L21 ANOVA table for a hypothesis

1. SS table for H_{0}
(1) Model, H_{0} and reduced model

Consider linear model $Y \sim N\left(X \beta, \sigma^{2} \Sigma\right)$ with $\operatorname{rank}(X)=r$ and consistent $H_{0}: H \beta=b$ with $H \beta_{*}=b$.

$$
\begin{aligned}
H \beta=b & \Longleftrightarrow H \beta=b=H \beta_{*}=H H^{+} H \beta_{*}=H H^{+} b \Longleftrightarrow H\left(\beta-H^{+} b\right)=0 \\
& \Longleftrightarrow \beta-H^{+} b \in \mathcal{N}(H)=\mathcal{R}\left(I-H^{+} H\right)=\left\{\left(I-H^{+} H\right) \gamma: \gamma \in R^{p}\right\} \\
& \Longleftrightarrow \beta-H^{+} b=\left(I-H^{+} H\right) \gamma \Longleftrightarrow \beta=H^{+} b+\left(I-H^{+} H\right) \gamma .
\end{aligned}
$$

The model reduced by $H_{0}, Y \sim N\left(X\left[H^{+} b+\left(I-H^{+} H\right) \gamma, \sigma^{2} \Sigma\right)\right.$, is

$$
Y-X H^{+} b \sim N\left(X\left(I-H^{+} H\right) \gamma, \sigma^{2} \Sigma\right)
$$

(2) SSE_{H} and SSE

For the original model,
SSE $=\left(\Sigma^{-1 / 2} Y\right)^{\prime}\left[I-\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}\right]\left(\Sigma^{-1 / 2} Y\right)$ with DF: $n-r$.
For the reduced model, let $Y_{*}=\Sigma^{-1 / 2}\left(Y-X H^{+} b\right)$ and $X_{*}=\Sigma^{-1 / 2} X$. Then

$$
S S E_{H}=Y_{*}^{\prime}\left\{I-\left[X_{*}\left(I-H^{+} H\right)\right]\left[X_{*}\left(I-H^{+} H\right)\right]^{+}\right\} Y_{*}
$$

with DF: $n-\operatorname{rank}\left[\left(X_{*}\left(I-H^{+} H\right)\right]=n-\operatorname{rank}\left[X\left(I-H^{+} H\right)\right] \xlongequal{\text { def }} n-r_{1}\right.$. Clearly

$$
\begin{aligned}
Y_{*}^{\prime}\left(I-X_{*} X_{*}^{+}\right) Y_{*} & =\left(\Sigma^{-1 / 2} Y-X_{*} H^{+} b\right)^{\prime}\left(I-X_{*} X_{*}^{+}\right)\left(\Sigma^{-1 / 2} Y-X_{*} H^{+} b\right) \\
& =\left(\Sigma^{-1 / 2} Y\right)^{\prime}\left[I-\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}\right]\left(\Sigma^{-1 / 2} Y\right) \\
& =\mathrm{SSE} .
\end{aligned}
$$

(3) SSD and SS table

Define $S S D=S S E_{H}-S S E$. Then

$$
\mathrm{SSD}=Y_{*}^{\prime}\left\{X_{*} X_{*}^{+}-\left[X_{*}\left(I-H^{+} H\right)\right]\left[X_{*}\left(I-H^{+} H\right)\right]^{+}\right\} Y_{*}
$$

with DF: $\operatorname{rank}\left(X_{*}\right)-\operatorname{rank}\left[X_{*}\left(I-H^{+} H\right)\right]=\operatorname{rank}(X)-\operatorname{rank}\left[X\left(I-H^{+} H\right)\right]=r-r_{1}$. Thus for the model and H_{0} we obtain SS table

Source	SS	DF
Difference	$\mathrm{SSD}=Y_{*}^{\prime}\left\{X_{*} X_{*}^{+}-\left[X_{*}\left(I-H^{+} H\right)\right]\left[X_{*}\left(I-H^{+} H\right)\right]^{+}\right\} Y_{*}$	$r-r_{1}$
Error	$\mathrm{SSE}_{\mathrm{*}}=Y_{*}^{\prime}\left(I-X_{*} X_{*}^{+}\right) Y_{*}$	$n-r$
Hypothesis	$\mathrm{SSE}_{H}=Y_{*}^{\prime}\left\{I-\left[X_{*}\left(I-H^{+} H\right)\right]\left[X_{*}\left(I-H^{+} H\right)\right]^{+}\right\} Y_{*}$	$n-r_{1}$

Here $Y_{*}=\Sigma^{-1 / 2}\left(Y-X H^{+} b\right), X_{*}=\Sigma^{-1 / 2} X$ and $Y \sim N\left(X \beta, \sigma^{2} \Sigma\right)$.
2. ANOVA table for H_{0}
(1) Total variations in Y_{*}
SSE_{H} is the variation in Y_{*} unexplained by H_{0}. In the problem of testing H_{0}, this SS is treated as the total variation in Y_{*}.
(2) Variation in Y_{*} unexplained by the model

SSE is the variation in Y_{*} unexplained by the model which is part of that in (1).
(3) Variation in Y_{*} explained by the model.

SSD is the variation in Y_{*} explained by the model.
Thus the SS table gives the breakdown of the total variation in Y_{*} into two parts, variation explained, and unexplained by the model.
3. Distributions in the table
(1) $\frac{S S E}{\sigma^{2}} \sim \chi^{2}(n-r)$.

Note that $\frac{S S E}{\sigma^{2}}=Y_{*}^{\prime} A Y_{*}$ where

$$
\begin{aligned}
Y \sim N\left(X \beta, \sigma^{2} \Sigma\right) & \Longrightarrow Y-X H^{+} b \sim\left(X \beta-X H^{+} b, \sigma^{2} \Sigma\right) \\
& \Longrightarrow Y_{*} \sim N\left(X_{*}\left(\beta-H^{+} b\right), \sigma^{2} I_{n}\right) .
\end{aligned}
$$

and $A=\frac{I-X_{*} X_{*}^{+}}{\sigma^{2}}$. But $A \sigma^{2} I A=A=A^{\prime},\left[X_{*}\left(\beta-H^{+} b\right)\right]^{\prime} A\left[X_{*}\left(\beta-H^{+} b\right)\right]=0$ and $\operatorname{tr}\left(A \sigma^{2} I\right)=n-r$. So $\frac{S S E}{\sigma^{2}} \sim \chi^{2}(n-r)$.
(2) $\frac{S S D}{\sigma^{2}} \stackrel{H_{0}}{\sim} \chi^{2}\left(r-r_{1}\right)$ and $\frac{S S E_{H}}{\sigma^{2}} \stackrel{H_{0}}{\sim} \chi^{2}\left(n-r_{1}\right)$.

Note that $\frac{S S D}{\sigma^{2}}=Y_{*}^{\prime} B Y_{*}$ and $\frac{S S E_{H}}{\sigma^{2}}=Y_{*}^{\prime} C Y_{*}$ where $Y_{*} \stackrel{H_{0}}{\sim} N\left(X_{*}\left(I-H^{+} H\right) \gamma, \sigma^{2} I_{n}\right)$, $B=\frac{X_{*} X_{*}^{+}-\left[X_{*}\left(I-H^{+} H\right)\right]\left[X_{*}\left(I-H^{+} H\right)\right]}{\sigma^{2}}$ and $C=\frac{I-\left[X_{*}\left(I-H^{+} H\right)\right]\left[X_{*}\left(I-H^{+} H\right)\right]^{+}}{\sigma^{2}}$.
But $B \sigma^{2} I_{n} B=B=B^{\prime}, C \sigma^{2} I_{n} C=C=C^{\prime},\left[X_{*}\left(I-H^{+} H\right) \gamma\right]^{\prime} B\left[X_{*}\left(I-H^{+} H\right) \gamma\right]=0$, $\left[X_{*}\left(I-H^{+} H\right) \gamma\right]^{\prime} C\left[X_{*}\left(I-H^{+} H\right) \gamma\right]=0, \operatorname{tr}\left(B \sigma^{2} I\right)=r-r_{1}$ and $\operatorname{tr}\left(C \sigma^{2} I_{n}\right)=n-r_{1}$.
Therefore $\frac{S S D}{\sigma^{2}} \stackrel{H_{0}}{\sim} \chi^{2}\left(r-r_{1}\right)$ and $\frac{S S E_{H}}{\sigma^{2}} \stackrel{H_{0}}{\sim} \chi^{2}\left(n-r_{1}\right)$.
(3) Unbiased estimators for σ^{2}
$M S E=\frac{S S E}{n-r}$ is UE for $\sigma^{2} . M S D=\frac{S S D}{r-r_{1}}$ and $M S E_{H}=\frac{S S E_{H}}{n-r_{1}}$ are UEs for σ^{2} under H_{0}.
Proof. $E(M S E)=\frac{\sigma^{2}}{n-r} \cdot E\left(\frac{S S E}{\sigma^{2}}\right)=\frac{\sigma^{2}}{n-r} E\left[\chi^{2}(n-r)\right]=\frac{\sigma^{2}}{n-r} \cdot(n-r)=\sigma^{2}$.

$$
\begin{aligned}
& E(M S D)=\frac{\sigma^{2}}{r-r_{1}} \cdot E\left(\frac{S S D}{\sigma^{2}}\right) \xlongequal{H_{0}} \frac{\sigma^{2}}{r-r_{1}} E\left[\chi^{2}\left(r-r_{1}\right)\right]=\frac{\sigma^{2}}{r-r_{1}} \cdot\left(r-r_{1}\right)=\sigma^{2} . \\
& E\left(M S E_{H}\right)=\frac{\sigma^{2}}{n-r_{1}} \cdot E\left(\frac{S S E_{H}}{\sigma^{2}}\right) \xlongequal{H_{0}} \frac{\sigma^{2}}{n-r_{1}} E\left[\chi^{2}\left(n-r_{1}\right)\right]=\frac{\sigma^{2}}{n-r_{1}} \cdot\left(n-r_{1}\right)=\sigma^{2} .
\end{aligned}
$$

(4) $\frac{M S D}{M S E} \stackrel{H_{0}}{\sim} F\left(r-r_{1}, n-r\right)$.

Recall that $\frac{S S E}{\sigma^{2}}=Y_{*}^{\prime} A Y_{*} \sim \chi^{2}(n-r)$ and $\frac{S S D}{\sigma^{2}}=Y_{*}^{\prime} B Y_{*} \stackrel{H_{0}}{\sim} \chi^{2}\left(r-r_{1}\right)$.
With $\operatorname{Cov}\left(Y_{*}\right)=\sigma^{2} I, A \sigma^{2} I B=0$. So $\frac{S S E}{\sigma^{2}}$ and $\frac{S S E}{\sigma^{2}}$ are independent. Thus $F=$ $\frac{\frac{S S D}{\sigma^{2} /\left(r-r_{1}\right)}}{\frac{S^{2} E}{\sigma^{2}} /(n-r)}=\frac{M S D}{M S E} \stackrel{H_{0}}{\sim} F\left(r-r_{1}, n-r\right)$.
(5) A complete ANOVA table

For the model with H_{0} we have

Source	SS	DF	MS	F	$P r>F$
Difference	SSD	$r-r_{1}$	MSD	MSD $/$ MSE	$P\left(F\left(r-r_{1}, n-r\right)>F_{o b}\right)$
Error	SSE 2	$n-r$	MSE		
Hypothesis	SSE $_{H}$	$n-r_{1}$			

L22 A general α-level F-test

1. α-level LRT
(1) The problem

For Model $Y \sim N\left(X \beta, \sigma^{2} \Sigma\right)$ with consistent $H_{0}: H \beta=b$ where $\operatorname{rank}(X)=r$ and $\operatorname{rank}\left[X\left(I-H^{+} H\right)\right]=r_{1}$, an ANOVA table has been obtained.

Source	SS	DF	MS	F	$\operatorname{Pr}>F$
Difference	SSD	$r-r_{1}$	MSD	MSD $/$ MSE	$P\left(F\left(r-r_{1}, n-r\right)>F_{o b}\right)$
Error	SSE 2	$n-r$	MSE		
Hypothesis	SSE $_{H}$	$n-r_{1}$			

We now need to develop an α-level LRT on H_{0}.
(2) Maximized likelihood function

For $Y \sim N\left(X \beta, \sigma^{2} \Sigma\right)$ let $\widehat{\beta} \in \operatorname{GLSE}_{\Sigma^{-1}}(\beta)$ and $\operatorname{SSE}=\|Y-X \widehat{\beta}\|_{\Sigma^{-1}}^{2}$. Then

$$
\begin{aligned}
L\left(\beta, \sigma^{2} \Sigma\right) & =\frac{1}{(2 \pi)^{n / 2}\left|\sigma^{2} \Sigma\right|^{1 / 2}} \exp \left[-\frac{1}{2 \sigma^{2}}(Y-X \beta)^{\prime} \Sigma^{-1}(Y-X \beta)\right] \leq L\left(\widehat{\beta}, \sigma^{2}\right) \\
& =\frac{1}{(2 \pi)^{n / 2}\left(\sigma^{2}\right)^{n / 2}|\Sigma|} \exp \left(-\frac{S S E}{2 \sigma^{2}}\right) \leq L\left(\widehat{\beta}, \frac{S S E}{n}\right) \\
& =\left(\frac{n}{2 \pi e}\right)^{n / 2} \cdot \frac{1}{|\Sigma|^{1 / 2}} \cdot S S E^{-n / 2} .
\end{aligned}
$$

Thus $\max \left[L\left(\beta, \sigma^{2}\right): \beta, \sigma^{2}\right]=\left(\frac{n}{2 \pi e}\right)^{n / 2} \cdot \frac{1}{|\Sigma|^{1 / 2}} \cdot S S E^{-n / 2}$.
(3) α-level LRT

$$
\begin{aligned}
& H_{0}: H \beta=b \text { vs } H_{a}: H \beta \neq b \\
& \text { Text Statistic: } F=\frac{M S D}{M S E} \\
& \text { Reject } H_{0} \text { if } F>F_{\alpha}\left(r-r_{1}, n-r\right)
\end{aligned}
$$

is an α-level LRT
Proof. With $F=\frac{M S D}{M S E}$, the likelihood ratio

$$
\begin{aligned}
\mathrm{LR} & =\frac{\max \left[L\left(\beta, \sigma^{2}\right): \beta, \sigma^{2}\right]}{\max \left(L L\left(\beta, \sigma^{2}\right): \sigma_{0}\right]}=\left(\frac{S S E_{H}}{S S E}\right)^{n / 2}=\left(1+\frac{S S E_{H}-S S E}{S S E}\right)^{n / 2} \\
& =\left(1+\frac{M S D}{M S E} \cdot \frac{r-r_{1}}{n-r}\right)^{n / 2}=\left(1+F \cdot \frac{r-r_{1}}{n-r}\right)^{n / 2}
\end{aligned}
$$

is an increasing function of F. So a test that rejects H_{0} when $F>c$ is a LRT.
For α-level test, c is determined by $\alpha=P\left(F>c \mid H_{0}\right)=P\left(F\left(r-r_{1}, n-r\right)>c\right)$.
So $c=F_{\alpha}\left(r-r_{1}, n-r\right)$.
Comment: p-value: $P\left(F\left(r-r_{1}, n-r\right)>F_{o b}\right)$.
Thus the key for implementing the test is to create the ANOVA table.
2. Implementation in regressions
(1) For $y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\epsilon$ with $H_{0}: H \beta=\binom{1}{5}$ where $H=\left(\begin{array}{llll}2 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right)$.

```
proc reg; model y=x1 x2 x3;
    test 2*intercept+x3=1, x1+x2=5;
    run;
```

displays

	MS	F	$\operatorname{Pr}>F$	
Numerator	MSD	2	MSD $/$ MSE	$P\left(F(2, n-4)>F_{o b}\right)$
Denominator	MSE	$n-4$		

Comments: Output for "test $\mathrm{x} 1=0$;" verifies the p-value in parameter table.
Output for "test $\mathrm{x} 1=0, \mathrm{x} 2=0, \mathrm{x} 3=0$;" verifies the p-value in Global ANOVA table.
(2) For $y=\beta_{1} x_{1}+\beta_{2} x 2+\beta_{3} x_{3}+\epsilon$ with $H_{0}: H \beta=\binom{1}{2}$ where $H=\left(\begin{array}{ccc}1 & -2 & 1 \\ 0 & 2 & 3\end{array}\right)$.

```
proc reg; model y=x1 x2 x3/noint;
    test x1-2*x2+x}3=1,2*x2+3*x3=2
    run;
```

displays

	MS	F	$\operatorname{Pr}>F$	
Numerator	MSD	2	MSD/MSE	$P\left(F(2, n-3)>F_{o b}\right)$
Denominator	MSE	$n-3$		

Comments: Output for "test $\mathrm{x} 1=0$;" verifies the p-value in parameter table.
Output for "test $\mathrm{x} 1=0, \mathrm{x} 2=0, \mathrm{x} 3=0$;" verifies the p-value in Global ANOVA table.
3. Decomposition of SS
(1) SS

A function $g(Y)$ of $Y \in R^{n}$ is a sum of squares (SS)
$\stackrel{d f}{\Longleftrightarrow}$ There exists a 1-1 mapping $Y \longleftrightarrow Y_{*}$ such that $g(Y)=Y_{*}^{\prime} A A^{+} Y_{*}$.
Comment: With $Z=A A^{+} Y_{*} \in R^{n}, g(Y)=\|Z\|^{2}=\sum_{i} Z_{i}^{2}$ is a sum of squares.
(2) A part of SS
$Y^{\prime} B B^{+} Y$ is part of $Y^{\prime} A A^{+} Y \stackrel{d f}{\Longleftrightarrow} B=A T$ for some T.
Comment: (i) $B=A T$ for some $T \quad \Longrightarrow \quad$ (ii) $B B^{+}=(A T)(A T)^{+}$

$$
\Longrightarrow \quad(\mathrm{iii}) A A^{+} B B^{+}=B B^{+} \Longrightarrow(\mathrm{i})
$$

(3) Decomposition of SS

If $Y^{\prime} B B^{+} Y$ is part of $Y^{\prime} A A^{+} Y$, then $Y^{\prime} A A^{+} Y$ has SS decomposition

$$
Y^{\prime} A A^{+} Y=Y^{\prime} B B^{+} Y+Y^{\prime}\left(A A^{+}-B B^{+}\right)\left(A A^{+}-B B^{+}\right)^{+} Y
$$

Comment: Under (iii) $A A^{+}-B B^{+}=\left(A A^{+}-B B^{+}\right)\left(A A^{+}-B B^{+}\right)^{+}=A A^{+}-B B^{+}$.

