L25 Estimable parameters and BLUEs in ANCOVA

1. Recall

For ANCOVA model $y=(X, Z)\binom{\delta}{\gamma}+\epsilon=(X, Z) \beta+\epsilon, \epsilon \sim N\left(0, \sigma^{2} I_{n}\right)$
(1) $E(y) \in S=\mathcal{R}[(X, Z)]=\mathcal{R}(X)+\mathcal{R}(Z)$

Here S can be written as orthogonal sums.

$$
\begin{aligned}
S & =\mathcal{R}\left[\left(X,\left(I-X X^{+}\right) Z\right)\right] \\
& =\mathcal{R}\left[\left(\left(I-Z Z^{+}\right) X, Z\right)\right]=\mathcal{R}(X) \dot{\oplus} \mathcal{R}\left[\left(I-X X^{+}\right) Z\right] \\
& \left.\left.=Z Z^{+}\right) X\right] \dot{\mathcal{R}}(Z)
\end{aligned}
$$

(2) $E(y)=(X, Z) \beta$ is estimable with $\operatorname{BLUE}(X, Z) \widehat{\beta}=(X, Z)(X, Z)^{+} y$

Here the projection matrix $(X, Z)(X, Z)^{+}$can be decomposed as the sums of two projection matrices onto two perpendicular spaces.

$$
\begin{aligned}
(X, Z)(X, Z)^{+} & =X X^{+}+\left[\left(I-X X^{+}\right) Z\right]\left[\left(I-X X^{+}\right) Z\right]^{+} \\
& =\left[\left(I-Z Z^{+}\right) Z\right]\left[\left(I-Z Z^{+}\right) Z\right]^{+}+Z Z^{+} .
\end{aligned}
$$

(3) Assumption of $\mathcal{R}(X) \cap \mathcal{R}(Z)=\{0\}$

Note that
mathcal $R(X) \oplus \mathcal{R}(Z)$ is a direct sum $\Longleftrightarrow \operatorname{rank}[(X, Z)]=\operatorname{rank}(X)+\operatorname{rank}(Z)$

$$
\Longleftrightarrow \mathcal{R}(X) \cap \mathcal{R}(Z)=\{0\} .
$$

Under this assumption, $\quad \mathcal{R}\left(X^{\prime}\right)=\mathcal{R}\left[X^{\prime}\left(I-Z Z^{+}\right)\right]$and $\mathcal{R}\left(Z^{\prime}\right)=\mathcal{R}\left[Z^{\prime}\left(I-X X^{+}\right)\right]$.
Thus there exist T_{1} and T_{2} such that $X^{\prime}=X^{\prime}\left(I-Z Z^{+}\right) T_{1}^{\prime}$ and $Z^{\prime}=Z^{\prime}\left(I-X X^{+}\right) T_{2}^{\prime}$.
Therefore,

$$
X=T_{1}\left(I-Z Z^{+}\right) X \text { and } Z=\left(I-X X^{+}\right) Z T_{2} .
$$

2. Estimable parameters and BLUEs
(1) Essential estimable parameter and its BLUE
$E(y)=(X, Z) \beta$ in $y=(X, Z) \beta+\epsilon \sim N\left((X, Z) \beta, \sigma^{2} I_{n}\right)$ is estimable with BLUE

$$
\widehat{y}=(X, Z) \widehat{\beta}=(X, Z)(Z, Z)^{+} y \sim N\left((X, Z) \beta, \sigma^{2}(X, Z)(X, Z)^{+}\right) .
$$

$H \beta$ is estimable $\Longleftrightarrow H \beta=L(X, Z) \beta$ for some $L \Longleftrightarrow H \beta=L[E(y)]$ for some L.
Estimable $H \beta$ has BLUE

$$
\begin{aligned}
H \widehat{\beta}=L(X, Z) \widehat{\beta} & =L(X, Z)(X, Z)^{+} y=H(X, Z)^{+} y \\
& \sim L N\left((X, Z) \beta, \sigma^{2}(X, Z)(X, Z)^{2}\right) \\
& =N\left(H \beta, \sigma^{2} L(X, Z)(X, Z)^{2} L^{\prime}\right) .
\end{aligned}
$$

(2) $X \delta$ is estimable with $\operatorname{BLUE}(X, 0) \widehat{\beta} \sim N\left(X \delta, \sigma^{2}(X, 0)\left(\begin{array}{cc}X^{\prime} X & X^{\prime} Z \\ Z^{\prime} Z & Z^{\prime} Z\end{array}\right)^{+}\binom{X^{\prime}}{0}\right)$

Proof. $X \delta=(X, 0) \beta=\left[T_{1}\left(I-Z Z^{+}\right)\right](X, Z) \beta$. Thus $X \delta$ is estimable with BLUE

$$
\begin{aligned}
(X, 0) \widehat{\beta} & =\left[T_{1}\left(I-Z Z^{+}\right)\right](X, Z) \widehat{\beta}=\left[T_{1}\left(I-Z Z^{+}\right)\right](X, Z)(X, Z)^{+} y \\
& \sim\left[T_{1}\left(I-Z Z^{+}\right)\right] N\left((X, Z) \beta, \sigma^{2}(X, Z)(X, Z)^{+}\right) \\
& =N\left(X \delta, \sigma^{2}\left[T_{1}\left(I-Z Z^{+}\right)\right](X, Z)(X, Z)^{+}\left[T_{1}\left(I-Z Z^{+}\right)\right]^{\prime}\right) \\
& =N\left(X \delta,(X, 0)(X, Z)^{+}\left[(X, Z)^{\prime}\right]^{+}\binom{X^{\prime}}{0}\right) \\
& =N\left(X \delta, \sigma^{2}(X, 0)\left(\begin{array}{cc}
X^{\prime} X & X^{\prime} Z \\
Z^{\prime} X & Z^{\prime} Z
\end{array}\right)^{+}\binom{X^{\prime}}{0}\right)
\end{aligned}
$$

(3) $Y \gamma$ is estimable with $\operatorname{BLUE}(0, Z) \widehat{\beta} \sim N\left(Z \gamma, \sigma^{2}(0, Z)\left(\begin{array}{cc}X^{\prime} X & X^{\prime} Z \\ Z^{\prime} Z & Z^{\prime} Z\end{array}\right)^{+}\binom{0}{Z^{\prime}}\right)$

Proof. $Z \gamma=(0, Z) \beta=\left[T_{2}\left(I-X X^{+}\right)\right](X, Z) \beta$. Thus $Z \gamma$ is estimable with BLUE

$$
\begin{aligned}
(0, Z) \widehat{\beta} & =\left[T_{2}\left(I-X X^{+}\right)\right](X, Z) \widehat{\beta}=\left[T_{2}\left(I-X X^{+}\right)\right](X, Z)(X, Z)^{+} y \\
& \sim\left[T_{2}\left(I-X X^{+}\right)\right] N\left((X, Z) \beta, \sigma^{2}(X, Z)(X, Z)^{+}\right) \\
& =N\left(Z \gamma, \sigma^{2}\left[T_{2}\left(I-X X^{+}\right)\right](X, Z)(X, Z)^{+}\left[T_{2}\left(I-X X^{+}\right)\right]^{\prime}\right) \\
& =N\left(Z \gamma,(0, Z)(X, Z)^{+}\left[(X, Z)^{\prime}\right]^{+}\binom{0}{Z^{\prime}}\right) \\
& =N\left(Z \gamma, \sigma^{2}(0, Z)\left(\begin{array}{cc}
X^{\prime} X & X^{\prime} Z \\
Z^{\prime} X & Z^{\prime} Z
\end{array}\right)^{+}\binom{0}{Z^{\prime}}\right) .
\end{aligned}
$$

3. Variance component model
(1) A model for random vector $y \in R^{n}$

Consider model $y=X \beta+\sum_{i=1}^{k} U_{i} \xi_{i}$ where $X \in R^{n \times p}$ is a known non-random matrix, $\beta \in R^{p}$ is an unknown parameter vector, $U_{i} \in R^{n \times r_{i}}, i=1, \ldots, k$, are known non-random matrices, and $\xi_{i} \sim N\left(0, \sigma_{i}^{2} I_{r_{i}}\right), i=1, \ldots, k$, are independent random error vectors.
(2) Variance component model

For y in (1)

$$
y \sim N\left(X \beta, \sigma_{1}^{2} U_{1} U_{1}^{\prime}+\cdots+\sigma_{k}^{2} U_{k} U_{k}^{\prime}\right)
$$

is a linear model since $E(y)=X \beta$ is a linear function of β and hence $E(y) \in \mathcal{R}(X)$. But the $\operatorname{Cov}(y)=\sigma_{1}^{2} U_{1} U_{1}^{\prime}+\cdots+\sigma_{k}^{2} U_{k} U_{k}^{\prime}$ has components $\sigma_{i}^{2} U_{i} U_{i}^{\prime}, i=1, \ldots, k$. Hence the model is called a variance component model.
(3) The problems considered

For the variance component model we need to estimate parameters $\sigma_{1}^{2}, \ldots \ldots, \sigma_{k}^{2}$ and parameter vector β.

L26: Point estimators in variance component model

1. Parameters in variance component model
(1) Parameters in variance component model

For variance component model $y=X \beta+\sum_{i=1}^{k} U_{i} \xi_{i}$ where random errors $\xi_{i} \sim N\left(0, \sigma_{i}^{2} I_{r_{i}}\right)$, $i=1, \ldots, k$, are independent,

$$
y \sim N(X \beta, \Sigma) \text { with } \Sigma=\sum_{i=1}^{k} \sigma_{i}^{2} U_{i} U_{i}^{\prime}
$$

Thus there are parameters $\sigma_{1}^{2}, \ldots, \sigma_{k}^{2}$ and β that must be estimated.
(2) Plan for the estimation order

We will first estimate $\sigma_{1}^{2}, \ldots, \sigma_{k}^{2}$ by $\widehat{\sigma}_{1}^{2}, \ldots, \widehat{\sigma}_{k}^{2}$ such that

$$
\widehat{\Sigma}=\sum_{i=1}^{k} \widehat{\sigma}_{i}^{2} U_{i} U_{i}^{\prime}
$$

Note that for $y \sim N(X \beta, \Sigma), \beta$ is estimated by $\widehat{\beta}=\operatorname{GLSE}_{\Sigma^{-1}}(\beta)=\operatorname{MLE}(\beta)$ determined by the projection equation $X \widehat{\beta}=X\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{-1 / 2} y$. With Σ estimated by $\widehat{\Sigma}, \beta$ is estimated by $\widehat{\beta}$ determined by

$$
X \widehat{\beta}=X\left(\widehat{\Sigma}^{-1 / 2} X\right)^{+} \widehat{\Sigma}^{-1 / 2} y
$$

Thus, the key is to estimate $\sigma_{1}^{2}, \ldots, \sigma_{k}^{2}$.
2. A general approach to estimating $\sigma_{1}^{2}, \ldots, \sigma_{k}^{2}$
(1) Moment method

Suppose a population y has parameters $\theta_{1}, \ldots, \theta_{k}$ and y_{1}, \ldots, y_{n} is a random sample from the population. Then $\frac{1}{n} \sum_{i=1}^{n} y_{i}^{t}$ is the t th moment from the sample, and $E\left(y^{t}\right)$ is the t th moment from the population. Thus

$$
\left\{\begin{array}{cc}
E(y)= & \frac{1}{n} \sum_{i=1}^{n} y_{i} \\
& \vdots \\
E\left(y^{k}\right) & =\frac{1}{n} \sum_{i=1}^{n} y_{i}^{k}
\end{array}\right.
$$

is an equation system of k equations for $\theta_{1}, \ldots, \theta_{k}$ since $E\left(y^{t}\right)$ is a function of $\theta_{1}, \ldots, \theta_{k}$. The solutions $\widehat{\theta}_{1}, \ldots, \widehat{\theta}_{k}$ to the equation system can be used as the estimators for $\theta_{1}, \ldots, \theta_{k}$. This method is called moment method.
(2) A proposed method

Selecting k statistics $T_{1}, \ldots ., T_{k}$ and set up an equation system of k equations for $\theta_{1}, . ., \theta_{k}$

$$
\left\{\begin{array}{cc}
E\left(T_{1}\right) & =T_{1} \\
& \vdots \\
E\left(T_{k}\right) & = \\
T_{k}
\end{array}\right.
$$

We propose to use the solutions $\widehat{\theta}_{1}, \ldots \widehat{\theta}_{k}$ to the equation system as the estimators for $\theta_{1}, \ldots, \theta_{k}$.
3. Point estimators for $\sigma_{1}^{2}, \ldots, \sigma_{k}^{2}$
(1) B_{1}, \ldots, B_{k} and their properties

Let $A_{0}=X, A_{1}=\left(X, U_{1}\right), \ldots, A_{k}=\left(X, U_{1}, \ldots, U_{k}\right)$ and

$$
B_{1}=A_{1} A_{1}^{+}-A_{0} A_{0}^{+}, B_{2}=A_{2} A_{2}^{+}-A_{1} A_{1}^{+}, \cdots, B_{k}=A_{k} A_{k}^{+}-A_{k-1} A_{k-1}^{+} .
$$

Then (i) $B_{i} X=0$ for all $i \quad$ (ii) $B_{i} U_{j}=0$ for all $j<i$
Proof. (i) For all $j=0, \ldots, k$,

$$
A_{j} A_{j}^{+} X=\left(X, \ldots, U_{j}\right)\left(X, \ldots, U_{j}\right)^{+}\left(X, \ldots, U_{j}\right)\left(\begin{array}{c}
I \\
\vdots \\
0
\end{array}\right)=\left(X, \ldots, U_{j}\right)\left(\begin{array}{c}
I \\
\vdots \\
0
\end{array}\right)=X
$$

$$
\text { So } B_{i} X=\left(A_{i} A_{i}^{+}-A_{i-1} A_{i-1}^{+}\right) X=X-X=0 \text { for all } i=0, \ldots, k \text {. }
$$

(ii) For all $j \leq i$,

$$
A_{i} A_{i}^{+} U_{j}=\left(X, \ldots, U_{j}, \ldots, U_{i}\right)\left(X, \ldots, U_{j}, \ldots, U_{i}\right)^{+}\left(X, \ldots, U_{j}, ., U_{i}\right)\left(\begin{array}{c}
0 \\
\vdots \\
I \\
\vdots \\
0
\end{array}\right)=\left(X, \ldots, U_{j}, ., U_{i}\right)\left(\begin{array}{c}
0 \\
\vdots \\
I \\
\vdots \\
0
\end{array}\right)=U_{j} .
$$

So for $j<i, B_{i} U_{j}=\left(A_{i} A_{i}^{+}-A_{i-1} A_{i-1}^{+}\right) U_{j}=U_{j}-U_{j}=0$.
(2) Point estimators for $\sigma_{1}^{2}, \ldots, \sigma_{k}^{2}$

The solutions $\widehat{\sigma}_{1}^{2}, \ldots, \widehat{\sigma}_{k}^{2}$ to the equation system below are proposed as the estimators for $\sigma_{1}^{2}, \ldots, \sigma_{k}^{2}$.

$$
\left\{\begin{aligned}
E\left(y^{\prime} B_{1} y\right) & =y^{\prime} B_{1} y \\
& \vdots \\
E\left(y^{\prime} B_{k} y\right) & =y^{\prime} B_{k} y
\end{aligned}\right.
$$

(3) The equation system in (2) is a systgem for $\sigma_{1}^{2}, \ldots, \sigma_{k}^{2}$

Note that

$$
\begin{aligned}
E\left(y^{\prime} B_{i} y\right) & =[E(y)]^{\prime} B_{i}[E(y)]+\operatorname{tr}\left[B_{i} \operatorname{Cov}(y)\right]=(X \beta)^{\prime} B_{i}(X \beta)+\operatorname{tr}\left[B_{i} \sum_{j=1}^{k} \sigma_{j}^{2} U_{j} U_{j}^{\prime}\right] \\
& =0+\operatorname{tr}\left[\sum_{j=i}^{k} \sigma_{j}^{2} B_{i} U_{j} U_{j}^{\prime}\right]=\sum_{j=i}^{k} \operatorname{tr}\left(U_{j}^{\prime} B_{i} U_{j}\right) \sigma_{j}^{2} .
\end{aligned}
$$

Therefore the equation system in (2) becomes

$$
\left(\begin{array}{cccc}
\operatorname{tr}\left(U_{1}^{\prime} B_{1} U_{1}\right) & \operatorname{tr}\left(U_{2}^{\prime} B_{1} U_{2}\right) & \cdots & \operatorname{tr}\left(U_{k}^{\prime} B_{1} U_{k}\right) \\
0 & \operatorname{tr}\left(U_{2}^{\prime} B_{2} U_{2}\right) & \cdots & \operatorname{tr}\left(U_{k}^{\prime} B_{2} U_{k}\right) \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \operatorname{tr}\left(U_{k}^{\prime} B_{k} U_{k}\right)
\end{array}\right)\left(\begin{array}{c}
\sigma_{1}^{2} \\
\sigma_{2}^{2} \\
\vdots \\
\sigma_{k}^{2}
\end{array}\right)=\left(\begin{array}{c}
y^{\prime} B_{1} y \\
y^{\prime} B_{2} y \\
\vdots \\
y^{\prime} B_{k} y .
\end{array}\right)
$$

This is indeed a system for $\sigma_{1}^{2}, \ldots, \sigma_{k}^{2}$, and it is easy to solve.

