L23 Decomposition of SSM

- 1. Model $y \sim N(X\beta, \sigma^2 I_n), X \in \mathbb{R}^{n \times p}$, rank(X) = p and $1_n \notin \mathcal{R}(X)$.
 - (1) ANOVA table for testing on H_0 : $\beta = 0$.

Source	SS	DF	MS	F	$P_r > F$
Model	$SSM = y'XX^+y$	p	MSM	MSM/MSE	$P(F(p, n-p) > F_{ob})$
Error	$SSE = y'(I - XX^+)y$	n-p	MSE		
U.Total	$U.SSTO = y'I_ny$	n			

(2) ANOVA table for testing on $H_0: H\beta = 0, H \in \mathbb{R}^{q \times p}$, rank(H) = q. Denote previous $SSE = SSE_r - SSE$ as SSH associated with Hypothesis. $SSH = y' \{XX^+ - [X(I - H^+H)][X(I - H^+H)]^+\}y$ with DF p - (p - q) = q. Then

Source	\mathbf{SS}	DF	MS	F	$P_r > F$
Hypothesis	SSH	q	MSH	MSH/MSE	$P(F(q, n-p) > F_{ob})$
Error	SSE	n-p	MSE		

(3) SSH is part of SSM

$$\begin{split} &\{XX^+ - [X(I-H^+H)][X(I-H^+H)]^+\} = XX^+ \{XX^+ - [X(I-H^+H)][X(I-H^+H)]^+\} \\ &\text{implies that SSH is part of SSM. Thus with SSH^{\perp} = y'[X(I-H^+H)][X(I-H^+H)]^+y, \\ &\text{SSM} = \text{SSH} + \text{SSH}^{\perp}. \\ &\text{We therefore have combined ANOVA table} \end{split}$$

Source	SS	DF	MS	F	$P_r > F$
Model	SSM	p	MSM	MSM/MSE	$P(F(p, n-p) > F_{ob})$
Η	SSH	q	MSH	MSH/MSE	$P(F(q, n-p) > F_{ob})$
H^{\perp}	SSH^{\perp}	p-q	MSH^{\perp}		
Error	SSE	n-p	MSE		
U.Total	U.SSTO	n			

Ex1: SSH = $\|\{XX^+ - [X(I - H^+H)][X(I - H^+H)]\}y\|^2$, SSH^{\perp} = $\|[X(I - H^+H)][X(I - H^+H)]^+y\|^2$ and $\{XX^+ - [X(I - H^+H)][X(I - H^+H)]\}y \perp [X(I - H^+H)][X(I - H^+H)]^+y$.

Ex2: Decomposition of SSA= $y'AA^+y$ where rank(A) = r.

For given $r_1 + \cdots + r_k = r$, in the compact form of EVD $AA^+ = PP'$ where $P \in R^{p \times r}$ and $P'P = I_r$, break P as $P = (P_1, ..., P_r)$ where $P_i \in R^{p \times r_i}$. Then $AA^+ = PP' = \sum_{i=1}^k P_i P'_i$. Let $A_i = P_i P'_i = A_i A^+_i$ and $SSA_i = y'A_i A^+_i y$. Then $SSA = \sum_{i=1}^k SSA_i$ where SSA_i , i = 1, ..., k, are SSs. From $PP' = P_1P'_1 + \cdots + P_kP'_k$, $PP'P_iP'_i = P_iP'_i$. So $A_i = AA^+A_i$. Hence SSA_i is part of SSA.

- 2. Model $y \sim N(X\beta, \sigma^2 I_n), X \in \mathbb{R}^{n \times p}$, rank(X) = p and $1_n \in \mathcal{R}(X)$.
 - (1) ANOVA table for global F-test.

Source	SS	DF	MS	F	$P_r > F$
Model	$SSM = y'(XX^+ - 11^+)y$	p-1	MSM	MSM/MSE	$P(F(p-1, n-p) > F_{ob})$
Error	$SSE = y'(I - XX^+)y$	n-p	MSE		
C.Total	$C.SSTO = y'(I_n - 11^+)y$	n-1			

(2) ANOVA table for testing on $H_0: H\beta = 0, H \in \mathbb{R}^{q \times p}$, rank(H) = q. Denote previous SSE = SSE_r - SSE as SSH associated with Hypothesis. SSH = $y'\{XX^+ - [X(I - H^+H)][X(I - H^+H)]^+\}y$ with DF p - (p - q) = q. Then

Source	SS	DF	MS	F	$P_r > F$
Hypothesis	SSH	q	MSH	MSH/MSE	$P(F(q, n-p) > F_{ob})$
Error	SSE	n-p	MSE		

(3) SSH may or may not be part of SSM Recall: $SSB = y'BB^+y$ is part of $SSA = y'AA^+y \iff B = AT$ for some T $\iff BB^+ = AA^+BB^+$

Thus

$$\begin{cases} SSH \text{ is part of } SSM \\ \iff XX^+ - [X(I - H^+H)][X(I - H^+H)]^+ \\ = (XX^+ - 11^+)\{XX^+ - [X(I - H^+H)][X(I - H^+H)]^+ \} \\ \iff 0 = -11^+ + 11^+[X(I - H^+H)][X(I - H^+H)]^+ \\ \iff 11^+ = 11^+[X(I - H^+H)][X(I - H^+H)]^+ \\ \iff 1_n \in \mathcal{R}[X(I - H^+H)]. \end{cases}$$

- 3. Contrast tests
 - (1) Test on q contrasts In ANOVA of p treatments with response means μ_i , i = 1, ..., p. Test on H_0 : $H\mu = 0$ where $H \in R^{q \times p}$, rank(H) = q and $H1_p = 0$ is a test on q contrasts.
 - (2) Testing on a hypothesized equivalent groups in treatments is a testing on a group contrasts.

For example when p = 4, the hypothesis on groups (μ_1, μ_3) and (μ_2, μ_4) is $H_0: H\mu = 0$ where $H = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix}$. Clearly $H1_4 = 0$.

(3) Implementation via SAS

Suppose response y and treatment id with values A, B, C and D are stored in file ex.dat.

```
data a;
    infile "D:\ex.dat";
    input y id $ @@;
proc glm;
    class id;
    model y=id/nouni;
    contrast "group" id 1 0 -1 0, id 0 1 0 -1;
    run;
```

The output displays

	MS	DF	F	$Pr > F_{ob}$
Contrast	MSH	2	MSH/MSE	$P(F(2, n-4) > F_{ob})$

L24: Analysis of Covariance model

- 1. Analysis of covariance model (ANCOVA)
 - (1) ANOVA model

For observed $y \in \mathbb{R}^n$, $y = X\beta + \epsilon$, $E(\epsilon) = 0 \in \mathbb{R}^n$, is a linear model since $E(y) = X\beta$ is a linear function of β and hence E(y) is in a linear space $S = \mathcal{R}(X)$.

For ANOVA $y = \mu_i + \epsilon$ with $E(\epsilon) = 0 \in R$, i = 1, 2, 3, suppose y_1 and y_2 are from $y = \mu_1 + \epsilon$; y_3 is from $y = \mu_2 + \epsilon$ and y_4 is from $y = \mu_3 + \epsilon$.

 $y = \mu_1 + \epsilon, \ y_3 \text{ is non } y = \mu_2 + \epsilon, \ y_4 = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{pmatrix} + \epsilon, \ E(\epsilon) = 0 \in \mathbb{R}^4. \text{ Rewrite } y = \mu_1 + \alpha_i + \epsilon \text{ with } x = \mu_1 + \alpha_1 + \epsilon \text{ with } x = \mu_1 + \alpha_2 + \epsilon \text{ with } x = \mu_1 + \alpha_2 + \epsilon \text{ with } x = \mu_1 + \alpha_2 + \epsilon \text{ with } x = \mu_1 + \alpha_2 + \epsilon \text{ with } x = \mu_1 + \alpha_2 + \epsilon \text{ with } x = \mu_1 + \alpha_2 + \epsilon \text{ with } x = \mu_1 + \alpha_2 + \epsilon \text{ with } x = \mu_1 + \alpha_2 + \epsilon \text{ with } x = \mu_1 + \alpha_2 + \epsilon \text{ with } x = \mu_1 + \alpha_2 + \epsilon \text{ with } x = \mu_1 + \alpha_2 + \epsilon \text{ with } x = \mu_1 + \alpha_2 + \epsilon \text{ with } x = \mu_1 + \epsilon$

$$E(\epsilon) = 0 \in R \text{ and } \alpha_1 + \alpha_2 + \alpha_3 = 0. \text{ Then } y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} \mu \\ \alpha_1 \\ \alpha_2 \end{pmatrix} + \epsilon,$$

 $E(\epsilon) = 0 \in \mathbb{R}^4$. So one-way ANOVA is a linear model.

- (2) Regression model Regression $y = \beta_1 x_1 + \beta_2 x_2 + \epsilon$, $E(\epsilon) = 0 \in \mathbb{R}$, with data can be expressed as $y = X\beta + \epsilon$ where $E(\epsilon) = 0 \in \mathbb{R}^n$, $\beta = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$ and the two columns of X are observed x_1 and x_2 .
- (3) ANCOVA model

Suppose one initially has ANOVA model $y = X\delta + \epsilon$ and later adds regression part $Z\gamma$ into the model to have $y = X\delta + Z\gamma + \epsilon$. This model is called ANCOVA model since the later added regressors are called covariates.

Comment: Write ANCOVA $y = X\delta + Z\gamma + \epsilon$ as $y = (X, Z)\beta + \epsilon$ where $\beta = \begin{pmatrix} \delta \\ \gamma \end{pmatrix}$. Clearly this a linear model.

- 2. Estimable parameters and BLUE
 - (1) Recall: LSE and estimable parameters For linear model $y = X\beta + \epsilon$, $E(\epsilon) = 0$

$$\widehat{\beta} \text{ is LSE for } \beta \quad \stackrel{def}{\longleftrightarrow} \quad \|y - X\beta\|^2 \ge \|y - X\widehat{\beta}\|^2 \text{ for all } \beta \Longleftrightarrow X\widehat{\beta} = \pi(y|\mathcal{R}(X)) \\ \iff \quad X\widehat{\beta} = XX^+y \Longleftrightarrow \widehat{\beta} \in X^+y + \mathcal{N}(X)$$

So $LSE(\beta) = X^+ y + \mathcal{N}(X)$.

 $\begin{array}{ll} H\beta \text{ is estimable} & \stackrel{def}{\iff} & \exists L \text{ such that } E(Ly) = H\beta \Longleftrightarrow \exists L \text{ such that } LX\beta = H\beta \\ & \longleftrightarrow & LX = H \Longleftrightarrow \exists L \text{ such that } H\beta = L(X\beta). \end{array}$

So $E(y) = X\beta$ is estimable since X = IX.

Comment: $H\beta$ is estimable $\iff H\hat{\beta}$ is unique. Clearly the unique value is HX^+y . (2) Estimator for σ^2 and BLUE

Suppose $Y = X\beta + \epsilon$, $\epsilon \sim N(0, \sigma^2 I_n)$. Then $SSE = ||y - X\hat{\beta}||^2 = y'(I - XX^+)y$. $\frac{SSE}{n-\operatorname{rank}(X)}$ is UE for σ^2 , $\frac{SSE}{n}$ is MLE for σ^2 . For estimable $H\beta$, the unique $H\hat{\beta}$ is a BLUE. (3) ANCOVA model

For $y = (X, Z)\beta + \epsilon$ where $\beta = \begin{pmatrix} \delta \\ \gamma \end{pmatrix}$ and $\epsilon \sim N(0, \sigma^2 I_n), E(y) \in S = \mathcal{R}[(X, Z)].$ $\widehat{\beta}$ is a LSE for $\beta \iff (X, Z)\widehat{\beta} = (X, Z)(X, Z)^+ y.$ $SSE = y'[I - (X, Z)(X, Z)^+]y.$

Comment: Fit the linear model framework, X is replaced by (X, Z). Thus we need to explore more on $\mathcal{R}[(X, Z)]$ and $(X, Z)(X, Z)^+$.

- 3. Some specifics for ANCOVA
 - (1) For $y = (X, Z)\beta + \epsilon$ (i) $E(y) \in \mathbb{R}[(X, Z)] = \mathcal{R}(X) + \mathcal{R}(Z)$ (ii) $\mathcal{R}[(X, Z)] = \mathcal{R}(X) \dot{\oplus} \mathcal{R}[(X, (I - XX^+)Z)]$ (iii) $\mathcal{R}[(X, Z)] = \mathcal{R}[(I - ZZ^+)X] \dot{\oplus} \mathcal{R}(Z).$ **Proof.** (i) $\mathcal{R}[(X, Z)] = \left\{ (X, Z) \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} : \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} \right\} = \{Xr_1 + Zr_2 : r_1, r_2\}$ = $\{Xr_1 : r_1\} + \{Zr_2 : r_2\} = \mathcal{R}(X) + \mathcal{R}(Z).$ For (ii) note that $(X, Z) = [X, (I - XX^+)Z] \begin{pmatrix} I & X^+Z \\ 0 & I \end{pmatrix}$ and $[X, (I - XX^+)Z] = (X, Z) \begin{pmatrix} I & -X^+Z \\ 0 & I \end{pmatrix}$. So $\mathcal{R}[(X, Z)] = \mathcal{R}[(X, (I - XX^+)Z)] = \mathcal{R}(X) + \mathcal{R}[(I - XX^+)Z] = \mathcal{R}(X)\dot{\oplus}\mathcal{R}[(I - XX^+)Z].$ The last equal sign holds since $X'(I - XX^+)Z = 0$. The proof of (iii) is skipped. (2) $(X, Z)(X, Z)^+ = XX^+ + [(I - XX^+)Z][(I - XX^+)Z]^+$ and $(X, Z)(X, Z)^+ = [(I - ZZ^+)Z][(I - ZZ^+)Z]^+ + ZZ^+.$ **Proof.** First $(X, Z)(X, Z)^+ = [X, (I - XX^+)Z][X, (I - XX^+)Z]^+$ since they are the projection matrices onto the same space $\mathcal{R}[(X, Z)] = \mathcal{R}[(X, (I - XX^+)Z)].$ Secondly $[X, (I - XX^+)Z]^+ = \begin{pmatrix} X^+ \\ [(I - XX^+)Z]^+ \end{pmatrix}$ since $X'(I - XX^+)Z = 0.$ Consequently $(X, Z)(X, Z)^+ = XX^+ + [(I - XX^+)Z][(I - XX^+)Z]^+$. The second equation can be proved similarly. (3) If $\mathcal{R}(X) \cap \mathcal{R}(Z) = \{0\}$, then (i) $\operatorname{rank}(X) = \operatorname{rank}[(I - ZZ^+)X]$ and $\operatorname{rank}(Z) = \operatorname{rank}[(I - XX^+)Z]$
 - (ii) $\mathcal{R}(X') = \mathcal{R}[X'(I ZZ^+)]$ and $\mathcal{R}(Z') = \mathcal{R}[Z'(I XX^+)]$

Proof. We first show the second equation in (i). Under $\mathcal{R}(X) \cap \mathcal{R}(Z) = \{0\}$,

$$\operatorname{rank}[(X, Z)] = \dim[\mathcal{R}[(X, Z)]] = \dim[\mathcal{R}(X) + \mathcal{R}(Z)]$$

=
$$\dim[R(X)] + \dim[R(Z)] - \dim[R(X) \cap R(Z)]$$

=
$$\operatorname{rank}(X) + \operatorname{rank}(Z).$$

But rank[(X, Z)] = dim[
$$\mathcal{R}[(X, (I - XX^+)Z)]]$$
 = dim[$\mathcal{R}(X) \dot{\oplus} \mathcal{R}((I - XX^+)Z)]$
= dim[$R(X)$] + dim[$R((I - XX^+)Z)$]
= rank(X) + rank[$(I - XX^+)Z$].

Thus $\operatorname{rank}(Z) = \operatorname{rank}[(I - XX^+)Z].$

For the first equation in (ii) note that $\mathcal{R}[X'(I-ZZ^+)] \subset \mathcal{R}(X')$. But by (i) the two spaces share the same dimension. Thus $\mathcal{R}(X') = \mathcal{R}[X'(I-ZZ^+)]$.