L23 Decomposition of SSM

1. Model y ~ N(X8, 02I,), X € R™*P, rank(X) = p and 1,, € R(X).

(1)

(2)

ANOVA table for testing on Hy: 8 = 0.

Source | SS DF MS F P.>F

Model | SSM =¢'XXTy D MSM MSM/MSE P(F(p,n—p) > Fo)
Error SSE=y'(I-XXT)y n—p MSE

U.Total | U.SSTO =L,y n

ANOVA table for testing on Hy: HB =0, H € RY*P rank(H) = q.
Denote previous SSE = SSE, — SSE as SSH associated with Hypothesis.
SSH = ¢y{XX* — [X(I — H"H)][X(I — H"H)]*}y with DF p— (p — q¢) = q. Then

Source SS DF MS F P.>F
Hypothesis | SSH ¢ MSH MSH/MSE P(F(q, n—p) > Fp)
Error SSE n—p MSE

SSH is part of SSM

{XXT—[X(I-HTH)|[X(I-HTH)|"} = XX {XXT-[X(I-HH)|[X(I-HTH)]*}
implies that SSH is part of SSM. Thus with SSH+ = o/[X (I — HY H)][X(I — H* H)]"y,
SSM = SSH + SSH*. We therefore have combined ANOVA table

Source | SS DF MS F P.>F

Model | SSM D MSM  MSM/MSE P(F(p, n—p) > Fu)
H SSH q MSH  MSH/MSE P(F(q, n—p)> Fy)
H+ SSH+ p—q MSHt

Error SSE —p MSE

U.Total | U.SSTO

n
n

Ex1: SSH = |{XX* - [X(I - HYH)|[X(I — H"H)]}y||?

SSH* = ||[X(I — HTH)][X(I — HtH)]*y||> and

(XX~ [X(I— HYH)[X(I — B H)]}y L [X(I — HYB))[X (I~ H* H)]*y.
Ex2: Decomposition of SSA= y’ AATy where rank(A) = r.
For given 71 + --- 4+ r, = 7, in the compact form of EVD AA" = PP’ where
P € RP*" and P'P = I,, break P as P = (P,..., P,) where P; € RP*"i. Then
AAt = PP =Y PPl Let A; = PP = A;Af and SSA; = y'A;Afy. Then
SSA =S | SSA; where SSA;,i=1,..., k, are SSs.
From PP' = P\P{ + ---+ PP, PP'P,P| = P,P]. So A; = AATA;. Hence SSA,; is
part of SSA.

2. Model y ~ N(X8, 0%I,), X € R"P, rank(X) = p and 1,, € R(X).
(1) ANOVA table for global F-test.

Source | SS DF MS F P.>F

Model SSM =4/ (XXt —11")y p—-1 MSM MSM/MSE P(F(p—1,n—p)> Fu)
Error SSE=y'(I - XXT)y n—p MSE

C.Total | C.SSTO =v/(I, —111)y n—1

(2) ANOVA table for testing on Hy: HB =0, H € RT*P rank(H) = q.

Denote previous SSE = SSE, — SSE as SSH associated with Hypothesis.
SSH = ¢y{XX* — [X(I — H"H)][X(I — H"H)]* }y with DF p— (p — q¢) = q. Then



(3)

Source SS DF MS F P.>F
Hypothesis | SSH ¢ MSH MSH/MSE P(F(q, n—p) > Fy)
Error SSE n—p MSE

SSH may or may not be part of SSM
Recall: SSB =y BBTy is part of SSA =4y'AAYy <= B = AT for some T
< BB"=AATBB*

Thus SSH is part of SSM
— XXT-[X(I-H'H)]|X(I-H"H)]*"
= (XXt -1 XXt - [X(I-H'H)][X(I—-H"'H)]"}
<~ 0=-11"+117[X(I-H'H)|[X(I - H"H)]*
<~ 11T =11"X{I - H'H)|[X(I-HtH)]*"
<— 1, e RIX(I-H"H)].

3. Contrast tests

(1)

Test on ¢ contrasts

In ANOVA of p treatments with response means p;, i =1, ..., p.

Test on Hy : Hp = 0 where H € R?*P, rank(H) = ¢ and H1, = 0 is a test on ¢
contrasts.

Testing on a hypothesized equivalent groups in treatments is a testing on a group con-
trasts.
For example when p = 4, the hypothesis on groups (u1, ps) and (u2, pa) is Ho: Hu =0

10 -1 0
WhereH—<O 1 0 _1>.ClearlyH14—O.

Implementation via SAS
Suppose response y and treatment id with values A, B, C' and D are stored in file ex.dat.

data a;
infile "D:\ex.dat";
input y id $ @Q;
proc glm;
class id;
model y=id/nouni;
contrast "group" id 1 0 -1 0, id 0 1 0 -1;
run;

The output displays

MS DF F Pr> Fy,
Contrast MSH 2  MSH/MSE P(F(2,n—4) > Fy)




L24: Analysis of Covariance model

1. Analysis of covariance model (ANCOVA)

(1)

ANOVA model

For observed y € R", y = X +¢€, E(¢) =0 € R", is a linear model since E(y) = X is
a linear function of 5 and hence E(y) is in a linear space S = R(X).

For ANOVA y = p; + € with E(e) =0 € R, i = 1, 2, 3, suppose y; and yo are from
y = p1+ € ys is from y = puo + € and yy is from y = u3 + €.

Y1 1 00
Yo 10 o0f (M
Then y = wl=1o 1 0 pe | +¢ E(e) =0 € R*. Rewrite y = p, + ; + € with
3
Ya 00 1)
Y1 1 1 0
Yo 11 o] ("
E(e) =0€ Rand a1 + ag + a3 = 0. Then y = y =11 0 1 ar | +e
3
Y 1 -1 1) \*?

E(e) =0 € R*. So one-way ANOVA is a linear model.
Regression model
Regression y = f1a1+ faxa+¢€, E(e) = 0 € R, with data can be expressed as y = X +¢

where E(e) =0€ R", § = (gl and the two columns of X are observed z; and za.
2

ANCOVA model

Suppose one initially has ANOVA model y = X9 + € and later adds regression part Z~

into the model to have y = X§ + Zv + €. This model is called ANCOVA model since

the later added regressors are called covariates.

Comment: Write ANCOVA y = Xd+ Zy+easy = (X, Z)5 + € where § = <§>

Clearly this a linear model.

2. Estimable parameters and BLUE

(1)

Recall: LSE and estimable parameters
For linear model y = X3 +¢, E(e) =0
BisLSE for 8 <L |y — XB2 > |y — XB||? for all 8 < X = m(y|R(X))
— XB=XXty+= pBeXTy+NX)
So LSE(B) = Xty + N (X).
!

Hp{ is estimable <dé> 3L such that E(Ly) = Hf <= 3L such that LX5 = Hp
<= LX = H < 3L such that Hp = L(X}).

So E(y) = X is estimable since X = I X.
Comment: Hpf is estimable <— H B is unique.  Clearly the unique value is HX "y.

Estimator for 02 and BLUE R

Suppose Y = X +¢€, € ~ N(0, 0%I,). Then SSE = |ly — X3||> = /(I - XX)y.
#ni(x) is UE for o2, SSTE is MLE for 2. For estimable HJ3, the unique Hpj3 is a
BLUE.



(3) ANCOVA model
For y = (X, Z)B + € where f = <§> and € ~ N(0, 0%I,), E(y) € S = R[(X, Z)].

Bisa LSE for 8 < (X, Z)B = (X, Z2)(X, Z)"y

SSE = y/[I - (X, Z)(X, Z)*]y.

Comment: Fit the linear model framework, X is replaced by (X, Z). Thus we need to
explore more on R[(X, Z)] and (X, Z)(X, Z)*.

3. Some specifics for ANCOVA

(1) Fory= (X, Z)5 + ¢

i) B(y) € R[(X, 2)] = R(X) +R(Z)

i) R[(X, 2)] = R(X)SR[(X, (I - XXF)Z)]

it) RI(X, 2)] = RI(I — 22 X|4R(2).

Proof. (i) R[(X, Z)] = {(X, Z) (2) (:;)} = {X7r1 + Zry: 71, 12}
={Xr1:rm}+{Zry: 1} =R(X)+ R(Z).

For (ii) note that (X, Z) = [X, (I — XX 1)Z] (é X;Z>

_Y+
and [X, (T — XX*+)Z] = (X, Z) (é Y Z). So
RI(X, Z)] = RI(X, (I - XX1)Z)] = R(X) + R[I — XX*)Z] = R(X)GR[(I — XX+)Z].
The last equal sign holds since X'(I — XX*)Z = 0. The proof of (iii) is skipped.
2) (X, 2)(X, 2)" = XX* +[(I - XX")Z][(I — XX*)Z]* and
(X, Z2)(X, 2)* = [(I — Z2ZDZ)[(I — ZZ 1) Z)* + 22+,
Proof. First (X, Z)(X, Z2)" = [X, (I - XX 1) Z][X, (I — XXT)Z]" since they are the
projection matrices onto the same spaceR[(X, Z)] = R[(X, (I — XX )Z)].
Xt
_ + + — 3 "Ny _ + —
Secondly [X, (I — XX1)Z] <[(I—XX+)Z]+> since X'(I — XX1)Z =0.
Consequently (X, Z)(X, Z)" = XX+ +[[ - XX")Z][(I - XX*)Z]*. The second
equation can be proved similarly.
(3) I R(X)NR(Z) = {0}, then
(i) rank(X) = rank[(] — ZZ")X] and rank(Z) = rank[(] — X X T)7]
(i) R(X') = RIX'(I — ZZ")] and R(Z) = R[Z'(I — XXT)]
Proof. We first show the second equation in (i). Under R(X) NR(Z) = {0},

rank[(X, Z)] dim[R[(X, Z2)]] = dim[R(X) + R(Z)]
dim[R(X)] + dim[R(Z)] — dim[R(X) N R(Z)]

rank(X) + rank(Z).

But rank[(X, Z)] dim[R[(X, (I — XX1)2)]] = dim[R(X)&R((I — XX+)Z)]
dim[R(X)] + dim[R((I — XX)Z)]

rank(X) + rank[(/ — XX )Z].
Thus rank(Z) = rank[(] — XX ) Z].

For the first equation in (ii) note that R[X'(I — ZZ*)] € R(X’). But by (i) the two
spaces share the same dimension. Thus R(X’) = R[X'(I — ZZ™")].



