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a b s t r a c t

Riemann–Hilbert problems in multiply connected domains arise in a number of applica-
tions, such as the computation of conformalmaps. As an example here, we consider a linear
problem for computing the conformal map from the exterior of m disks to the exterior of
m linear slits with prescribed inclinations. The map can be represented as a sum of Laurent
series centered at the disks and satisfying a certain boundary condition. R.Wegmanndevel-
oped a method of successive conjugation for finding the Laurent coefficients. We compare
thismethod to twomethods using least squares solutions to the problem. The resulting lin-
ear system has an underlying structure of the form of the identity plus a low rank operator
and can be solved efficiently by conjugate gradient-like methods.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Linear Riemann–Hilbert (R–H) problems arise in a number of applications, such as the computation of conformal maps
[1–3]. For multiply connected domains in the complex plane, maps from domains bounded by circles are useful for compu-
tations, since Laurent series can be used to represent the functions analytic in the exterior of the disks. Here we compare
numericalmethods for a simple R–Hproblem for computing the conformalmap fromadomain exterior to circles to a domain
exterior to a number of linear slits. The methods solve for the Laurent coefficients and include a method of successive conju-
gation due to Wegmann [4,3] and a method based on a least squares solution to the boundary value problem; see, e.g., [5,6].
We formulate the least squares problem in such a way that the resulting system has singular values well-grouped around 1
with an underlying structure of the identity plus a low-rank matrix. Conjugate-gradient-like methods can therefore often be
used efficiently. The main point of this paper is to uncover this structure in a simple example and investigate its effect on
the numerics. We expect that the analysis here will be useful for a number of other similar computational problems, such
as those in [7–12].

In Section 2, we introduce the conformal map from the exterior of m given disks to the exterior of m slits with given
inclinations and show that it satisfies a Riemann–Hilbert boundary value problem for a function analytic in the circular
domain. Section 3 reviews Wegmann’s method of successive conjugation for solving this Riemann–Hilbert problem and
presents our least squares method. An analysis of the linear systems shows the grouping of the eigenvalues and their effect
on the convergence of the conjugate gradient method applied to the normal equations. Section 4 gives several numerical
examples showing the behavior of themethods for domains of various connectivity and caseswhere the circles nearly touch.
Section 5 discusses possible future work. Portions of theMatlab code are given in the Appendix.
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Fig. 1. Map to m = 3 slits from [3] with circle centers, z1 = 2, z2 = −1 − 2i, z3 = −1 + 2i and radii, R1 = 1, R2 = 1.5, R3 = 0.7 and inclination angles
of slits, α1 = 0, α2 = π/4, α3 = π/2.

2. Conformal mapping

Let G denote the domain exterior tommutually exterior, nonoverlapping disks in the complex plane bounded by circles
with centers, zk, and radii, Rk, k = 1, . . . ,m. Since the circles do not overlap, (Rj +Rk)/|zj − zk| < 1.Wegmann [3, Eq. (390)]
considers the conformal map,

Φ(z) = z + i · Ψ (z) (1)

from G to an assembly of linear slits inclined at angles αk. HereΨ (z) is analytic in G andΨ (∞) = 0, soΨ can be represented
as a sum of m Laurent series centered at the zk’s, (or, more precisely, the Taylor expansions centered at ∞ and converging
in the exterior of the disks.) Given the circles and the normalization z + O(1/z) at ∞ the mapΦ(z) is uniquely determined
by standard theorems; see [13, Thm 17.6a]. The example from [3] in Fig. 1 illustrates the map. SinceΦ(z) can be continued
analytically by reflection across the circles into the interior of the disks, as in, e.g., [9], the series converge geometrically.

We will use the notation in [3] for ease of comparison.
The m circles Ck, k = 1, . . . ,m are parametrized by z|k := zk + Rke−it , t ∈ [0, 2π ] with the domain G to the left. In

general, we denote values of functions on the kth circle by, e.g.,Φ|k := Φ(z|k) = z|k + iΨ|k. SinceΦ maps the kth circle to a
slit of inclination αk, it must satisfy

Im

e−iαk · Φ|k


= Ak, constant.

Wegmann converts this into a boundary condition for Ψ (z) as follows. UsingΦ|k = z|k + iΨ|k, we have that

Im

e−iαk · Φ|k


= Im


e−iαk ·


zk + Rke−it

+ i · Ψ|k


= Im

e−iαkzk


+ RkIm


e−i(αk+t)

+ Im

ie−iαkΨ|k


= Im


e−iαkzk


− Rk sin(t + αk)+ Re


e−iαkΨ|k


= Ak

giving the boundary conditions,

Re

e−iαk · Ψ|k(t)+ ak0


= Rk sin(t + αk) =: ψk(t), (2)

where t ∈ [0, 2π ], k = 1, . . . ,m, and ak0 := Im

e−iαkzk


− Ak arem real unknowns.

2.1. Riemann–Hilbert (R–H) problems

Wegmann [3] states the following theorem.

Theorem 1. For any integer l ≥ 0 and for any sufficiently smooth functions ψk on the boundary of G the R–H problem

Re

eiλkeiltΨ|k + akleilt + · · · + ak1eit + ak0


= ψk,

has a unique solution consisting of an analytic function Ψ in G, with Ψ (∞) = 0, and complex numbers ak1, . . . , akl and real ak0.

Here we just consider the case l = 0 and we have λk = −αk, the inclination angles of the slits. Additional theoretical
discussion and applications can also be found in, e.g. [12], and references therein.
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3. Solutions of Riemann–Hilbert problem

We will first represent Ψ (z) from (1) in terms of a sum of Laurent series converging in the exterior of them circles,

Ψ (z) =

m
k=1

hk(z), (3)

where

hk(z) =

∞
j=1

bj,k(z − zk)−j, (4)

and bj,k are the Laurent coefficients for the function hk(z). All of the methods here solve for the bj,k’s. (The least squares
method below includes weight factors Rj

k in the Laurent series.)

3.1. Wegmann’s successive conjugation method

Observe that

Ψ|k =

m
ν=1

hν|k = hk|k +


ν≠k

hν|k. (5)

Wegmann [4,3] proposed a method of successive approximation based on (5). The iterations start with functions h(0)k . We
may take all h(0)k = 0. The h(n+1)

k ’s are determined successively, for k = 1, . . . ,m, from the equations

Re

e−iαkh(n+1)

k|k + ak0


= ψk − Re


e−iαk


ν<k

h(n+1)
ν|k


− Re


e−iαk


ν>k

h(n)ν|k


=: ψ∗

k . (6)

This is the Gauss–Seidel iteration. Wegmann [4] also considers a Jacobi iteration, but the method is somewhat slower. Next
take FFT of the RHS of (6) to get the Fourier coefficients Aj,k of ψ∗

k . Then

ak0 = A0,k,

bj,k = 2R j
ke

−iαkAj,k for j = 1, 2, . . . . (7)

The number of FFT points on each circle isN , for allm circles. t ∈ [0, 2π) is discretized as tn = 2π(n−1)/N for n = 1, . . . ,N .
The number of Laurent coefficients is J = N/2. The number of iterations for Wegmann’s method to converge depends on
the separation of the circles; see [4] for an analysis of convergence. (The case where l, αk = 0 is the modified Dirichlet
problem. It is interesting to note that Wegmann’s iteration above is essentially the Schwarz alternating method discussed
in [14, Sec. 50] and applied to the case of circular boundaries; see also [15].) We give some segments of ourMatlab code in
the Appendix.

3.2. Least squares (ls) method

Our new least squares approach introduces weights R j
k in the expression for hk(z) and solves for both the bj,k’s and the

ak0’s. Only the bj,k’s are needed. The ak0’s are discarded, as in Wegmann’s method of successive conjugation. One can solve
an overdetermined system for the bj,k’s alone by subtracting the BCs at successive Fourier points to eliminate the constant
ak0’s on each circle as in [9], but this does not change the results very much, the singular values are less well-grouped, and
the analysis is not as clear. We now use the Laurent series

hk(z) =

∞
j=1

bj,k · R j
k · (z − zk)−j. (8)

The function Ψ (z) defined in (3) then becomes

Ψ (z) =

m
k=1

hk(z) =

m
k=1

∞
j=1

bj,k · R j
k · (z − zk)−j. (9)
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The boundary conditions forΦ in (2) for all k = 1, . . . ,m, are again

Re

e−iαk · Ψ|k(t)+ ak0


= Rk sin(t + αk). (10)

From (9) we have

Ψ|k =

m
ν=1

hν|k =

m
ν=1

∞
j=1

bj,ν · R j
ν · (z|k − zν)−j.

The boundary conditions in (10), with the Laurent series truncated at J terms become, for all k = 1, . . . ,m,

Re


e−iαν ·

m
ν=1

J
j=1

bj,ν · Rj
ν · (zk + Rke−it

− zν)−j
+ ak0


= Rk sin(t + αk). (11)

We apply these atN Fourier points, t = tn = 2π(n−1)/N, n = 1, . . . ,N on each circle and solve the resulting least squares
problem.

3.3. Matrix formulation

Using

hk|ν(t) =

J
j=1

bj,k · Rj
k · (Rνe−it

+ zν − zk)−j,

suppose t is discretized to N Fourier points on each circle. Then

hk|ν(tn) =

J
j=1

bj,k · Rj
k · (Rνe−itn + zν − zk)−j. (12)

Setting zkν = zν − zk, define the N × J matrix,

Hkν =

R1
k(Rνe

−it1 + zkν)−1
· · · RJ

k(Rνe
−it1 + zkν)−J

...
...

R1
k(Rνe

−itN + zkν)−1
· · · RJ

k(Rνe
−itN + zkν)−J

 , (13)

and the J × 1 vector,

bk =

b1,k, · · · , bJ,k

T
. (14)

Then hk|ν(t) in vector form becomes

hk|ν = Hkνbk. (15)

Next, define themN × mJ matrix,

H =

H11 · · · H1m
...

...
Hm1 · · · Hmm

 , (16)

and themJ × 1 vector

b =

b1
...
bm

 . (17)

Further, define amN × m matrix P such that

P =


1N 0N · · · 0N
0N 1N · · · 0N
...

...
...

0N 0N · · · 1N

 , (18)
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where the N-vectors 1N = [1, . . . , 1]T and 0N = [0, . . . , 0]T . In addition, to account for the orientation, αk, of the slits, set

Lk = e−iαk · IN (19)

L =


L1 ZN · · · ZN ZN
...

...
ZN · · · Lk · · · ZN
...

...
ZN ZN · · · ZN Lm

 , (20)

where IN is the N × N identity matrix and ZN is the N × N matrix of zeros. Here (and in theMatlab code), we also denote

A := LH, an mN × mJ complex matrix,
ARI := [Re (LH) − Im (LH)] , anmN × mN real matrix, and
AS := [ARI P] , an mN × (mN + m) real matrix.

Also, let a = [a10, . . . , ak0, . . . , am0]
T and define the vectors

ba :=

 Re b
Im b

a

 ,
ψ :=

ψ1
...
ψm

 ,
where ψk = [ψk(t1), . . . , ψk(tN)]T . We then solve themN × (mN + m) system

ASba = ψ (21)

by theMatlab backslash or by conjugate gradient for the normal equations using cgls from [16].

3.4. Analysis of the matrices

We show here that AS/
√
N/2 has singular values well-grouped around one. Therefore, ASTAS has the form of the identity

plus a low rank matrix and conjugate gradient for the normal equations will converge rapidly. To illustrate the properties
of the matrices, we first analyze A = LH for a simple case with m = 2 and αk = 0, k = 1, 2, so that L = I and A = H . In
block form,

H =


H11 H12
H21 H22


.

A slit map with horizontal slits (nearly touching) is displayed in Fig. 2. Note that the diagonal blocks, k = ν, Hkk =
ei2π lj/N


, l = 0, . . . ,N − 1, j = 1, . . . , J = N/2, are N × J matrices with the nice form of J columns of the DFT matrix,

Hkk =

eit1 · · · eiJt1
...

...

eitN · · · eiJtN

 . (22)

We first find their singular values and then find the singular values of their real and imaginary parts. This will allow us to
explain the singular values of ARI and finally AS.

Note that the Hermitian transpose is H∗

kk = [e−i2π lj/N
]. We now show that

1
N
H∗

kkHkk = IN/2,

the N/2 × N/2 identity. The (l, j)th entry of 1
NH

∗

kkHkk, k = 1, 2 is, e.g., for k = 1,

1
N
(H∗

11H11)l,j =
1
N

N−1
k=0

e−i2π lk/Nei2πkj/N

=
1
N

N−1
k=0

ei2π(j−l)k/N
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Fig. 2. Plot of map from exterior of m = 2 disks with z1 = −1, z2 = 1, R1 = 0.9, R2 = 0.8,N = 32. The slits are horizontal, so the inclination angles are
α1 = α2 = 0. Since the circles nearly touch, the slits nearly touch. Images of 2N = 64 Fourier points are plotted along the slits.

=
1
N


N, if l = j (ei2π(j−l)

= 1)
1 − ei2π(j−l)

1 − ei2π(j−l)/N
, if l ≠ j (ei2π(j−l)

≠ 1)

=


1, if l = j
0, if l ≠ j.

For the off-diagonal blocks Hkν, k ≠ ν, of H from (13) with the weights Rj
k, we see that the entries decrease like powers

of Rk/|Rν + zkν | < 1. As a result, the singular values ofHkν, k ≠ ν, decay to 0 as N increases. The singular values of the blocks
of H/

√
N are plotted in Fig. 3.

To analyze the other matrices, ARI, AS, in our calculations, we find the singular values of the real and imaginary parts of
Hkk. We use, for l, j = 1, . . . ,N/2, the calculation,

1
N

N−1
k=0

cos(2π(l + j)k/N) =
1
N
Re


N−1
k=0

ei2π(l+j)k/N



=
1
N
Re


1 − ei2π(j+l)

1 − ei2π(j+l)/N
, if l ≠ N/2 or j ≠ N/2

N, if l = j = N/2

=


0, if l ≠ N/2 or j ≠ N/2
1, if l = j = N/2.

For HR
kk := Re Hkk = [cos(2π lj/N)], j = 0, 1, . . . ,N − 1, l = 1, . . . ,N/2 this gives

2
N
((HR

11)
THR

11)l,j =
2
N

N−1
k=0

cos(2π lk/N) cos(2πkj/N)

=
1
N

N−1
k=0

cos(2π(j − l)k/N)+ cos(2π(j + l)k/N)

=
1
2N

Re


N−1
k=0

ei2π(j+l)k/N
+ ei2π(j−l)k/N



=

2, if l = j = N/2
1, if l = j ≠ N/2
0, if l ≠ j.

Therefore, the J = N/2 singular values of Re Hkk/
√
J =

√
2, 1, . . . , 1.
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Fig. 3. Singular values of submatrices of H/
√
N form = 2, z1 = −1, z2 = 1, R1 = 0.9, R2 = 0.8, α1 = α2 = 0,N = 32.

Similarly, for H I
kk := Im Hkk = [sin(2π lj/N)], l = 1, . . . ,N/2, j = 0, 1, . . . ,N − 1, we have

2
N
((H I

11)
TH I

11)l,j =
2
N

N−1
k=0

sin(2π lk/N) sin(2πkj/N)

=
1
N

N−1
k=0

cos(2π(j − l)k/N)− cos(2π(j + l)k/N)

=
1
2N

Re


N−1
k=0

ei2π(j+l)k/N
− ei2π(j−l)k/N



=

1, if l = j ≠ N/2
0, if l = j = N/2
0, if l ≠ j.

Therefore, the N/2 singular values of Im Hkk/
√
N/2 = 1, 1, . . . , 1, 0. The addition of the rows from the P matrix perturbs

the eigenvalues according to standard theorems, e.g., [17, sec. 8.1.2], and the final matrix is nonsingular; see Fig. 5.
For small Rk, the off-diagonal matrix blocks have singular values that decay rapidly and perturb the singular values of

the diagonal block matrix only slightly. The matrix ARI will therefore have roughly m singular values equal to
√
2 and m

singular values equal to 0. Note the singular values of the mN × m matrix P/
√
J are just m values of

√
2. Therefore, adding

the m columns of P to ARI yields a full rank matrix AS with m
√
2’s replacing the m 0’s of ARI . That is the mN × (mN + m)

matrix AS/
√
J has 2m singular values equal to

√
2 and mN − 2m equal to 1 (slightly perturbed by the off-diagonal blocks).

This is illustrated in Fig. 4 for m = 2, 3 and taking only N = 8 to clearly display the singular values. For larger Rk’s these
singular values are perturbed more.

3.5. Convergence of cgls

AS is of the form constant · identity plus low rank, so cgls converges superlinearly and is independent of N . This and the
linear convergence of Wegmann’s method are illustrated in Fig. 6. The number of cgls iterations is also proportional to the
connectivity m and dependent on how close the circles are to touching; see Table 2. The number of singular values (square
roots of eigenvalues) of AS/

√
J which are not equal to 1 is the rank of the perturbation of the identity and therefore gives a
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Fig. 4. Singular values of ARI/
√
J and AS/

√
J form = 2, 3 disks with z1 = −1, z2 = 1, z3 = i, R1 = R2 = R3 = 0.1, α1 = α2 = α3 = 0,N = 8 illustrating

2m
√
2 singular values (O) for AS/

√
J andm 0 and

√
2 singular values (·) for ARI/

√
J .

rough estimate of the number of cgls iterations according to standard theorems for the convergence of conjugate gradient
methods; see [17, Sec. 10.2]. In general, however, we can expect the number of iterations for cgls to roughly increase
linearly with the connectivitym and as the Rk’s approach 1. More examples are given in the next section.

4. Numerical examples

We measure our errors by rotating the slits to the horizontal and taking the difference of the imaginary parts with the
average value at 2N Fourier points, tn = π(n − 1)/N, n = 1, . . . , 2N , on the boundary circles. Let

εk,n :=
 Im e−iαkΦ|k(tn)


− average[Im(e−iαkΦ|k(tn))]

 . (23)

Then the overall error ε is

εk := max
n
εk,n (24)

ε = max
k
εk. (25)
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Fig. 5. Singular values of matrices ARI/
√
J and AS/

√
J for m = 2, z1 = −1, z2 = 1, R1 = 0.9, R2 = 0.8, α1 = α2 = 0,N = 32.

Fig. 6. The convergence of the errors ε for cgls (left) and Wegmann’s Gauss–Seidel iteration (right) for N = 32, 64, 128 for two collinear slits
m = 2, α1 = α2 = 0, z1 = −1, z2 = 1, R1 = R2 = 0.9 are plotted. The linear convergence of Wegmann’s method and the superlinear convergence
of cgls are evident, along with the independence of the rates from N until the level of discretization error is reached.

ε gives a measure of how straight the computed slits are and how close they are to having the correct inclinations, αk. Also,
the coefficients, bk,j, computed by the three methods for various N agree to about the same level of accuracy as the errors, ε,
so we have not reported them below.

Example 1. The threemethods are first compared on a domainwithm = 5, Fig. 7. The errors and timings in Table 1 indicate
that themethods are roughly comparablewith cgls somewhat less accurate. Note the approximate spectral accuracy of the
error (when N is doubled the error approximately squares). The level of accuracy is least on the large circle. The operation
counts are O((mN)3) for ls, theMatlab backslash, and O(kϵ(mN)2) for cgls andWegmann’s Gauss–Seidel iterations, where
kϵ is the number of iterations needed to reach the level of discretization error. (We have not implemented a stopping rule
based on our error estimate.) The timings roughly fit the operations count with the ls method slightly slower than the
iterative methods.

Remark. Changing the αk’s has little effect on the behavior of the methods, since the errors depend mainly on the relative
size and nearness of the circles. The convergence seems to depend only on the separation of the circles, due to the reflection
argument above, in Section 2. The symmetry or the inclination of the slits does not affect convergence, since the circles are
given as input. However, for the same circles collinear or oblique slits will be much closer to touching than parallel slits.
This is consistent with the examples in [7] where the slit-like domains are specified first and the centers and radii of the
circles have to be computed along with the Laurent series—a more difficult problem. There are practical limits to what one
can expect to compute effectively in cases where the slits and circles are close. We plan to investigate such cases more fully
in the future.
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Fig. 7. Map for example withm = 5.

Table 1
Comparison of typical timings in seconds on a laptop running Matlab version R2012a, for m = 5 example, radius = [2 0.2 0.7 1.5 0.9], center =

[1.9 − 0.5 3 − 3i − 2 + 2i − 2 − 2i], alpha = [0.25 ∗ pi − 0.25 ∗ pi 0 0.5 ∗ pi − 0.3 ∗ pi]. We stop the cgls and wegrhGS iterations a few iterations after
the error stops decreasing.

N ls (s) Error cgls(kϵ) Error wegrhGS(kϵ) Error

32 0.008 4.5 · 10−3 0.007(15) 1.0 · 10−1 0.009(10) 3.9 · 10−3

64 0.03 2.6 · 10−4 0.02(20) 1.2 · 10−3 0.02(10) 2.2 · 10−4

128 0.13 7.9 · 10−7 0.07(20) 4.9 · 10−5 0.07(10) 6.8 · 10−7

256 1.07 1.0 · 10−11 0.35(30) 3.2 · 10−9 0.29(15) 9.5·10−12

512 6.84 6.4 · 10−14 1.20(35) 5.8 · 10−14 1.06(20) 5.7·10−14

Table 2
Comparison of typical timings in seconds on a laptop runningMatlab version R2012a, α’s = 0, centers = ±2± 2i, . . . for variousm,N , and Rj ’s. Solutions
are given for up to 4096 unknowns, Re bj,k, Im bj,k .

m Rj N ls (s) Error cgls(kϵ) Error wegrhGS(kϵ) Error

8

0.5

16 0.01 3.2 · 10−6 0.01(15) 2.7 · 10−5 0.01(7) 3.3 · 10−6

32 0.02 4.8 · 10−11 0.02(25) 6.7 · 10−10 0.02(10) 4.9·10−11

64 0.06 6.0 · 10−15 0.21(30) 1.0 · 10−14 0.06(15) 4.2·10−15

16
16 0.02 3.2 · 10−6 0.01(12) 3.2 · 10−5 0.04(10) 3.2 · 10−6

32 0.07 4.8 · 10−11 0.04(20) 8.2 · 10−10 0.08(15) 4.8·10−11

64 0.61 1.2 · 10−14 0.18(25) 6.7 · 10−15 0.24(20) 5.8·10−15

8 0.9
32 0.02 6.9 · 10−5 0.01(35) 1.7 · 10−4 0.02(15) 6.9 · 10−5

64 0.07 1.9 · 10−8 0.05(50) 1.0 · 10−7 0.07(25) 2.0 · 10−8

128 0.55 3.3 · 10−14 0.28(70) 2.0 · 10−14 0.35(50) 7.7·10−15

16 0.9
32 0.07 6.3 · 10−5 0.04(25) 2.5 · 10−4 0.10(20) 6.3 · 10−5

64 0.57 1.8 · 10−8 0.22(40) 1.1 · 10−7 0.30(30) 1.8 · 10−8

128 3.81 5.2 · 10−14 0.89(70) 1.0 · 10−14 1.41(60) 9.9·10−15

8 0.99

32 0.02 2.4 · 10−2 0.01(30) 3.3 · 10−2 0.02(10) 2.8 · 10−2

64 0.08 1.6 · 10−3 0.06(80) 1.6 · 10−3 0.09(40) 1.6 · 10−3

128 0.60 9.9 · 10−6 0.41(120) 1.4 · 10−5 0.55(80) 1.0 · 10−5

256 3.72 6.0 · 10−10 1.65(160) 7.7 · 10−10 2.02(140) 7.4·10−10

512 25.69 1.0 · 10−13 7.92(200) 3.4 · 10−14 12.45(220) 1.7·10−14

16 0.99
64 0.59 1.4 · 10−3 0.21(40) 2.3 · 10−3 0.37(40) 1.6 · 10−3

128 3.63 8.7 · 10−6 1.15(80) 1.3 · 10−4 2.40(100) 8.8 · 10−6

256 26.36 5.3 · 10−10 6.19(150) 5.4 · 10−10 9.64(170) 5.3·10−10

Example 2. Here we illustrate the effect of increasing the connectivity m and the radii of the circles for several cases in
Table 2. Figs. 8–11 illustrate the maps, the singular values of AS/

√
J , and cgls convergence for two examples for Table 2.

Again the behavior of the three methods is somewhat comparable with the iterative methods somewhat faster for larger
mN and circles closer to touching. As the circles get close to touching, the eigenvalues of the matrix AS smear out and more
conjugate gradient iterations are needed.



258 R. Balu, T.K. DeLillo / Journal of Computational and Applied Mathematics 307 (2016) 248–261

Fig. 8. Map for example withm = 8, Rk = 0.5,N = 16, αk = 0.

Fig. 9. Singular values of AS and errors ε in cgls iterations for example withm = 8, Rk = 0.5,N = 16, αk = 0.

4.1. Some variations

Other formulations are possible. In [9,6] the least squares approach is used with theMatlab backslash without including
theweight factors of Rj

k in the basis functions. This approach often leads to very ill-conditioned systems and inaccuracies. For
instance, if R2 is increased from 1.5 to 2.0 in Wegmann’s example, the method fails for N = 32. The method can sometimes
be made to work by adjusting N and J independently, but this is inconvenient. Also, as in [9], the need for solving for the
ak0 can be avoided by subtracting successive boundary conditions at tj’s on each circle leading to a rectangular system for
the bk,j’s only and taking, say, J = N/2− 1. However, this changes the results very little and the formulation is more ad hoc
and the singular values are not well-grouped. Also note that [9] used N = 300, J = 20 on a similar problem to get a highly
overdetermined system. This seems unnecessary here and more difficult to analyze.

Adding Rj
k’s to the Wegmann successive conjugation makes no difference, presumably because these factors are already

included in the calculation of the bk,j’s.
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Fig. 10. Map for example withm = 16, Rk = 0.9,N = 64, αk = 0.

Fig. 11. Singular values of AS and errors ε in cgls iterations for example withm = 16, Rk = 0.9,N = 64, αk = 0.

5. Comments

We have compared various numerical approaches to solving a simple linear Riemann–Hilbert problem for multiply
connected conformal maps from circular domains to slit domains and analyzed their behavior. There are related R–H
problems, such as those in [8–11,4], which we plan to consider in the future and the analysis of this simple problem will be
a useful guide for studying the related problems. The case where l = 1 occurs often in conformal mapping [10,11,1,2] and
our least squares formulation should be applicable in this case.
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Appendix. Matlab code

% driver code for our slit map examples using backslash, cgls, and
% Wegmann’s method method of successive conjugation method for RH
% problems using a Gauss--Seidel (GS) iteration; see Wegmann 2005,
% Wegmann’s example, p. 461:
radius=[1 1.5 0.7]; center=[2 -1-2i -1+2i]; alpha = [0 pi/4 pi/2];
N=128; J=N/2; m=3; itmax=30;
z=zeros(N,m); t=2*pi*(0:N-1)’/N;
tic % begin timing of common portions of code
for k=1:m
z(:,k)=center(k)+radius(k)*exp(-1i*t); % N pts on circles clockwise

end
z=z(:);

rhs=[];
for k=1:m

rhs=[rhs; radius(k)*sin(t+alpha(k))]; % compute right hand side
end
onesR=radius;
%onesR=ones(1,m); % set radii to one in basisfunctions for Wegmann
A = basisfunctions(z,center, onesR, alpha, N, J, m);
%ARI = [real(A), -imag(A)]; % comment in to solve with \ or cgls
%z1=ones(N,1); % ’’
%P=kron(eye(m),z1); % ’’
% AS=[ARI,P]; % ’’
%b=AS\rhs; % solve with backslash
% itmax=20; number of cgls or Wegmann iterations
%%[B,rho,eta] = cgls(AS,rhs,itmax); %% comment in to solve with cgls
%%%[B,errb] = wegrh_GS(A,rhs,radius,alpha,itmax,N); %%% Wegmann GS
time=toc % end timing
% plotting of output, svd’s, errors,...,follow here...

function A = basisfunctions(z, center, radius, alpha, N, J, m)
% Note: factors of radius(k)^j added to basisfunctions from [3]
% input radius = ones(1,m) for Wegmann’s methods

for k = 1:m
for j=1:J

A(:,J*(k-1)+j) = (radius(k)./(z-center(k))).^j;
end

end
for k=1:m

ak = exp(-1i*alpha(k)); % mult. by exp of angles alpha(k)
A(1+(k-1)*N:k*N,:)=ak*A(1+(k-1)*N:k*N,:);

end
end

function [B,errb] = wegrh_GS(A,rhs,radius,alpha,itmax,N)
% Wegmann’s R-H iteration from 2005 survey paper p. 459
% efficient Gauss--Seidel iteration with matrix mult
% psi = rhs, psi* = psis
m=length(alpha); J=N/2; z=zeros(N,m); psi=zeros(N,m);
b=zeros(J,m); bjac=b; B=zeros(m*J,itmax); berr=b; psis=psi;
t=2*pi*(0:N-1)’/N; ealpha=exp(1i*alpha);

BGS = B(:,1);
for iter=1:itmax

for ks=1:m
psis(:,ks)=rhs(1+(ks-1)*N:ks*N);

for k=1:ks-1
psis(:,ks)=psis(:,ks)...

- real(A(1+(ks-1)*N:ks*N,1+(k-1)*J:k*J)*BGS(1+(k-1)*J:k*J));
end
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for k=ks+1:m
psis(:,ks)=psis(:,ks)...

- real(A(1+(ks-1)*N:ks*N,1+(k-1)*J:k*J)*BGS(1+(k-1)*J:k*J));
end
Aj=fft(psis(:,ks))/N;
b(:,ks)=(2*ealpha(ks))*(radius(ks).^[1:J]’).*(Aj(2:J+1));
B(1+(ks-1)*J:ks*J,iter)=b(:,ks);
errb(iter,ks)=norm(berr(:,ks)-b(:,ks));
berr(:,ks)=b(:,ks);
BGS(1+(ks-1)*J:ks*J)=b(:,ks);

end
end
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