bound from above and below for more
general domains by using monotonicity of Dirichlet eigenvalues with respect to a do-
main. Nonuniqueness generated by these eigenvalues cannot be avoided, and away
from them the Dirichlet problem is stable in classical Sobolev (or Hölder) spaces (with
loss of one derivative). The problem of continuation of solutions of elliptic equations is
notoriously unstable. However, assuming that ‖u‖2(Ω) < M0, one has the conditional
Hölder-type estimate

‖u‖(k)(Ω1) < CM1−θ
0 ‖u‖θ2(Ω0),(11)

where C, θ depend on Ω,Ω0, k, 0 < θ < 1, and the distance from Ω1 to Γ. We refer for
proofs to [12, sections 3.2, 3.3]. More delicate stability estimates of ‖u‖2(Ω) need some
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further constraints, like the bound ‖u‖(1)(Ω) < M1. One can then obtain logarithmic
conditional stability estimates

‖u‖2(Ω) ≤ C/|log(‖u‖2(Ω0))|θ,(12)

where C, θ depend on Ω,Ω0,M1, k. In applied situations the bounds M0,M1 can be
available from the physical nature of the problem (like boundedness of the potential
energy M1). The stability estimates (11), (12) imply convergence rates for certain
regularization algorithms for the numerical solution. However, in the general situation
explicit bounds for C, θ are not known. In this section we will obtain rather sharp
bounds for these constants when Ω is the disk Ω(r1) defined as |x| < r1, r1 ≤ 1, and
Ω0 is its subdisk Ω(r0).

Theorem 3.1. Let u be a solution to the Helmholtz equation (1) in the disk Ω(r1)
and

‖u‖2(Ω(r1)) ≤ M0, ‖∇u‖2(Ω(r1)) ≤ M1.(13)

Then

r0
r
‖u‖2

2(∂Ω(r)) ≤ C1(r)ε
2 + C2ε

2θ, r < r1,(14)

where θ = (lnr1 − lnr)/(lnr1 − lnr0), and

‖u‖2
2(∂Ω(r1)) ≤ C1(r1)ε

2 + C4ε1 − C3ε1ln(ε1),(15)

where ε = ‖u‖2(∂Ω(r0)), C1(r) = max|Jn(kr)/Jn(kr0)|2 over |n| ≤ n1, n1 = [k2r2
1/2−

1], C2 = 4((1 + 2
r1
)M2

0 + M2
1 ), and in the logarithmic bound ε1 = − 1

lnε , C3 =

max(k2M2
0 ,M

2
1 )ln

r1
r0
, and C4 = C3(1− lnC3r0

2C2
).

In the proof we will use the following known expansion of a solution u to (1):

u(r, ϕ) =

∞∑
−∞

Jn(kr)une
inϕ, ϕ ∈ I = (0, 2π),(16)

where

Jn(t) =

p=+∞∑
p=0

(−1)p/(p!(n+ p)!)(t/2)n+2p, n = 0, 1, 2, . . . , J−n = Jn,

is the nth Bessel function and (r, ϕ) are the polar coordinates in the plane. This
expansion shows that nonuniqueness can occur only when the function Jn(kr0) = 0
for some n = 1, 2, . . . .

In addition we will make use of the following simple lemma.
Lemma 3.2. Under the condition (13) we have∫

|x|=r

|u|2 ≤
((

1 +
2

r

)
M2

0 +M2
1

)
, Re

∫
|x|=r

∂νuu ≤ max(k2M2
0 ,M

2
1 )(17)

provided ∆u+ k2u = 0 in Ω.
Proof. From the integration by parts formula we have

r

∫
|x|=r

uu =

∫
|x|<r

(r∂r|u|2+2|u|2) ≤
∫
|x|<r

(2r|u||∇u|+2|u|2) ≤
∫
|x|<r

(r|∇u|2+(r+2)|u|2)
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and by using (13) we have the first bound of the lemma.
Again using integration by parts, we have

0 =

∫
|x|<r

(∆u+ k2u)u =

∫
|x|=r

(∂νu)u−
∫
|x|<r

(∇u · ∇u− k2uu)

and we similarly arrive at the second bound of this lemma.
The proof is complete.
Proof of Theorem 3.1. We let t = kr. Due to the choice of n1 we have

Jn(t) = (t/2)n/(n!)(1− ρn(t)),(18)

where |ρn(t)| < 1
2 when n1 ≤ |n|. Indeed,

ρn(t) =
t2

4

∞∑
p=0

1

1...(2p+ 1)(n+ 1)...(n+ 2p+ 1)

(
1− 1

(2p+ 2)(n+ 2p+ 2)
t2/4

)
(t2/4)2p

≤ t2

4(n+ 1)

( ∞∑
p=0

1

(p)!

(
t2

8(n+ 2)

)2p

− t2

8(n+ 2)

)
≤ t2

4(n+ 1)

(
e( t2

8(n+2)
)2 − t2

8(n+ 2)

)
.

When 1/3 < t2

4(n+1) < 1/2 the last expression is less than 1/2(e1/16 − 1/6) < 1/2.

When t2

4(n+1) < 1/3 it is less than 1/3e1/36 < 1/2 as well. The inequality t2

4(n+1) < 1/2

holds when n1 ≤ |n|.
Since the complex exponents are orthogonal in L2(0, 2π) we have from (16) that

‖u(t/k, )‖2
2(0, 2π) = f0(t) + f1(t),(19)

where

f0(t) = 2π
∑

|n|≤n1

|un|2J2
n(t)

and f1 is the similar sum over n1 < |n|.
From the definition of f0 and from the choice of C1 we have

f0(t) ≤ C1(r)f0(t0).(20)

To obtain a bound for f1 we will estimate it by the simpler function

F (t) = 2π
∑

n1<|n|
|un|22−2n(n!)−2t2n.

From (18) and (19) it follows that

1/4F (t) ≤ f1(t) ≤ F (t).(21)

It is not hard to check that the function h(s) = F (es), s = lnt is logarithmically
convex: h′2 ≤ h(2)h [12, p. 41]. Hence

h(s) ≤ (h(s0))
(s1−s)/(s1−s0)(h(s1))

(s−s0)/(s1−s0)



2110 T. DELILLO, V. ISAKOV, N. VALDIVIA, AND L. WANG

and using (21) twice yields

f1(t) ≤ F (t) ≤ (F (t0))
θ(F (t1))

1−θ ≤ 4(f1(t0))
θ(f1(t1))

1−θ

with θ = (s1 − s)/(s1 − s0). Observing that due to Lemma 3.2

f1(t) ≤ r−1

∫
|x|=r

|u|2 ≤ 1

r

((
1 +

2

r

)
M2

0 +M2
1

)

and using (20) we obtain the first (Hölder) conditional stability estimate (14).
To obtain the logarithmic bound we will in addition make use of the second bound

of Lemma 3.2. From (13) and (19) one can see that

|f ′
1| ≤

2

kr
|Re

∫
|x|=r

∂νuu| ≤ 2

kr
max(k2M2

0 ,M
2
1 ).

By the mean value theorem

f1(e
s1) = f1(e

s) + f ′
1(e

s2)es2(s1 − s) ≤ C2

r0
ε2θ + 2C3θ, s < s2 < s1,

where we have used the above bound for f1(t) and let C3 = max(k2M2
0 ,M

2
1 )ln(r1/r0).

The minimum of the right side with respect to θ ∈ [0, 1] is achieved at

θ = −ε1

2
ln

C3r0
2C2

− ε1

2
lnε1, ε2θ =

C3r0
2C2

ε1,

where ε1 = − 1
lnε , provided ε is small. After substitution into the minimized expression

we obtain (15).
Theorem 3.3. Assume that in addition to (13) we have

‖∇2u‖2(Ω(r1)) ≤ M2.(22)

Then

r0
r
‖∂ru‖2

2(∂Ω(r)) ≤ C10ε
2
2 + C11ε

2θ
2

with C10 = C1(r)M , M = k2max(
|J′

n(kr0)|2
n2|Jn(kr0)|2 ,

16
r20
) + r−2

0 over |n| ≤ n1 + 1, C11 =

4((1 + 2
r1
)M2

1 +M2
2 )M , ε2 = (3(M2

0 + 2r2
0M

2
1 + r4

0M
2
2 )

1/3ε1/3, and

‖∂ru‖2
2(∂Ω(r1)) ≤ C10ε

2
2 + C9ε3 − C8ε3ln(ε3)

with ε3 = − 1

lnM
1
2 ε2

, C8 = max(k2M2
1 ,M

2
2 )ln

r1
r0
, and C9 = C8(1− ln C8

2C7
).

To prove Theorem 3.3 we need the following result about the explicit bound of
norm of the trace operator in Sobolev spaces.

Lemma 3.4. We have

‖f‖2
(1/2)(∂Ω(r)) ≤ 3r2‖∇f‖2

2(Ω(r)) + 3‖f‖2
2(Ω(r))(23)

and

‖f‖2
(3/2)(∂Ω(r)) ≤ 3‖f‖2

2(Ω(r)) + 6r2‖∇f‖2
2(Ω(r)) + 3r4‖∇2f‖2

2(Ω(r)).(24)
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Proof. We will use the formulas

f(r, ϕ) =
∑

f•
n(r)e

inϕ, ||f ||2(k)(∂Ω(r)) = 2πr
∑

|f•
n|2(n2 + 1)k =

∫
∂Ω(r)

A
k
2 A

k
2 f ,

where

Akf(ϕ) =
∑

f•
n(n

2 + 1)keinϕ.

To prove (23) we observe that as in the proof of Lemma 3.2 the left side in (23)
equals∫

∂Ω(ρ)

A1/4fA1/4f =
1

ρ

∫
Ω(ρ)

(r∂r(A
1/4fA1/4f + 2A1/4fA1/4f)

= 2π

∫ ρ

0

(∑
r2(∂r|f•

n(r)|2(n2 + 1)1/2 + 2r|f•
n|2(n2 + 1)

)
dr

≤ 2π

∫ ρ

0

r
∑

(r2|∂rf•
n(r)|2 + 3|f•

n(r)|2(n2 + 1))dr.

Here we have written the integral over Ω(r) in the polar coordinates (r, ϕ), used
the definition of Ak, the Parseval equality for the Fourier series, and the identity
∂r|f |2 = 2Re((∂rf)f). Using the Parseval equality again we write the last integral as∫ ρ

0

r

(∫ 2π

0

(r2|∂rf |2 + 3|∂ϕf |2 + 3|f |2)
)

≤ 3ρ2‖∇f‖2
2(Ω(ρ)) + 3‖f‖2

2(Ω(ρ)),

where we have used the equality ∇ = (∂r, r
−1∂ϕ). This proves the bound (23).

The bound (24) follows from (23) applied to ∂ϕ. Indeed,

‖f‖2
(3/2)(∂Ω(r)) = ‖f‖2

(1/2)(∂Ω(r)) + ‖∂ϕf‖2
(1/2)(∂Ω(r))

≤ 3‖f‖2
2(Ω(r)) + 3r2‖∇f‖2

2(Ω(r)) + 3‖∂ϕf‖2
2(Ω(r)) + 3r2‖∇∂ϕf‖2

2(Ω(r))

due to (23). Using that ∇ = (∂r, r
−1∂ϕ) and hence

|∇∂ϕf |2 = |∂ϕ∇f |2 ≤ r2|∇2f |2,
we obtain the bound (24).

The proof is complete.
Proof of Theorem 3.3. We recall that

‖u‖2
(k)(∂Ω(r)) = 2πr

∑
|Jn(t)un|2(1 + n2)k,(25)

where un are the coefficients of the function u(r, ϕ) in the expansion (16).
First, by using interpolation, a priori constraints, and Lemma 3.4, we will bound

‖u‖(1)(∂Ω(r0)) by an explicit function of ε = ‖u‖2(∂Ω(r0)).
We observe that according to the constraints (13), (22) and Lemma 3.4 we have

‖u‖2
(3/2)(∂Ω(r0)) ≤ 3M2

0 + 6r2
0M

2
1 + 3r4

0M
2
2 = C2

5 ,

where the last equality is the definiton of C5. Using (25) and the Hölder inequality

∑
anbn ≤

(∑
apn

)1/p (∑
bqn

)1/q
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with an = |Jnun|2/3, bn = |Jnun|1/3(1 + n2), and p = 3, q = 3/2 we will have

‖u‖2
(1)(∂Ω(r0) ≤ 2πr0

(∑
|Jnun|2

)1/3 (∑
|Jnun|2(1 + n2)3/2

)2/3

≤ ε2/3C
4/3
5 = ε2

2.

(26)

Now, by using the differentiated representation (16) and its splitting from the
proof of Theorem 3.1 we will bound the normal derivative of u on ∂Ω(r0).

We have

∂ru(r, ϕ) = k
∑

J ′
n(t)une

inϕ.

As in (19),

‖∂ru‖2
2(∂Ω(r0)) = 2πr0k

2


 ∑

|n|≤n1

|J ′
n/Jn|2|Jnun|2 +

∑
n1<|n|

|J ′
n|2|un|2




≤ 2πr0k
2


C6

∑
|n|≤n1

n2|Jnun|2 +
∑

n1<|n|

|Jn−1|2 + |Jn+1|2
2

|un|2

 ,

where C6 = max|J ′
n(kr0)/(nJn(kr0)|2 over |n| ≤ n1 and where we have used the

known identity J ′
n = 1/2(Jn−1+Jn+1) [6]. By using (18) we conclude that the second

sum is less than

1

2

∑
n1<|n|

(
t0
2

)2(n−1)
1

((n− 1)!)2

(
1 +

(
t20

4n(n+ 1)

)2
)
|un|2

≤ 1

2

∑
n1<|n|

4n2

t20
(n!)−2

(
t0
2

)2n

2|un|2 ≤ 16

t20

∑
n1<|n|

n2|Jn(t0)|2|un|2,

where we used that t20 ≤ 2n+4 and 1
2n! (

t0
2 )

n ≤ Jn(t0) when n1 < n, due to the choice
of n1 and to (16). Summing up we conclude that

‖∂ru‖2
2(∂Ω(r0)) ≤ 2πr0C

∗
0

∑
n2|Jn(t0)|2|un|2 ≤ C∗

0ε
2
2,(27)

where C∗
0 = k2max(C6,

16
r20
).

To conclude the proof we use Theorem 3.1 for ∂ju, (26), and (27).
Since ∇u = (∂ru, r

−1∂ϕu) we have from (26), (27) that

‖∇u‖2
2(∂Ω(r0)) ≤

(
C∗

0 +
1

r2
0

)
ε2
2.(28)

From the constraints (13) and (22) we have

‖∂ju‖2(Ω(r1)) ≤ M1, ‖∇∂ju‖2(Ω(r1) ≤ M2.

So from the bound (28) it follows by Theorem 3.1 that

r0
r
‖∂ju‖2

2(∂Ω(r)) ≤ C1(r)(C
∗
0 + r−2

0 )ε2
2 + C7(C

∗
0 + r−2

0 )θε2θ
2 ,
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where C7 = 4((1 + 2
r1
)M2

1 +M2
2 ). Similarly, applying the second bound of Theorem

3.1 to ∂ju, we obtain

‖∂ju‖2
2(∂Ω(r1)) ≤ C1(r1)(C

∗
0 + r−2

0 )ε2
2 + C9ε3 − C8ε3ln(ε3),

where C8 = max(k2M2
1 ,M

2
2 )ln

r1
r0
, C9 = C8(1− lnC8r0

2C7
), and ε3 = − 1

ln((C∗
0 +r−2

0 )
1
2 ε2)

.

The proof is complete.
Now we will give numerical values for constants entering the conditional stabil-

ity bounds of Theorems 3.1 and 3.3. Since these bounds are determined by a-priori
constraints (13), (22) we will numerically evaluate the quantities M0,M1 for the im-
portant and realistic case of the pressure field u generated by the unit point source
located at the point q. We consider q = (1.5, 1.5), r1 = 1, and r0 = 0.9 or 0.95. The
choice of geometry, frequencies k, and u simulates the acoustics of an engine near an
aircraft cabin Ω. We will consider two solutions u and u+ e. We will denote by δ the

relative error ‖e‖2(∂Ω(r0))
‖u‖2(∂Ω(r0))

.

k ‖u‖2 (Ω(r1)) ‖∇u‖2 (Ω(r1))
∥∥∇2u

∥∥
2
(Ω(r1))

1 0.0591 0.0661 0.0793
2 0.0301 0.1245 0.5183
3 0.0202 0.1842 1.6865

k δ
‖u−uδ‖2

‖u‖2
(∂Ω(r))

‖u−uδ‖2

‖u‖2
(∂Ω(r1))

1 0.01 0.4886 0.6034
2 0.01 0.5928 1.2739
3 0.01 0.6834 2.0028
1 0.005 0.3485 0.5706
2 0.005 0.4229 1.2082
3 0.005 0.4872 1.9026

k δ
‖u−uδ‖2

‖u‖2
(∂Ω(r))

‖u−uδ‖2

‖u‖2
(∂Ω(r1))

1 0.01 0.2762 0.4380
2 0.01 0.3292 0.9295
3 0.01 0.3753 1.4667
1 0.005 0.1829 0.4139
2 0.005 0.2179 0.8808
3 0.005 0.2484 1.3920

In the second table we consider r0 = 0.9, r = 0.95 to compare it with the third table
where r0 = 0.95, r = 0.97. While stability is improved when r0 is closer to 1, these
bounds are not very optimistic. They can be improved by using extra regularity
assumptions. In our numerical examples reconstruction is much better.

Now by using the previous results in this section we will discuss an optimal choice
of the truncation parameter p when recovering pressure u on ∂Ω(1) from its value u+e
on ∂Ω(r0). Here e is the error term, ‖e‖2(∂Ω(r0)) ≤ ε.

Let u(; p) be the sum (16) truncated over |n| < p and ue(; p) be a solution of the
truncated problem with data e(; p). As in (19), (20), (21), we obtain

‖ue(; p)‖2
2(∂Ω(1)) ≤ (C1(1) + 4r−2p

0 )ε2.
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According to (25) and (26)

‖u− u(; p)‖2
2(∂Ω(1)) ≤ 2π

∑
p<|n|

|unJn|2 ≤ 2π

p

∑
p<|n|

n|unJn|2

≤ 1

p
‖u‖2

(1/2)(∂Ω(1)) ≤
3

p
(M2

0 +M2
1 )

by Lemma 3.4. Hence the error due to solution of the truncated problem does not
exceed

C1(1)ε
2 + 4r−2p

0 ε2 + 3(M2
0 +M2

1 )/p

and the optimal choice of p corresponds to the minimum of the last sum with respect
to p which is achieved at p = poptimal. Equating the derivative with respect to p to
zero, we will have the equation

−8ε2e−2p log r0 log r0 − 3(M2
0 +M2

1 )/p
2 = 0

or mem = C2/ε, where m = −p log r0, C2 = (3(M2
0 +M2

1 )(− log r0)/8)
1/2. For exam-

ple, when M0 = 0.5,M1 = 0.5, r0 = 0.9, and δ = 0.005, we find that poptimal ≈ 20,
which is close to the optimal values of p in the numerical examples below.

4. Numerical solution of the integral equation (4) and regularization
methods. In this section, we consider the numerical solution of the integral equation
(4) for a range of wave numbers k. Recall that k = ω/c, where ω denotes frequency
and c is the speed of sound. In the case of interior aircraft cabin noise c = 340m/sec
and the range of interest of ω is typically in the range of human speech,

20π/sec < ω = 2πf < 1000π/sec,

where f is frequency in Hertz. This leads to a range of k of

.06π/m < k < 3π/m.

Since cabin dimensions a are on the order of meters, the dimensionless quantity ka
has a similar range.

The numerical algorithms. Here are some details on the numerics. All programing
has been done in Matlab and run on Pentium PCs.

Given u on Γ0, we solve

Sφ = u

(or the appropriate least squares problem) for φ where we denote by S the integral
operator in (4). In order to recover the normal velocities on Γ, we then compute

v = Dφ,

where D denotes the Fredholm integral operator in (5).
Discretization. For the two-dimensional case, we discretize the integral operators

by the N−point Nyström method which is optimal; see, e.g., [2], [5]. For smooth
curves the diagonal terms of the integral operator part of D become, essentially,
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the curvature. As a result, if the boundary curve Γ is analytic, the discretization
of D will exhibit spectral accuracy, with the error roughly squaring each time N is
doubled. Similarly, since the kernel of S is analytic, the condition number of the
N ×N discretization of S will square each time N is doubled, as expected from the
geometric decay of the singular values of S [14, Theorem 15.20]; see the tables below.

Regularization and parameter-choice methods. For data u with noise it is necessary
to regularize the solution to filter out high levels of noise in the high frequency modes
associated with small singular values of S. According to standard results from, e.g., [6],
[7], [12], [14], the theorems developed in the previous sections of this paper guarantee
the convergence of the regularized solution as the noise level goes to 0.

We have tested several regularization and parameter selection routines described
in [10], [8], [17]. The Matlab package [9] was used in most cases along with the built-
in svd routine. We will report on only a few representative calculations here using
the truncated svd (tsvd in [9]) and the conjugate gradient method for the normal
equations (cgls in [9]). In the case of the truncated svd, the regularization parameter
p is the number of singular vectors retained in the reconstruction. More explicitly, we
are regularizing the (discretized) least squares problem

min
φ

‖Sφ− uδ‖2

for φ, where uδ = u + e, e = noise with ‖e‖2/‖u‖2 = δ. The Matlab svd routine
computes the singular value decomposition of our N ×N matrix S:

S = UΣV ∗, U∗U = I, V ∗V = I,

where U = [u1, . . . , uN ], V = [v1, . . . , vN ],Σ = diag(σ1, . . . , σN ), and σ1 ≥ σ2 ≥ · · · ≥
σN ≥ 0. The solution to least squares problem is then given by

φ =

rank(S)∑
i=1

u∗
i u

σi
vi +

rank(S)∑
i=1

u∗
i e

σi
vi.

The tsvd routine just truncates this solution after the first p terms, filtering out the
high frequency noise components which have been amplified by division by small
singular values and thus giving the regularized solution:

φp =

p∑
i=1

u∗
i u

δ

σi
vi.

In the case of conjugate gradient, the regularization parameter p is the number
of conjugate gradient iterations. Since conjugate gradient for the normal equations
minimizes the S∗S-norm error over the pth Krylov space Kp(S

∗uδ, S∗S) and since

‖φ− φp‖2
S∗S = ‖uδ − Sφp‖2

2,

at each step p conjugate gradient finds the least squares solution φp over Kp. Note
from Figures 2, 3, and 4 that the conjugate gradient method finds the optimal solution
in the first several iterations and then diverges rapidly toward the solution to the
problem with noisy data. This regularizing behavior is due to the fact that conjugate
gradient initially reduces the error in the direction of the dominant (low frequency)
singular vectors vi (S

∗Svi = σ2
i vi), which are less corrupted by noise relative to the
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high frequency modes corresponding to small σi. The rapid convergence/divergence
behavior makes the choice of the regularization parameter p (stopping rule or spectral
cutoff) crucial.

We have considered various parameter choice methods such as generalized cross
validation (gcv in [9]) and the heuristic stopping rule for conjugate gradient given
in [8]. If the noise level is known well enough, the discrepancy principle [10] can be
used. However, this is generally not the case. A practical possibility in the context of
aircraft noise problems is that 20 or so vibrometer measurements of the velocity can
be made on Γ. Denoting these measurements vmeas, the p can be chosen such that
‖(Dφp)meas − vmeas‖2 (which might be thought of as a penalty term depending on
Dφ being added to the least squares problem) is minimized. The results below and
in the three-dimensional case indicate that this is a reliable method. The ease with
which velocity measurements may be incorporated in the regularization procedure is
an advantage of the single layer potential representation.

Numerical examples. We now give results of our numerical calculations for vari-
ous geometries and various values of k to demonstrate the regularization techniques.
Specifically, we use normally distributed random noise with mean 0 and standard
deviation 1 from the Matlab random number generator randn: uδ = u + e where
e = δ‖u‖2f/‖f‖2 with f = randn(size(u)). This gives ‖uδ − u‖2/‖u‖2 = δ. Our
relative errors are given by

‖v − vp‖2/‖v‖2 ≤ cond(D)‖φ− φp‖2/‖φ‖2,

where φp is the regularized solution and vp = Dφp.
Example 1. Γ (the fuselage) is the unit circle, Γ0 (the microphone measure-

ment surface) is the circle of radius .9, and the exact u is a point source u(x, y) =

H
(1)
0 (k|(x, y) − (1.5, 0)|). The exact velocity v on Γ can be computed easily from u.

The following table indicates how the relative errors in vp for the optimal p (in paren-
theses in the tables), which we know from the exact v, change for various noise levels
δ. We see that as δ → 0 the relative error approaches 0, as expected from the theory.
The condition numbers, cond(S) and cond(D), for each N are given in the 2-norm.
D is well conditioned, as expected, unless k is very near to an eigenvalue which does
not usually cause a problem in practice. cond(D)≈ 1.2 for all N and σ1(S) is of order
1, so σN is of order 1/cond(S). Note that for δ = 0 the error roughly squares each
time N is doubled, as expected by the spectrally accurate Nyström discretization of
S, until the amplification of the rounding error (≈ 10−16 in Matlab) by the small
singular values of S overwhelms the truncation error for N = 320.

N cond(S) δ = .05(p) .01 .001 .0001 0
20 2.7 · 101 .15(11) .089(12) .048(20) .047(20) .036(20)
40 1.6 · 102 .18(9) .060(19) .017(23) .0037(33) .0027(40)
80 2.6 · 103 .13(13) .055(16) .011(24) .0026(31) 1.7 · 10−5(80)
160 3.6 · 105 .11(10) .037(20) .0095(26) .0019(33) 2.9 · 10−9(160)
320 3.0 · 109 .12(10) .038(18) .0095(25) .0019(33) 3.6 · 10−8(100)

Example 2. Γ (the fuselage, solid curve in Figure 1) is the ellipse (x, y) =
(cos(θ), .5 · sin(θ)), Γ0 (the microphone measurement surface, dotted curve in Fig-
ure 1) is the ellipse (x, y) = .9 · (cos(θ), .5 · sin(θ)), and the exact u is the sum of 2

sources (representing “engines”on either side of the fuselage) u(x, y) = H
(1)
0 (k|(x, y)−

(.5, 1)|)+H
(1)
0 (k|(x, y)− (.5,−1)|). The “O” symbols on the fuselage indicate the po-
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Fig. 1.

sitions of 10 velocity measurements, vmeas. Our results for δ = .01, a realistic noise
level in practice, are exhibited in the following table and in Figures 2, 3, and 4 which
plot the relative errors in v (with N = 80) for the tsvd (solid line) and the conjugate
gradient iterations (dashed line) against p, along with the relative errors in vmeas for
the tsvd (dotted line) and the conjugate gradient iterations (dot-dash line). The “O”
symbol indicates the point picked by gcv. Note, e.g., for Figure 2, that the gcv point
is quite sensitive to rapid changes in the relative error and can be far from the optimal
solution in such cases. As k increases, S becomes better conditioned and there is more
margin for error in the search for the optimal p. The plots show that choosing p such
that the error in vmeas is minimized should give a reliable parameter choice method
in either case. For large scale three-dimensional problems especially, the conjugate
gradient method is much faster than the tsvd, since it finds the optimal solution in
the first several iterations. Figure 5 compares the absolute value of the exact and
regularized velocities for tsvd and conjugate gradient for k = 6.

The following table gives some indication how the relative errors vary with N and
k. cond(D)=2.9 for k = 1, 5.6 for k = 3, and 16 for k = 6. (Note that for N = 320,
the condition number is not accurately computed.) We observe that, in general, for
1% noise, we cannot expect much more than about 3% accuracy in the regularized
solution in the 2-norm. Pointwise errors may be somewhat better.

N cond(S) k = 1 cond(S) k = 3 cond(S) k = 6
20 1.1 · 102 .13(8) 4.2 · 101 .088(16) 2.1 · 101 .18(20)
40 2.2 · 103 .082(11) 8.8 · 102 .040(19) 4.8 · 102 .050(28)
80 3.0 · 107 .071(10) 1.2 · 107 .032(19) 6.7 · 106 .041(27)
160 1.8 · 1018 .046(17) 1.1 · 1018 .029(19) 2.3 · 1017 .029(29)
320 3.5 · 1018 .052(17) 1.7 · 1018 .024(23) 4.8 · 1017 .029(35)

Example 3. Figure 6 compares the absolute value of the exact (V) and recovered
velocities (VREC) for a region bounded by a circle intersected by a straight line.
This is meant to simulate the cross section of a fuselage with a floor, as in [22], and is
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Fig. 2.

Fig. 3.

representative of the kind of nonsmooth boundaries that may arise in practice. Even
in this case, the recovered, regularized velocities approximated the exact velocities
well away from the corners.

Concluding remarks. We have also developed a three-dimensional code based in
part on triangulation of the boundary surface and piecewise-polynomial boundary
elements in [1] and [2]. We have carried out a number of numerical experiments with
results similar to the two-dimensional case. Computations similar to ours using the
Helmholtz–Kirchhoff representation, series expansions, or a hybrid layer potential are
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Fig. 4.

Fig. 5.

given in [3], [13], [16], [22], [23]. We plan to compare these methods and those of
[18] with ours and to report more fully on our computations using test problems and
experimental data taken from a fuselage test section in future work.

The results of these experiments show that the single layer representation can be
used for efficient numerical algorithms. The reconstruction error is reasonably low
and is decreasing as the frequency grows from 1 to 3, which is acoustically the most
interesting interval where most of the acoustical energy is concentrated. In later work
we plan to show that stability is increasing with frequency. On the other hand, higher
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Fig. 6.

frequency generates serious computational problems and we plan to resolve them by
using preconditioners and more accurate discretization of integrals.
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