L23 Decomposition of SSM

1. Model $y \sim N\left(X \beta, \sigma^{2} I_{n}\right), X \in R^{n \times p}, \operatorname{rank}(X)=p$ and $1_{n} \notin \mathcal{R}(X)$.
(1) ANOVA table for testing on $H_{0}: \beta=0$.

Source	SS	DF	MS	F	$P_{r}>F$
Model	SSM $=y^{\prime} X X^{+} y$	p	MSM	MSM $/$ MSE	$P\left(F(p, n-p)>F_{o b}\right)$
Error	SSE $=y^{\prime}\left(I-X X^{+}\right) y$	$n-p$	MSE		
U.Total	U.SSTO $=y^{\prime} I_{n} y$	n			

(2) ANOVA table for testing on $H_{0}: H \beta=0, H \in R^{q \times p}, \operatorname{rank}(H)=q$.

Denote previous $\mathrm{SSE}=\mathrm{SSE}_{r}-\mathrm{SSE}$ as SSH associated with Hypothesis.
$\mathrm{SSH}=y^{\prime}\left\{X X^{+}-\left[X\left(I-H^{+} H\right)\right]\left[X\left(I-H^{+} H\right)\right]^{+}\right\} y$ with DF $p-(p-q)=q$. Then

Source	SS	DF	MS	F	$P_{r}>F$
Hypothesis	SSH	q	MSH	MSH $/$ MSE	$P\left(F(q, n-p)>F_{o b}\right)$
Error	SSE	$n-p$	MSE		

(3) SSH is part of SSM
$\left\{X X^{+}-\left[X\left(I-H^{+} H\right)\right]\left[X\left(I-H^{+} H\right)\right]^{+}\right\}=X X^{+}\left\{X X^{+}-\left[X\left(I-H^{+} H\right)\right]\left[X\left(I-H^{+} H\right)\right]^{+}\right\}$ implies that SSH is part of SSM. Thus with $\mathrm{SSH}^{\perp}=y^{\prime}\left[X\left(I-H^{+} H\right)\right]\left[X\left(I-H^{+} H\right)\right]^{+} y$, $\mathrm{SSM}=\mathrm{SSH}+\mathrm{SSH}^{\perp}$. We therefore have combined ANOVA table

Source	SS	DF	MS	F	$P_{r}>F$
Model	SSM	p	MSM	MSM/MSE	$P\left(F(p, n-p)>F_{o b}\right)$
H	SSH	q	MSH	MSH/MSE	$P\left(F(q, n-p)>F_{o b}\right)$
H^{\perp}	SSH $^{\perp}$	$p-q$	MSH $^{\perp}$		
Error	SSE	$n-p$	MSE		
U.Total	U.SSTO	n			

Ex1: $\mathrm{SSH}=\left\|\left\{X X^{+}-\left[X\left(I-H^{+} H\right)\right]\left[X\left(I-H^{+} H\right)\right]\right\} y\right\|^{2}$,
$\mathrm{SSH}^{\perp}=\left\|\left[X\left(I-H^{+} H\right)\right]\left[X\left(I-H^{+} H\right)\right]^{+} y\right\|^{2}$ and $\left\{X X^{+}-\left[X\left(I-H^{+} H\right)\right]\left[X\left(I-H^{+} H\right)\right]\right\} y \perp\left[X\left(I-H^{+} H\right)\right]\left[X\left(I-H^{+} H\right)\right]^{+} y$.
Ex2: Decomposition of $\mathrm{SSA}=y^{\prime} A A^{+} y$ where $\operatorname{rank}(A)=r$.
For given $r_{1}+\cdots+r_{k}=r$, in the compact form of EVD $A A^{+}=P P^{\prime}$ where $P \in R^{p \times r}$ and $P^{\prime} P=I_{r}$, break P as $P=\left(P_{1}, \ldots, P_{r}\right)$ where $P_{i} \in R^{p \times r_{i}}$. Then $A A^{+}=P P^{\prime}=\sum_{i=1}^{k} P_{i} P_{i}^{\prime}$. Let $A_{i}=P_{i} P_{i}^{\prime}=A_{i} A_{i}^{+}$and $S S A_{i}=y^{\prime} A_{i} A_{i}^{+} y$. Then $\mathrm{SSA}=\sum_{i=1}^{k} \mathrm{SSA}_{i}$ where $S S A_{i}, i=1, \ldots, k$, are SSs.
From $P P^{\prime}=P_{1} P_{1}^{\prime}+\cdots+P_{k} P_{k}^{\prime}, P P^{\prime} P_{i} P_{i}^{\prime}=P_{i} P_{i}^{\prime}$. So $A_{i}=A A^{+} A_{i}$. Hence $S S A_{i}$ is part of SSA.
2. Model $y \sim N\left(X \beta, \sigma^{2} I_{n}\right), X \in R^{n \times p}, \operatorname{rank}(X)=p$ and $1_{n} \in \mathcal{R}(X)$.
(1) ANOVA table for global F-test.

Source	SS	DF	MS	F	$P_{r}>F$
Model	SSM $=y^{\prime}\left(X X^{+}-11^{+}\right) y$	$p-1$	MSM	MSM/MSE	$P\left(F(p-1, n-p)>F_{o b}\right)$
Error	$\mathrm{SSE}=y^{\prime}\left(I-X X^{+}\right) y$	$n-p$	MSE		
C.Total	$\mathrm{C} . S S T O=y^{\prime}\left(I_{n}-11^{+}\right) y$	$n-1$			

(2) ANOVA table for testing on $H_{0}: H \beta=0, H \in R^{q \times p}, \operatorname{rank}(H)=q$.

Denote previous $\mathrm{SSE}=\mathrm{SSE}_{r}-\mathrm{SSE}$ as SSH associated with Hypothesis.
$\mathrm{SSH}=y^{\prime}\left\{X X^{+}-\left[X\left(I-H^{+} H\right)\right]\left[X\left(I-H^{+} H\right)\right]^{+}\right\} y$ with DF $p-(p-q)=q$. Then

Source	SS	DF	MS	F	$P_{r}>F$
Hypothesis	SSH	q	MSH	MSH $/$ MSE	$P\left(F(q, n-p)>F_{o b}\right)$
Error	SSE	$n-p$	MSE		

(3) SSH may or may not be part of SSM

Recall: $S S B=y^{\prime} B B^{+} y$ is part of $S S A=y^{\prime} A A^{+} y \Longleftrightarrow B=A T$ for some T

$$
\Longleftrightarrow B B^{+}=A A^{+} B B^{+}
$$

Thus $\quad S S H$ is part of $S S M$

$$
\begin{aligned}
\Longleftrightarrow & X X^{+}-\left[X\left(I-H^{+} H\right)\right]\left[X\left(I-H^{+} H\right)\right]^{+} \\
& =\left(X X^{+}-11^{+}\right)\left\{X X^{+}-\left[X\left(I-H^{+} H\right)\right]\left[X\left(I-H^{+} H\right)\right]^{+}\right\} \\
\Longleftrightarrow & 0=-11^{+}+11^{+}\left[X\left(I-H^{+} H\right)\right]\left[X\left(I-H^{+} H\right)\right]^{+} \\
\Longleftrightarrow & 11^{+}=11^{+}\left[X\left(I-H^{+} H\right)\right]\left[X\left(I-H^{+} H\right)\right]^{+} \\
\Longleftrightarrow & 1_{n} \in \mathcal{R}\left[X\left(I-H^{+} H\right)\right] .
\end{aligned}
$$

3. Contrast tests
(1) Test on q contrasts

In ANOVA of p treatments with response means $\mu_{i}, i=1, \ldots, p$.
Test on $H_{0}: H \mu=0$ where $H \in R^{q \times p}, \operatorname{rank}(H)=q$ and $H 1_{p}=0$ is a test on q contrasts.
(2) Testing on a hypothesized equivalent groups in treatments is a testing on a group contrasts.
For example when $p=4$, the hypothesis on groups $\left(\mu_{1}, \mu_{3}\right)$ and $\left(\mu_{2}, \mu_{4}\right)$ is $H_{0}: H \mu=0$ where $H=\left(\begin{array}{cccc}1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1\end{array}\right)$. Clearly $H 1_{4}=0$.
(3) Implementation via SAS

Suppose response y and treatment id with values A, B, C and D are stored in file ex.dat.

```
data a;
    infile "D:\ex.dat";
    input y id $ @@;
proc glm;
    class id;
    model y=id/nouni;
    contrast "group" id 1 0 -1 0, id 0 1 0 -1;
    run;
```

The output displays

	MS	DF	F	$\operatorname{Pr}>F_{o b}$
Contrast	MSH	2	MSH $/$ MSE	$P\left(F(2, n-4)>F_{o b}\right)$

L24: Analysis of Covariance model

1. Analysis of covariance model (ANCOVA)
(1) ANOVA model

For observed $y \in R^{n}, y=X \beta+\epsilon, E(\epsilon)=0 \in R^{n}$, is a linear model since $E(y)=X \beta$ is a linear function of β and hence $E(y)$ is in a linear space $S=\mathcal{R}(X)$.
For ANOVA $y=\mu_{i}+\epsilon$ with $E(\epsilon)=0 \in R, i=1,2,3$, suppose y_{1} and y_{2} are from $y=\mu_{1}+\epsilon ; y_{3}$ is from $y=\mu_{2}+\epsilon$ and y_{4} is from $y=\mu_{3}+\epsilon$.
Then $y=\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3} \\ y_{4}\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}\mu_{1} \\ \mu_{2} \\ \mu_{3}\end{array}\right)+\epsilon, E(\epsilon)=0 \in R^{4}$. Rewrite $y=\mu .+\alpha_{i}+\epsilon$ with $E(\epsilon)=0 \in R$ and $\alpha_{1}+\alpha_{2}+\alpha_{3}=0$. Then $y=\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3} \\ y_{4}\end{array}\right)=\left(\begin{array}{ccc}1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & -1\end{array}\right)\left(\begin{array}{l}\mu \\ \alpha_{1} \\ \alpha_{2}\end{array}\right)+\epsilon$, $E(\epsilon)=0 \in R^{4}$. So one-way ANOVA is a linear model.
(2) Regression model

Regression $y=\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon, E(\epsilon)=0 \in R$, with data can be expressed as $y=X \beta+\epsilon$ where $E(\epsilon)=0 \in R^{n}, \beta=\binom{\beta_{1}}{\beta_{2}}$ and the two columns of X are observed x_{1} and x_{2}.
(3) ANCOVA model

Suppose one initially has ANOVA model $y=X \delta+\epsilon$ and later adds regression part $Z \gamma$ into the model to have $y=X \delta+Z \gamma+\epsilon$. This model is called ANCOVA model since the later added regressors are called covariates.
Comment: Write ANCOVA $y=X \delta+Z \gamma+\epsilon$ as $y=(X, Z) \beta+\epsilon$ where $\beta=\binom{\delta}{\gamma}$. Clearly this a linear model.
2. Estimable parameters and BLUE
(1) Recall: LSE and estimable parameters

For linear model $y=X \beta+\epsilon, E(\epsilon)=0$

$$
\begin{aligned}
\widehat{\beta} \text { is LSE for } \beta & \stackrel{\text { def }}{\Longleftrightarrow}\|y-X \beta\|^{2} \geq\|y-X \widehat{\beta}\|^{2} \text { for all } \beta \Longleftrightarrow X \widehat{\beta}=\pi(y \mid \mathcal{R}(X)) \\
& \Longleftrightarrow X \widehat{\beta}=X X^{+} y \Longleftrightarrow \widehat{\beta} \in X^{+} y+\mathcal{N}(X)
\end{aligned}
$$

So $\operatorname{LSE}(\beta)=X^{+} y+\mathcal{N}(X)$.
$H \beta$ is estimable $\stackrel{\text { def }}{\Longleftrightarrow} \exists L$ such that $E(L y)=H \beta \Longleftrightarrow \exists L$ such that $L X \beta=H \beta$ $\Longleftrightarrow L X=H \Longleftrightarrow \exists L$ such that $H \beta=L(X \beta)$.

So $E(y)=X \beta$ is estimable since $X=I X$.
Comment: $H \beta$ is estimable $\Longleftrightarrow H \widehat{\beta}$ is unique. Clearly the unique value is $H X^{+} y$.
(2) Estimator for σ^{2} and BLUE

Suppose $Y=X \beta+\epsilon, \epsilon \sim N\left(0, \sigma^{2} I_{n}\right)$. Then SSE $=\|y-X \widehat{\beta}\|^{2}=y^{\prime}\left(I-X X^{+}\right) y$. $\frac{S S E}{n-\operatorname{rank}(X)}$ is UE for $\sigma^{2}, \frac{S S E}{n}$ is MLE for σ^{2}. For estimable $H \beta$, the unique $H \widehat{\beta}$ is a BLUE.
(3) ANCOVA model

For $y=(X, Z) \beta+\epsilon$ where $\beta=\binom{\delta}{\gamma}$ and $\epsilon \sim N\left(0, \sigma^{2} I_{n}\right), E(y) \in S=\mathcal{R}[(X, Z)]$.
$\widehat{\beta}$ is a LSE for $\beta \Longleftrightarrow(X, Z) \widehat{\beta}=(X, Z)(X, Z)^{+} y$.
$\mathrm{SSE}=y^{\prime}\left[I-(X, Z)(X, Z)^{+}\right] y$.
Comment: Fit the linear model framework, X is replaced by (X, Z). Thus we need to explore more on $\mathcal{R}[(X, Z)]$ and $(X, Z)(X, Z)^{+}$.
3. Some specifics for ANCOVA
(1) For $y=(X, Z) \beta+\epsilon$
(i) $E(y) \in \mathrm{R}[(X, Z)]=\mathcal{R}(X)+\mathcal{R}(Z)$
(ii) $\mathcal{R}[(X, Z)]=\mathcal{R}(X) \dot{\oplus} \mathcal{R}\left[\left(X,\left(I-X X^{+}\right) Z\right)\right]$
(iii) $\mathcal{R}[(X, Z)]=\mathcal{R}\left[\left(I-Z Z^{+}\right) X\right] \dot{\oplus} \mathcal{R}(Z)$.

Proof. (i) $\mathcal{R}[(X, Z)]=\left\{(X, Z)\binom{r_{1}}{r_{2}}:\binom{r_{1}}{r_{2}}\right\}=\left\{X r_{1}+Z r_{2}: r_{1}, r_{2}\right\}$

$$
=\left\{X r_{1}: r_{1}\right\}+\left\{Z r_{2}: r_{2}\right\}=\mathcal{R}(X)+\mathcal{R}(Z) .
$$

For (ii) note that $(X, Z)=\left[X,\left(I-X X^{+}\right) Z\right]\left(\begin{array}{cc}I & X^{+} Z \\ 0 & I\end{array}\right)$ and $\left[X,\left(I-X X^{+}\right) Z\right]=(X, Z)\left(\begin{array}{cc}I & -X^{+} Z \\ 0 & I\end{array}\right)$. So
$\mathcal{R}[(X, Z)]=\mathcal{R}\left[\left(X,\left(I-X X^{+}\right) Z\right)\right]=\mathcal{R}(X)+\mathcal{R}\left[\left(I-X X^{+}\right) Z\right]=\mathcal{R}(X) \dot{\oplus} \mathcal{R}\left[\left(I-X X^{+}\right) Z\right]$. The last equal sign holds since $X^{\prime}\left(I-X X^{+}\right) Z=0$. The proof of (iii) is skipped.
(2) $(X, Z)(X, Z)^{+}=X X^{+}+\left[\left(I-X X^{+}\right) Z\right]\left[\left(I-X X^{+}\right) Z\right]^{+}$and $(X, Z)(X, Z)^{+}=\left[\left(I-Z Z^{+}\right) Z\right]\left[\left(I-Z Z^{+}\right) Z\right]^{+}+Z Z^{+}$.
Proof. First $(X, Z)(X, Z)^{+}=\left[X,\left(I-X X^{+}\right) Z\right]\left[X,\left(I-X X^{+}\right) Z\right]^{+}$since they are the projection matrices onto the same space $\mathcal{R}[(X, Z)]=\mathcal{R}\left[\left(X,\left(I-X X^{+}\right) Z\right)\right]$.
Secondly $\left[X,\left(I-X X^{+}\right) Z\right]^{+}=\binom{X^{+}}{\left[\left(I-X X^{+}\right) Z\right]^{+}}$since $X^{\prime}\left(I-X X^{+}\right) Z=0$.
Consequently $(X, Z)(X, Z)^{+}=X X^{+}+\left[\left(I-X X^{+}\right) Z\right]\left[\left(I-X X^{+}\right) Z\right]^{+}$. The second equation can be proved similarly.
(3) If $\mathcal{R}(X) \cap \mathcal{R}(Z)=\{0\}$, then
(i) $\operatorname{rank}(X)=\operatorname{rank}\left[\left(I-Z Z^{+}\right) X\right]$ and $\operatorname{rank}(Z)=\operatorname{rank}\left[\left(I-X X^{+}\right) Z\right]$
(ii) $\mathcal{R}\left(X^{\prime}\right)=\mathcal{R}\left[X^{\prime}\left(I-Z Z^{+}\right)\right]$and $\mathcal{R}\left(Z^{\prime}\right)=\mathcal{R}\left[Z^{\prime}\left(I-X X^{+}\right)\right]$

Proof. We first show the second equation in (i). Under $\mathcal{R}(X) \cap \mathcal{R}(Z)=\{0\}$,

$$
\begin{aligned}
\operatorname{rank}[(X, Z)] & =\operatorname{dim}[\mathcal{R}[(X, Z)]]=\operatorname{dim}[\mathcal{R}(X)+\mathcal{R}(Z)] \\
& =\operatorname{dim}[R(X)]+\operatorname{dim}[R(Z)]-\operatorname{dim}[R(X) \cap R(Z)] \\
& =\operatorname{rank}(X)+\operatorname{rank}(Z) .
\end{aligned}
$$

But $\operatorname{rank}[(X, Z)]=\operatorname{dim}\left[\mathcal{R}\left[\left(X,\left(I-X X^{+}\right) Z\right)\right]\right]=\operatorname{dim}\left[\mathcal{R}(X) \dot{\oplus} \mathcal{R}\left(\left(I-X X^{+}\right) Z\right)\right]$
$=\operatorname{dim}[R(X)]+\operatorname{dim}\left[R\left(\left(I-X X^{+}\right) Z\right)\right]$
$=\operatorname{rank}(X)+\operatorname{rank}\left[\left(I-X X^{+}\right) Z\right]$.
Thus $\operatorname{rank}(Z)=\operatorname{rank}\left[\left(I-X X^{+}\right) Z\right]$.
For the first equation in (ii) note that $\mathcal{R}\left[X^{\prime}\left(I-Z Z^{+}\right)\right] \subset \mathcal{R}\left(X^{\prime}\right)$. But by (i) the two spaces share the same dimension. Thus $\mathcal{R}\left(X^{\prime}\right)=\mathcal{R}\left[X^{\prime}\left(I-Z Z^{+}\right)\right]$.

