L25 Estimable parameters and BLUEs in ANCOVA

1. Recall

For ANCOVA model
$$y = (X, Z) \begin{pmatrix} \delta \\ \gamma \end{pmatrix} + \epsilon = (X, Z)\beta + \epsilon, \ \epsilon \sim N(0, \ \sigma^2 I_n)$$

(1) $E(y) \in S = \mathcal{R}[(X, Z)] = \mathcal{R}(X) + \mathcal{R}(Z)$ Here S can be written as orthogonal sums.

$$S = \mathcal{R}[(X, (I - XX^+)Z)] = \mathcal{R}(X) \dot{\oplus} \mathcal{R}[(I - XX^+)Z]$$
$$= \mathcal{R}[((I - ZZ^+)X, Z)] = \mathcal{R}[(I - ZZ^+)X] \dot{\oplus} \mathcal{R}(Z)$$

(2) $E(y) = (X, Z)\beta$ is estimable with BLUE $(X, Z)\hat{\beta} = (X, Z)(X, Z)^+ y$ Here the projection matrix $(X, Z)(X, Z)^+$ can be decomposed as the sums of two projection matrices onto two perpendicular spaces.

$$(X, Z)(X, Z)^+ = XX^+ + [(I - XX^+)Z][(I - XX^+)Z]^+ = [(I - ZZ^+)Z][(I - ZZ^+)Z]^+ + ZZ^+.$$

(3) Assumption of $\mathcal{R}(X) \cap \mathcal{R}(Z) = \{0\}$ Note that $mathcalR(X) \oplus \mathcal{R}(Z)$ is a direct sum $\iff \operatorname{rank}[(X, Z)] = \operatorname{rank}(X) + \operatorname{rank}(Z)$ $\iff \mathcal{R}(X) \cap \mathcal{R}(Z) = \{0\}.$ Under this assumption, $\mathcal{R}(X') = \mathcal{R}[X'(I - ZZ^+)]$ and $\mathcal{R}(Z') = \mathcal{R}[Z'(I - XX^+)].$ Thus there exist T_1 and T_2 such that $X' = X'(I - ZZ^+)T'_1$ and $Z' = Z'(I - XX^+)T'_2$. Therefore,

$$X = T_1(I - ZZ^+)X$$
 and $Z = T_2(I - XX^+)Z$.

- 2. Estimable parameters and BLUEs
 - (1) Essential estimable parameter and its BLUE $E(y) = (X, Z)\beta \text{ in } y = (X, Z)\beta + \epsilon \sim N((X, Z)\beta, \sigma^2 I_n) \text{ is estimable with BLUE}$ $\widehat{(X, Z)} = (X, Z)(X, Z)^+ \cdots N((X, Z)\beta, \sigma^2 (X, Z)(X, Z)^+)$

$$\hat{y} = (X, Z)\beta = (X, Z)(X, Z)^+ y \sim N((X, Z)\beta, \sigma^2(X, Z)(X, Z)^+).$$

 $H\beta$ is estimable $\iff H\beta = L(X, Z)\beta$ for some $L \iff H\beta = L[E(y)]$ for some L. Estimable $H\beta$ has BLUE

$$\begin{split} H\widehat{\beta} &= L(X,Z)\widehat{\beta} &= L(X,Z)(X,Z)^+ y = H(X,Z)^+ y \\ &\sim L N((X,Z)\beta, \, \sigma^2(X,Z)(X,Z)^+) \\ &= N(H\beta, \, \sigma^2 L(X,Z)(X,Z)^+ L'). \end{split}$$

(2) $X\delta$ is estimable with BLUE $(X, 0)\widehat{\beta} \sim N\left(X\delta, \sigma^2(X, 0)\begin{pmatrix} X'X & X'Z\\ Z'Z & Z'Z \end{pmatrix}^+ \begin{pmatrix} X'\\ 0 \end{pmatrix}\right)$

Proof. $X\delta = (X, 0)\beta = [T_1(I - ZZ^+)](X, Z)\beta$. Thus $X\delta$ is estimable with BLUE

$$\begin{aligned} (X,0)\beta &= [T_1(I - ZZ^+)](X,Z)\beta = [T_1(I - ZZ^+)](X,Z)(X,Z)^+ y \\ &\sim [T_1(I - ZZ^+)]N\left((X,Z)\beta,\sigma^2(X,Z)(X,Z)^+\right) \\ &= N(X\delta,\sigma^2[T_1(I - ZZ^+)](X,Z)(X,Z)^+[T_1(I - ZZ^+)]') \\ &= N\left(X\delta,\sigma^2(X,0)(X,Z)^+[(X,Z)']^+ \begin{pmatrix} X' \\ 0 \end{pmatrix}\right) \\ &= N\left(X\delta,\sigma^2(X,0) \begin{pmatrix} X'X & X'Z \\ Z'X & Z'Z \end{pmatrix}^+ \begin{pmatrix} X' \\ 0 \end{pmatrix}\right). \end{aligned}$$

(3) $Y\gamma$ is estimable with BLUE $(0, Z)\widehat{\beta} \sim N\left(Z\gamma, \sigma^2(0, Z)\begin{pmatrix}X'X & X'Z\\Z'Z & Z'Z\end{pmatrix}^+\begin{pmatrix}0\\Z'\end{pmatrix}\right)$

Proof. $Z\gamma = (0, Z)\beta = [T_2(I - XX^+)](X, Z)\beta$. Thus $Z\gamma$ is estimable with BLUE

$$\begin{array}{lll} (0,\,Z)\widehat{\beta} &=& [T_2(I-XX^+)](X,\,Z)\widehat{\beta} = [T_2(I-XX^+)](X,\,Z)(X,\,Z)^+ y \\ &\sim& [T_2(I-XX^+)]\,N\left((X,\,Z)\beta,\,\sigma^2(X,\,Z)(X,\,Z)^+\right) \\ &=& N(Z\gamma,\,\sigma^2[T_2(I-XX^+)](X,\,Z)(X,\,Z)^+[T_2(I-XX^+)]') \\ &=& N\left(Z\gamma,\,\sigma^2(0,\,Z)(X,\,Z)^+[(X,\,Z)']^+ \begin{pmatrix} 0 \\ Z' \end{pmatrix}\right) \\ &=& N\left(Z\gamma,\,\sigma^2(0,\,Z) \begin{pmatrix} X'X & X'Z \\ Z'X & Z'Z \end{pmatrix}^+ \begin{pmatrix} 0 \\ Z' \end{pmatrix}\right). \end{array}$$

- 3. Variance component model
 - (1) A model for random vector $y \in \mathbb{R}^n$ Consider model $y = X\beta + \sum_{i=1}^k U_i\xi_i$ where $X \in \mathbb{R}^{n \times p}$ is a known non-random matrix, $\beta \in \mathbb{R}^p$ is an unknown parameter vector, $U_i \in \mathbb{R}^{n \times r_i}$, i = 1, ..., k, are known non-random matrices, and $\xi_i \sim N(0, \sigma_i^2 I_{r_i})$, i = 1, ..., k, are independent random error vectors.
 - (2) Variance component model For y in (1)

$$y \sim N(X\beta, \sigma_1^2 U_1 U_1' + \dots + \sigma_k^2 U_k U_k')$$

is a linear model since $E(y) = X\beta$ is a linear function of β and hence $E(y) \in \mathcal{R}(X)$. But the $Cov(y) = \sigma_1^2 U_1 U_1' + \cdots + \sigma_k^2 U_k U_k'$ has components $\sigma_i^2 U_i U_i'$, i = 1, ..., k. Hence the model is called a variance component model.

(3) The problems considered For the variance component model we need to estimate parameters $\sigma_1^2, \ldots, \sigma_k^2$ and parameter vector β .

L26: Point estimators in variance component model

- 1. Parameters in variance component model
 - (1) Parameters in variance component model For variance component model $y = X\beta + \sum_{i=1}^{k} U_i \xi_i$ where random errors $\xi_i \sim N(0, \sigma_i^2 I_{r_i}), i = 1, ..., k$, are independent,

$$y \sim N(X\beta, \Sigma)$$
 with $\Sigma = \sum_{i=1}^{k} \sigma_i^2 U_i U'_i$.

Thus there are parameters $\sigma_1^2, ..., \sigma_k^2$ and β that must be estimated.

(2) Plan for the estimation order We will first estimate $\sigma_1^2, ..., \sigma_k^2$ by $\hat{\sigma}_1^2, ..., \hat{\sigma}_k^2$ such that

$$\widehat{\Sigma} = \sum_{i=1}^{k} \widehat{\sigma}_i^2 U_i U_i'$$

Note that for $y \sim N(X\beta, \Sigma)$, β is estimated by $\hat{\beta} = \text{GLSE}_{\Sigma^{-1}}(\beta) = \text{MLE}(\beta)$ determined by the projection equation $X\hat{\beta} = X(\Sigma^{-1/2}X)^+\Sigma^{-1/2}y$. With Σ estimated by $\hat{\Sigma}$, β is estimated by $\hat{\beta}$ determined by

$$X\widehat{\beta} = X(\widehat{\Sigma}^{-1/2}X)^{+}\widehat{\Sigma}^{-1/2}y$$

Thus, the key is to estimate $\sigma_1^2, ..., \sigma_k^2$.

- 2. A general approach to estimating $\sigma_1^2, ..., \sigma_k^2$
 - (1) Moment method

Suppose a population y has parameters $\theta_1, ..., \theta_k$ and $y_1, ..., y_n$ is a random sample from the population. Then $\frac{1}{n} \sum_{i=1}^n y_i^t$ is the *t*th moment from the sample, and $E(y^t)$ is the *t*th moment from the population. Thus

$$\begin{cases} E(y) &= \frac{1}{n} \sum_{i=1}^{n} y_i \\ \vdots \\ E(y^k) &= \frac{1}{n} \sum_{i=1}^{n} y_i^k \end{cases}$$

is an equation system of k equations for $\theta_1, ..., \theta_k$ since $E(y^t)$ is a function of $\theta_1, ..., \theta_k$. The solutions $\hat{\theta}_1, ..., \hat{\theta}_k$ to the equation system can be used as the estimators for $\theta_1, ..., \theta_k$. This method is called moment method.

(2) A proposed method

Selecting k statistics $T_1, ..., T_k$ and set up an equation system of k equations for $\theta_1, .., \theta_k$

$$\begin{cases} E(T_1) &= T_1 \\ \vdots \\ E(T_k) &= T_k \end{cases}$$

We propose to use the solutions $\hat{\theta}_1, ..., \hat{\theta}_k$ to the equation system as the estimators for $\theta_1, ..., \theta_k$.

- 3. Point estimators for $\sigma_1^2, ..., \sigma_k^2$
 - (1) $B_1, ..., B_k$ and their properties Let $A_0 = X, A_1 = (X, U_1), ..., A_k = (X, U_1, ..., U_k)$ and

$$B_1 = A_1 A_1^+ - A_0 A_0^+, B_2 = A_2 A_2^+ - A_1 A_1^+, \cdots, B_k = A_k A_k^+ - A_{k-1} A_{k-1}^+$$

Then (i) $B_i X = 0$ for all i (ii) $B_i U_j = 0$ for all j < i

Proof. (i) For all j = 0, ..., k,

$$A_{j}A_{j}^{+}X = (X, ..., U_{j})(X, ..., U_{j})^{+}(X, ..., U_{j})\begin{pmatrix}I\\ \vdots\\0\end{pmatrix} = (X, ..., U_{j})\begin{pmatrix}I\\ \vdots\\0\end{pmatrix} = X.$$

So $B_{i}X = (A_{i}A_{i}^{+} - A_{i-1}A_{i-1}^{+})X = X - X = 0$ for all $i = 0, ..., k.$
(ii) For all $j \leq i$,

$$A_{i}A_{i}^{+}U_{j} = (X, ..., U_{j}, ..., U_{i})(X, ..., U_{j}, ..., U_{i})^{+}(X, ..., U_{j}, .., U_{i})\begin{pmatrix} 0\\ \vdots\\ I\\ \vdots\\ 0 \end{pmatrix} = (X, ..., U_{j}, .., U_{i})\begin{pmatrix} 0\\ \vdots\\ I\\ \vdots\\ 0 \end{pmatrix} = U_{j}.$$

So for $j < i$, $B_{i}U_{j} = (A_{i}A_{i}^{+} - A_{i-1}A_{i-1}^{+})U_{j} = U_{j} - U_{j} = 0.$

(2) Point estimators for $\sigma_1^2, ..., \sigma_k^2$ The solutions $\hat{\sigma}_1^2, ..., \hat{\sigma}_k^2$ to the equation system below are proposed as the estimators for $\sigma_1^2, ..., \sigma_k^2$.

$$\begin{cases} E(y'B_1y) = y'B_1y \\ \vdots \\ E(y'B_ky) = y'B_ky \end{cases}$$

(3) The equation system in (2) is a systgem for $\sigma_1^2,...,\sigma_k^2$ Note that

$$\begin{aligned} E(y'B_iy) &= [E(y)]'B_i[E(y)] + \operatorname{tr}[B_i\operatorname{Cov}(y)] = (X\beta)'B_i(X\beta) + \operatorname{tr}[B_i\sum_{j=1}^k \sigma_j^2 U_j U_j'] \\ &= 0 + \operatorname{tr}[\sum_{j=i}^k \sigma_j^2 B_i U_j U_j'] = \sum_{j=i}^k \operatorname{tr}(U_j'B_i U_j) \sigma_j^2. \end{aligned}$$

Therefore the equation system in (2) becomes

$$\begin{pmatrix} \operatorname{tr}(U_1'B_1U_1) & \operatorname{tr}(U_2'B_1U_2) & \cdots & \operatorname{tr}(U_k'B_1U_k) \\ 0 & \operatorname{tr}(U_2'B_2U_2) & \cdots & \operatorname{tr}(U_k'B_2U_k) \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \operatorname{tr}(U_k'B_kU_k) \end{pmatrix} \begin{pmatrix} \sigma_1^2 \\ \sigma_2^2 \\ \vdots \\ \sigma_k^2 \end{pmatrix} = \begin{pmatrix} y'B_1y \\ y'B_2y \\ \vdots \\ y'B_ky. \end{pmatrix}$$

This is indeed a system for $\sigma_1^2, ..., \sigma_k^2$, and it is easy to solve.