L20: Global *F*-tests in linear models

- 1. A likelihood ratio test
 - (1) Maximized likelihood functions Model M: $Y \sim N(X\beta, \sigma^2 \Sigma)$ with $\operatorname{rank}(X) = r$ and SSE has $\max[L(\beta, \sigma^2) : \beta, \sigma^2] = \left(\frac{n}{2\pi e}\right)^{n/2} \cdot \frac{1}{|\Sigma|^{1/2}} \operatorname{SSE}^{-n/2}$. If under H_0 M is reduced to M_* : $Y \sim N(X_*\beta_*, \sigma^2 \Sigma)$ with $\operatorname{rank}(X_*) = r_*$ and SSE_* , $\max[L(\beta, \sigma^2) : H_0] = \left(\frac{1}{2\pi e}\right)^{n/2} \cdot \frac{1}{|\Sigma|^{1/2}} \operatorname{SSE}_*^{-n/2}$ Let $F = \frac{(SSE_* - SSE)/(r - r^*)}{MSE}$ where $\operatorname{MSE} = \frac{SSE}{n - r}$. (2) Likelihood ratio and LRT

 $LR = \frac{\max[L(\beta, \sigma^2): \beta, \sigma^2]}{\max[L(\beta, \sigma^2): H_0]} = \left(\frac{SSE_*}{SSE}\right)^{n/2} = \left(1 + \frac{SSE_* - SSE}{SSE}\right)^{n/2} = \left(1 + F \cdot \frac{r - r_*}{n - r}\right)^{n/2}$ is an increasing function of *F*. Therefore below is a LRT scheme.

H_0 :	vs H_a : H_0 is false
Test statist	ic: $F = \frac{(SSE_* - SSE)/(r - r_*)}{MSE}$
Reject H_0 i	
0 0	•

- 2. Two α -level LRTs
 - (1) Setting I

For Model M with $1_n \in \mathcal{R}(X)$ there exists an hypothesis H_0 , under H_0 M is reduced to $M_1: Y \sim N(1_n\gamma, \sigma^2\Sigma)$. For M and this H_0 there is ANOVA table

Source	\mathbf{SS}	DF	MS	F	Pr > F
Model	SSM	r-1	MSM	MSM/MSE	$P(F(r-1, n-r) > F_{ob})$
Error	SSE	n-r	MSE		
C.Total	C.SSTO	n-1			

(2) α -level LRT in Setting I

 $\begin{array}{ll} H_0: & \mathrm{vs} \ H_a: \ H_0 \ \mathrm{is} \ \mathrm{false} \\ \mathrm{Test \ statistic:} \ F = \frac{MSM}{MSE} \\ \mathrm{Reject} \ H_0 \ \mathrm{if} \ F > F_\alpha(r-1, \ n-r). \end{array}$

is an α -level LRT

Proof. Applying LRT scheme in 1 (2) to setting I,

$$F = \frac{(SSE_* - SSE)/(r - r_*)}{MSE} = \frac{(C.SSTO - SSE)/(r - 1)}{MSE} = \frac{SSM/(r - 1)}{MSE} = \frac{MSM}{MSE}.$$

$$P(F > F_{\alpha}(r - 1, n - r)|H_0) = P(F(r - 1, n - r) > F_{\alpha}(r - 1, n - r)) = \alpha.$$
Comment: *p*-value: $P(F(r - 1, n - r) > F_{ob}).$

(3) Setting II

Consider Model M with $1_n \notin \mathcal{R}(X)$ and H_0 : $\beta = 0$. Under H_0 , M is reduced to $M_0: Y \sim N(0, \sigma^2 \Sigma)$. For M and this H_0 there is ANOVA table

Source	SS	DF	MS	F	Pr > F
Model	SSM	r	MSM	MSM/MSE	$P(F(r, n-r) > F_{ob})$
Error	SSE	n-r	MSE		
U.Total	U.SSTO	n			

(4) α -level LRT in Setting II

 $\begin{array}{l} H_0: \ \beta = 0 \ \text{vs} \ H_a: \ \beta \neq 0 \\ \text{Test statistic:} \ F = \frac{MSM}{MSE} \\ \text{Reject} \ H_0 \ \text{if} \ F > F_\alpha(r, \ n-r). \end{array}$

Proof. Applying LRT scheme in 1 (2) to setting II,

$$F = \frac{(SSE_* - SSE)/(r - r_*)}{MSE} = \frac{(U.SSTO - SSE)/r}{MSE} = \frac{SSM/r)}{MSE} = \frac{MSM}{MSE}.$$

$$P(F > F_{\alpha}(r, n - r)|H_0) = P(F(r, n - r) > F_{\alpha}(r, n - r)) = \alpha.$$
Comment: *p*-value: $P(F(r, n - r) > F_{ob}).$

3. Global F-tests

The first question in study a particular linear model with data is "Is this model useful?"

(1) Regression with intercept

For regression $y = \beta_0 + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1} + \epsilon$, H_0 : The model is useless $\iff H_0$: $\beta_i = 0$ for all $i = 1, \dots, p-1$. Under H_0 the model is reduced to M_1 on data: $N(1_n\beta_0, \sigma^2 I_n)$. We have α -LRT

 $\begin{aligned} H_0: \ \beta_i &= 0 \text{ for all } i = 1, ..., p-1 \text{ vs } H_a: \ \beta \neq 0 \text{ for some } i = 1, ..., p-1 \\ \text{Test statistic: } F &= \frac{MSM}{MSE} \\ p\text{-value: } P(F(p-1, n-p) > F_{ob}). \end{aligned}$

This test can be carried out by using ANOVA table created by SAS

(2) Regression without intercept

For regression $y = \beta_1 x_1 + \dots + \beta_p x_p + \epsilon$,

 H_0 : The model is useless $\iff H_0$: $\beta_i = 0$ for all i = 1, ..., p. Under H_0 the model is reduced to M_0 on data: $N(0, \sigma^2 I_n)$ by H_0 . We have α -LRT

$$\begin{array}{l} H_0: \ \beta_i = 0 \ \text{for all} \ i = 1, ..., p \ \text{vs} \ H_a: \ \beta \neq 0 \ \text{for some} \ i = 1, ..., p \\ \text{Test statistic:} \ F = \frac{MSM}{MSE} \\ p\text{-value:} \ P(F(p, n-p) > F_{ob}). \end{array}$$

This test can be carried out by using ANOVA table created by SAS

proc reg; model y=x1 x2 x3/noint; run;

(3) One-way ANOVA

For one-way ANOVA $y = \mu_1 x_1 + \dots + \mu_p \mu_p + \epsilon$, H_0 : The model is useless $\iff H_0: \mu_i = \mu_j$ for all (i, j). Under H_0 the model is reduced to M_1 on data: $N(1_n \mu_1, \sigma^2 I_n)$. We have α -LRT

```
H_0: \mu_i = \mu_j \text{ for all } (i, j) \text{ vs } H_a: \mu_i \neq \mu_j \text{ for some } (i, j)
Test statistic: F = \frac{MSM}{MSE}
p-value: P(F(p-1, n-p) > F_{ob}).
```

This test can be carried out by using ANOVA table created by SAS

proc anova; class sample; model y=sample; run;