
L23 Decomposition of SSM

1. Model y ∼ N(Xβ, σ2In), X ∈ Rn×p, rank(X) = p and 1n ̸∈ R(X).

(1) ANOVA table for testing on H0 : β = 0.

Source SS DF MS F Pr > F
Model SSM = y′XX+y p MSM MSM/MSE P (F (p, n− p) > Fob)
Error SSE = y′(I −XX+)y n− p MSE
U.Total U.SSTO = y′Iny n

(2) ANOVA table for testing on H0 : Hβ = 0, H ∈ Rq×p, rank(H) = q.
Denote previous SSE = SSEr − SSE as SSH associated with Hypothesis.
SSH = y′{XX+ − [X(I −H+H)][X(I −H+H)]+}y with DF p− (p− q) = q. Then

Source SS DF MS F Pr > F
Hypothesis SSH q MSH MSH/MSE P (F (q, n− p) > Fob)
Error SSE n− p MSE

(3) SSH is part of SSM
{XX+−[X(I−H+H)][X(I−H+H)]+} = XX+{XX+−[X(I−H+H)][X(I−H+H)]+}
implies that SSH is part of SSM. Thus with SSH⊥ = y′[X(I −H+H)][X(I −H+H)]+y,
SSM = SSH + SSH⊥. We therefore have combined ANOVA table

Source SS DF MS F Pr > F
Model SSM p MSM MSM/MSE P (F (p, n− p) > Fob)

H SSH q MSH MSH/MSE P (F (q, n− p) > Fob)
H⊥ SSH⊥ p− q MSH⊥

Error SSE n− p MSE
U.Total U.SSTO n

Ex1: SSH = ∥{XX+ − [X(I −H+H)][X(I −H+H)]}y∥2,
SSH⊥ = ∥[X(I −H+H)][X(I −H+H)]+y∥2 and
{XX+ − [X(I −H+H)][X(I −H+H)]}y ⊥ [X(I −H+H)][X(I −H+H)]+y.

Ex2: Decomposition of SSA= y′AA+y where rank(A) = r.
For given r1 + · · · + rk = r, in the compact form of EVD AA+ = PP ′ where
P ∈ Rp×r and P ′P = Ir, break P as P = (P1, ..., Pr) where Pi ∈ Rp×ri . Then
AA+ = PP ′ =

∑k
i=1 PiP

′
i . Let Ai = PiP

′
i = AiA

+
i and SSAi = y′AiA

+
i y. Then

SSA =
∑k

i=1 SSAi where SSAi, i = 1, ..., k, are SSs.
From PP ′ = P1P

′
1 + · · ·+ PkP

′
k, PP ′PiP

′
i = PiP

′
i . So Ai = AA+Ai. Hence SSAi is

part of SSA.

2. Model y ∼ N(Xβ, σ2In), X ∈ Rn×p, rank(X) = p and 1n ∈ R(X).

(1) ANOVA table for global F-test.

Source SS DF MS F Pr > F
Model SSM = y′(XX+ − 11+)y p− 1 MSM MSM/MSE P (F (p− 1, n− p) > Fob)
Error SSE = y′(I −XX+)y n− p MSE
C.Total C.SSTO = y′(In − 11+)y n− 1

(2) ANOVA table for testing on H0 : Hβ = 0, H ∈ Rq×p, rank(H) = q.
Denote previous SSE = SSEr − SSE as SSH associated with Hypothesis.
SSH = y′{XX+ − [X(I −H+H)][X(I −H+H)]+}y with DF p− (p− q) = q. Then

1



Source SS DF MS F Pr > F
Hypothesis SSH q MSH MSH/MSE P (F (q, n− p) > Fob)
Error SSE n− p MSE

(3) SSH may or may not be part of SSM
Recall: SSB = y′BB+y is part of SSA = y′AA+y ⇐⇒ B = AT for some T

⇐⇒ BB+ = AA+BB+

Thus SSH is part of SSM
⇐⇒ XX+ − [X(I −H+H)][X(I −H+H)]+

= (XX+ − 11+){XX+ − [X(I −H+H)][X(I −H+H)]+}
⇐⇒ 0 = −11+ + 11+[X(I −H+H)][X(I −H+H)]+

⇐⇒ 11+ = 11+[X(I −H+H)][X(I −H+H)]+

⇐⇒ 1n ∈ R[X(I −H+H)].

3. Contrast tests

(1) Test on q contrasts
In ANOVA of p treatments with response means µi, i = 1, ..., p.
Test on H0 : Hµ = 0 where H ∈ Rq×p, rank(H) = q and H1p = 0 is a test on q
contrasts.

(2) Testing on a hypothesized equivalent groups in treatments is a testing on a group con-
trasts.
For example when p = 4, the hypothesis on groups (µ1, µ3) and (µ2, µ4) is H0 : Hµ = 0

where H =

(
1 0 −1 0
0 1 0 −1

)
. Clearly H14 = 0.

(3) Implementation via SAS
Suppose response y and treatment id with values A, B, C and D are stored in file ex.dat.

data a;

infile "D:\ex.dat";

input y id $ @@;

proc glm;

class id;

model y=id/nouni;

contrast "group" id 1 0 -1 0, id 0 1 0 -1;

run;

The output displays

MS DF F Pr > Fob

Contrast MSH 2 MSH/MSE P (F (2, n− 4) > Fob)
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L24: Analysis of Covariance model

1. Analysis of covariance model (ANCOVA)

(1) ANOVA model
For observed y ∈ Rn, y = Xβ + ϵ, E(ϵ) = 0 ∈ Rn, is a linear model since E(y) = Xβ is
a linear function of β and hence E(y) is in a linear space S = R(X).
For ANOVA y = µi + ϵ with E(ϵ) = 0 ∈ R, i = 1, 2, 3, suppose y1 and y2 are from
y = µ1 + ϵ; y3 is from y = µ2 + ϵ and y4 is from y = µ3 + ϵ.

Then y =


y1
y2
y3
y4

 =


1 0 0
1 0 0
0 1 0
0 0 1


µ1

µ2

µ3

+ ϵ, E(ϵ) = 0 ∈ R4. Rewrite y = µ. + αi + ϵ with

E(ϵ) = 0 ∈ R and α1 + α2 + α3 = 0. Then y =


y1
y2
y3
y4

 =


1 1 0
1 1 0
1 0 1
1 −1 −1


µ.

α1

α2

 + ϵ,

E(ϵ) = 0 ∈ R4. So one-way ANOVA is a linear model.

(2) Regression model
Regression y = β1x1+β2x2+ ϵ, E(ϵ) = 0 ∈ R, with data can be expressed as y = Xβ+ ϵ

where E(ϵ) = 0 ∈ Rn, β =

(
β1
β2

)
and the two columns of X are observed x1 and x2.

(3) ANCOVA model
Suppose one initially has ANOVA model y = Xδ + ϵ and later adds regression part Zγ
into the model to have y = Xδ + Zγ + ϵ. This model is called ANCOVA model since
the later added regressors are called covariates.

Comment: Write ANCOVA y = Xδ + Zγ + ϵ as y = (X, Z)β + ϵ where β =

(
δ
γ

)
.

Clearly this a linear model.

2. Estimable parameters and BLUE

(1) Recall: LSE and estimable parameters
For linear model y = Xβ + ϵ, E(ϵ) = 0

β̂ is LSE for β
def⇐⇒ ∥y −Xβ∥2 ≥ ∥y −Xβ̂∥2 for all β ⇐⇒ Xβ̂ = π(y|R(X))

⇐⇒ Xβ̂ = XX+y ⇐⇒ β̂ ∈ X+y +N (X)

So LSE(β) = X+y +N (X).

Hβ is estimable
def⇐⇒ ∃L such that E(Ly) = Hβ ⇐⇒ ∃L such that LXβ = Hβ
⇐⇒ LX = H ⇐⇒ ∃L such that Hβ = L(Xβ).

So E(y) = Xβ is estimable since X = IX.

Comment: Hβ is estimable ⇐⇒ Hβ̂ is unique. Clearly the unique value is HX+y.

(2) Estimator for σ2 and BLUE
Suppose Y = Xβ + ϵ, ϵ ∼ N(0, σ2In). Then SSE = ∥y − Xβ̂∥2 = y′(I − XX+)y.

SSE
n−rank(X)

is UE for σ2, SSE
n is MLE for σ2. For estimable Hβ, the unique Hβ̂ is a

BLUE.
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(3) ANCOVA model

For y = (X, Z)β + ϵ where β =

(
δ
γ

)
and ϵ ∼ N(0, σ2In), E(y) ∈ S = R[(X, Z)].

β̂ is a LSE for β ⇐⇒ (X, Z)β̂ = (X, Z)(X, Z)+y.
SSE = y′[I − (X, Z)(X, Z)+]y.

Comment: Fit the linear model framework, X is replaced by (X, Z). Thus we need to
explore more on R[(X, Z)] and (X, Z)(X, Z)+.

3. Some specifics for ANCOVA

(1) For y = (X, Z)β + ϵ
(i) E(y) ∈ R[(X, Z)] = R(X) +R(Z)
(ii) R[(X, Z)] = R(X)⊕̇R[(X, (I −XX+)Z)]
(iii) R[(X, Z)] = R[(I − ZZ+)X]⊕̇R(Z).

Proof. (i) R[(X, Z)] =

{
(X, Z)

(
r1
r2

)
:

(
r1
r2

)}
= {Xr1 + Zr2 : r1, r2}

= {Xr1 : r1}+ {Zr2 : r2} = R(X) +R(Z).

For (ii) note that (X, Z) = [X, (I −XX+)Z]

(
I X+Z
0 I

)
and [X, (I −XX+)Z] = (X, Z)

(
I −X+Z
0 I

)
. So

R[(X, Z)] = R[(X, (I −XX+)Z)] = R(X) +R[(I −XX+)Z] = R(X)⊕̇R[(I −XX+)Z].

The last equal sign holds since X ′(I −XX+)Z = 0. The proof of (iii) is skipped.

(2) (X, Z)(X, Z)+ = XX+ + [(I −XX+)Z][(I −XX+)Z]+ and
(X, Z)(X, Z)+ = [(I − ZZ+)Z][(I − ZZ+)Z]+ + ZZ+.

Proof. First (X, Z)(X, Z)+ = [X, (I −XX+)Z][X, (I −XX+)Z]+ since they are the
projection matrices onto the same spaceR[(X, Z)] = R[(X, (I −XX+)Z)].

Secondly [X, (I −XX+)Z]+ =

(
X+

[(I −XX+)Z]+

)
since X ′(I −XX+)Z = 0.

Consequently (X, Z)(X, Z)+ = XX++ [(I −XX+)Z][(I −XX+)Z]+. The second
equation can be proved similarly.

(3) If R(X) ∩R(Z) = {0}, then
(i) rank(X) = rank[(I − ZZ+)X] and rank(Z) = rank[(I −XX+)Z]
(ii) R(X ′) = R[X ′(I − ZZ+)] and R(Z ′) = R[Z ′(I −XX+)]

Proof. We first show the second equation in (i). Under R(X) ∩R(Z) = {0},

rank[(X, Z)] = dim[R[(X, Z)]] = dim[R(X) +R(Z)]
= dim[R(X)] + dim[R(Z)]− dim[R(X) ∩R(Z)]
= rank(X) + rank(Z).

But rank[(X, Z)] = dim[R[(X, (I −XX+)Z)]] = dim[R(X)⊕̇R((I −XX+)Z)]
= dim[R(X)] + dim[R((I −XX+)Z)]
= rank(X) + rank[(I −XX+)Z].

Thus rank(Z) = rank[(I −XX+)Z].
For the first equation in (ii) note that R[X ′(I−ZZ+)] ⊂ R(X ′). But by (i) the two
spaces share the same dimension. Thus R(X ′) = R[X ′(I − ZZ+)].
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