L18 χ^{2}-distributions in ANOVA tables

1. χ^{2}-distributions in ANOVA table I
(1) χ^{2}-distributions

Recall: $X \sim N(\mu, \Sigma), A \Sigma A=A=A^{\prime} \Longrightarrow X^{\prime} A X \sim \chi^{2}\left(\mu^{\prime} A \mu, \operatorname{tr}(A \Sigma)\right)$.
(2) ANOVA table for M: $Y \sim N\left(X \beta, \sigma^{2} \Sigma\right)$ where $\mathcal{R}(1) \subset \mathcal{R}(X)$ and $\operatorname{rank}(X)=r$.

Source	SS	DF
Model	$\mathrm{SSM}=\left(\Sigma^{-1 / 2} Y\right)^{\prime}\left[\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}-\left(\Sigma^{-1 / 2} 1\right)\left(\Sigma^{-1 / 2} 1\right)^{+}\right]\left(\Sigma^{-1 / 2} Y\right)$	$r-1$
Error	$\mathrm{SSE}=\left(\Sigma^{-1 / 2} Y\right)^{\prime}\left[I-\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}\right]\left(\Sigma^{-1 / 2} Y\right)$	$n-r$
C.Total	$\mathrm{C} . S S T O=\left(\Sigma^{-1 / 2} Y\right)^{\prime}\left[I-\left(\Sigma^{-1 / 2} 1\right)\left(\Sigma^{-1 / 2} 1\right)^{+}\right]\left(\Sigma^{-1 / 2} Y\right)$	$n-1$

(3) χ^{2}-distributions in ANOVA table I

Note that there is H_{0} under which model M is reduced to $M_{1}: Y \sim N\left(1_{n} \gamma, \sigma^{2} \Sigma\right)$.
(i) $\frac{\text { SSE }}{\sigma^{2}} \sim \chi^{2}(n-r)$
(ii) $\frac{\text { SSM }}{\sigma^{2}} \stackrel{H_{0}}{\sim} \chi^{2}(r-1)$
(iii) $\frac{\text { C.SSTO }}{n-1} \stackrel{H_{0}}{\sim} \chi^{2}(n-1)$

Proof. (i) $Y \sim N\left(X \beta, \sigma^{2} \Sigma\right) \Longrightarrow \Sigma^{-1 / 2} Y \sim N\left(\Sigma^{-1 / 2} X \beta, \sigma^{2} I_{n}\right)$.

$$
\frac{\text { SSE }}{\sigma^{2}}=\left(\Sigma^{-1 / 2} Y\right)^{\prime} A\left(\Sigma^{-1 / 2} Y\right) \text { where } A=\frac{I-\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}}{\sigma^{2}} .
$$

$$
\text { But } A \sigma^{2} I A=A=A^{\prime},\left(\Sigma^{-1 / 2} X \beta\right)^{\prime} A\left(\Sigma^{-1 / 2} X \beta\right)=0 \text { and } \operatorname{tr}\left(A \sigma^{2} I\right)=n-r \text {. }
$$

$$
\text { So } \frac{\text { SSE }}{\sigma^{2}} \sim \chi^{2}(n-r) .
$$

(ii) Under $H_{0}, Y \sim N\left(1_{n} \gamma, \sigma^{2} \Sigma\right) \Longrightarrow \Sigma^{-1 / 2} Y \sim N\left(\Sigma^{-1 / 2} 1_{n} \gamma, \sigma^{2} I_{n}\right)$.
$\frac{S S M}{\sigma^{2}}=\left(\Sigma^{-1 / 2} Y\right)^{\prime} A\left(\Sigma^{-1 / 2} Y\right)$ where $A=\frac{\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}-\left(\Sigma^{-1 / 2} 1_{n}\right)\left(\Sigma^{-1 / 2} 1_{n}\right)^{+}}{\sigma^{2}}$.
But $A \sigma^{2} I_{n} A=A=A^{\prime},\left(\Sigma^{-1 / 2} 1_{n} \gamma\right)^{\prime} A\left(\Sigma^{-1 / 2} 1_{n} \gamma\right)=0, \operatorname{tr}\left(A \sigma^{2} I_{n}\right)=r-1$.
So under $H_{0}, \frac{\text { SSM }}{\sigma^{2}} \sim \chi^{2}(r-1)$.
(iii) Under $H_{0}, Y \sim N\left(1_{n} \gamma, \sigma^{2} \Sigma\right) \Longrightarrow \Sigma^{-1 / 2} Y \sim N\left(\Sigma^{-1 / 2} 1_{n} \gamma, \sigma^{2} I_{n}\right)$.
$\frac{C . S S T O}{\sigma^{2}}=\left(\Sigma^{-1 / 2} Y\right)^{\prime} A\left(\Sigma^{-1 / 2} Y\right)$ where $A=\frac{I-\left(\Sigma^{-1 / 2} 1_{n}\right)\left(\Sigma^{-1 / 2} 1_{n}\right)^{+}}{\sigma^{2}}$.
But $A \sigma^{2} I_{n} A=A=A^{\prime},\left(\Sigma^{-1 / 2} 1_{n} \gamma\right)^{\prime} A\left(\Sigma^{-1 / 2} 1_{n} \gamma\right)=0, \operatorname{tr}\left(A \sigma^{2} I_{n}\right)=n-1$.
So under $H_{0}, \frac{\text { C.SSTO }}{\sigma^{2}} \sim \chi^{2}(n-1)$.
Ex1: For $Y \sim N\left(X \beta, \sigma^{2} I_{n}\right)$ with $\mathcal{R}\left(1_{n}\right) \subset \mathcal{R}(X)$, in ANOVA table

Source	SS	DF
Model	$\mathrm{SSM}=Y^{\prime}\left(X X^{+}-1_{n} 1_{n}^{+}\right) Y$	$r-1$
Error	$\mathrm{SSE}=Y^{\prime}\left(I_{n}-X X^{+}\right) Y$	$n-r$
C.Total	$\mathrm{C} . \mathrm{SSTO}=Y^{\prime}\left(I_{n}-1_{n} 1_{n}^{+}\right) Y$	$n-1$

$\frac{\mathrm{SSM}}{\sigma^{2}} \stackrel{H_{0}}{\sim} \chi^{2}(r-1), \frac{\mathrm{SSE}}{\sigma^{2}} \sim \chi^{2}(n-r)$ and $\frac{\text { C.SSTO }}{\sigma^{2}} \stackrel{H_{0}}{\sim} \chi^{2}(n-1)$.
2. χ^{2}-distributions in ANOVA table II
(1) ANOVA table for $\mathrm{M}: ~ Y \sim N\left(X \beta, \sigma^{2} \Sigma\right)$ where $\mathcal{R}(1) \not \subset \mathcal{R}(X)$ and $\operatorname{rank}(X)=r$.

Source	SS	DF
Model	SSM $=\left(\Sigma^{-1 / 2} Y\right)^{\prime}\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}\left(\Sigma^{-1 / 2} Y\right)$	r
Error	SSE $=\left(\Sigma^{-1 / 2} Y\right)^{\prime}\left[I-\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}\right]\left(\Sigma^{-1 / 2} Y\right)$	$n-r$
U.Total	U.SSTO $=\left(\Sigma^{-1 / 2} Y\right)^{\prime} I_{n}\left(\Sigma^{-1 / 2} Y\right)$	n

(2) χ^{2}-distributions in ANOVA table II

Note that under $H_{0}: \beta=0$ model M is reduced to $M_{0}: Y \sim N\left(0, \sigma^{2} \Sigma\right)$.
(i) $\frac{\mathrm{SSE}}{\sigma} \sim \chi^{2}(n-r)$
(ii) $\frac{\mathrm{SSM}}{\sigma^{2}} \stackrel{H_{0}}{\sim} \chi^{2}(r)$
(iii) $\frac{\mathrm{U} . \mathrm{SSTO}}{n} \stackrel{H_{0}}{\sim} \chi^{2}(n)$

Proof. (i) See 1 (3) (i).
(ii) Under $H_{0}: \beta=0, Y \sim N\left(0, \sigma^{2} \Sigma\right) \Longrightarrow \Sigma^{-1 / 2} Y \sim N\left(0, \sigma^{2} I_{n}\right)$.
$\frac{S S M}{\sigma^{2}}=\left(\Sigma^{-1 / 2} Y\right)^{\prime} A\left(\Sigma^{-1 / 2} Y\right)$ where $A=\frac{\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}}{\sigma^{2}}$.
But $A \sigma^{2} I_{n} A=A=A^{\prime}, 0^{\prime} A 0=0, \operatorname{tr}\left(A \sigma^{2} I_{n}\right)=r$.
So under H_{0}, $\frac{\text { SSM }}{\sigma^{2}} \sim \chi^{2}(r)$.
(iii) Under $H_{0}: \beta=0, Y \sim N\left(0, \sigma^{2} \Sigma\right) \Longrightarrow \Sigma^{-1 / 2} Y \sim N\left(0, \sigma^{2} I_{n}\right)$.
$\frac{U . S S T O}{\sigma^{2}}=\left(\Sigma^{-1 / 2} Y\right)^{\prime} A\left(\Sigma^{-1 / 2} Y\right)$ where $A=\frac{I_{n}}{\sigma^{2}}$.
But $A \sigma^{2} I_{n} A=A=A^{\prime}, 0^{\prime} A 0=0, \operatorname{tr}\left(A \sigma^{2} I_{n}\right)=n$.
So under $H_{0}, \frac{\text { U.SSTO }}{\sigma^{2}} \sim \chi^{2}(n)$.
Ex2: For $Y \sim N\left(X \beta, \sigma^{2} I_{n}\right)$ with $\mathcal{R}\left(1_{n}\right) \not \subset \mathcal{R}(X)$, in ANOVA table

Source	SS	DF
Model	$\mathrm{SSM}=Y^{\prime} X X^{+} Y$	r
Error	$\mathrm{SSE}=Y^{\prime}\left(I_{n}-X X^{+}\right) Y$	$n-r$
U.Total	U.SSTO $=Y^{\prime} I_{n} Y$	n

$\frac{\text { SSM }}{\sigma^{2}} \stackrel{H_{0}}{\sim} \chi^{2}(r), \frac{\mathrm{SSE}}{\sigma^{2}} \sim \chi^{2}(n-r)$ and $\frac{\mathrm{U} . \mathrm{SSTO}}{\sigma^{2}} \stackrel{H_{0}}{\sim} \chi^{2}(n)$.
3. UE for σ^{2} and MS in ANOVA table
(1) MS in ANOVA table I

Define MSE $=\frac{\text { SSE }}{n-r}, \mathrm{MSM}=\frac{\mathrm{SSM}}{r-1}, \mathrm{MSTO}=\frac{\mathrm{C} . \mathrm{SSTO}}{n-1}$. Then MSE is an UE for σ^{2}, MSM and MSTO are UEs for σ^{2} under H_{0} in Model M_{1}.
Proof. $E\left(\frac{\mathrm{SSE}}{\sigma^{2}}\right)=E\left[\chi^{2}(n-r)\right]=n-r \Longrightarrow E(\mathrm{MSE})=\sigma^{2}$.

$$
\begin{aligned}
& E\left(\frac{\mathrm{SSM}}{\sigma^{2}}\right) \xlongequal{H_{0}} E\left[\chi^{2}(r-1)\right]=r-1 \Longrightarrow E(\mathrm{MSM}) \xlongequal{H_{0}} \sigma^{2} . \\
& E\left(\frac{\mathrm{C} \cdot \mathrm{SSTO}}{\sigma^{2}}\right)=E\left[\chi^{2}(n-1)\right]=n-1 \Longrightarrow E(\mathrm{MSTO})=\sigma^{2} .
\end{aligned}
$$

(2) MS in ANOVA table II

Define MSE $=\frac{\mathrm{SSE}}{n-r}, \mathrm{MSM}=\frac{\mathrm{SSM}}{r}, \mathrm{MSTO}=\frac{\mathrm{U} . \mathrm{SSTO}}{n}$. Then MSE is an UE for σ^{2}, MSM and MSTO are UEs for σ^{2} under $H_{0}: \beta=0$ in Model M_{0}.
Proof. Skipped.
(3) Updated ANOVA tables

Source	SS	DF	MS				
Model	SSM	$r-1$	MSM	Source	SS	DF	MS
Model	SSM	r	MSM				
Error	SSE	$n-r$	MSE	Error	SSE	$n-r$	MSE
C.Total	C.SSTO	$n-1$	MSTO	U.Total	U.SSTO	n	MSTO

L19 F-distributions in ANOVA tables

1. F-distribution in ANOVA table I
(1) F-distributions

Recall: $X^{2} \sim \chi^{2}\left(r_{1}\right)$ and $Y^{2} \sim \chi^{2}\left(r_{2}\right)$ are independent $\Longrightarrow F=\frac{X^{2} / r_{1}}{Y^{2} / r_{2}} \sim F\left(r_{1}, r_{2}\right)$.
$X \sim N(\mu, \Sigma), A^{\prime}=A, B^{\prime}=B$ and $A \Sigma B=0 \Longrightarrow X^{\prime} A X$ and $X^{\prime} B X$ are independent.
(2) ANOVA table I

For Model M: $Y \sim N\left(X \beta, \sigma^{2} \Sigma\right)$ with $1_{n} \in \mathcal{R}(X)$ and $\operatorname{rank}(X)=r$ there exists H_{0}. Under $H_{0} \mathrm{M}$ is reduced to $M_{1}: Y \sim N\left(1_{n} \gamma, \sigma^{2} \Sigma\right)$. So $\Sigma^{-1 / 2} Y \stackrel{H_{0}}{\sim} N\left(\Sigma^{-1 / 2} 1_{n} \gamma, \sigma^{2} I_{n}\right)$. For this model M and H_{0},

Source	SS	DF	MS	F	$P r>F$
Model	SSM	$r-1$	MSM	MSM/MSE	$P\left(F(r-1, n-r)>F_{o b}\right)$
Error	SSE	$n-r$	MSE		
C.Total	C.SSTO	$n-1$			

(3) F-distribution in Table I
$F=\frac{\text { MSM }}{\text { MSE }} \stackrel{H_{0}}{\sim} F(r-1, n-r)$.
Proof. $F=\frac{\text { MSM }}{\text { MSE }}=\frac{\frac{\text { SSM }}{\sigma^{2}} /(r-1)}{\frac{\text { SSE }}{\sigma^{2}} /(n-r)}$ where $\frac{\text { SSM }}{\sigma^{2}} \stackrel{H_{0}}{\sim} \chi^{2}(r-1)$ and $\frac{\text { SSE }}{\sigma^{2}} \sim \chi^{2}(n-r)$.
To have $F \stackrel{H_{0}}{\sim} F(r-1, n-r)$ we need the independence of $\frac{\text { SSM }}{\sigma^{2}}$ and $\frac{\text { SSE }}{\sigma^{2}}$ under H_{0}. But $\frac{\text { SSM }}{\sigma^{2}}=\left(\Sigma^{-1 / 2} Y\right)^{\prime} A\left(\Sigma^{-1 / 2} Y\right)$ where $A=\frac{\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}-\left(\Sigma^{-1 / 2} 1_{n}\right)\left(\Sigma^{-1 / 2} 1_{n}\right)^{+}}{\sigma^{2}}$ and $\frac{\mathrm{SSE}}{\sigma^{2}}=\left(\Sigma^{-1 / 2} Y\right)^{\prime} B\left(\Sigma^{-1 / 2} Y\right)$ where $B=\frac{I-\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}}{\sigma^{2}}$.
Clearly, $A \sigma^{2} I_{n} B=0$. So $\frac{\mathrm{SSM}}{\sigma^{2}}$ and $\frac{\mathrm{SSE}}{\sigma^{2}}$ are independent under H_{0}.
Conclusion follows.
Comment: We now have completed ANOVA table in (2)
2. F-distribution in ANOVA table II
(1) ANOVA table II

Model M: $Y \sim N\left(X \beta, \sigma^{2} \Sigma\right)$ with $1_{n} \notin \mathcal{R}(X)$ and $\operatorname{rank}(X)=r$ under $H_{0}: \beta=0$ is reduced to $M_{0}: Y \sim N\left(0, \sigma^{2} \Sigma\right)$. So $\Sigma^{-1 / 2} Y \stackrel{H_{0}}{\sim} N\left(0, \sigma^{2} I_{n}\right)$. For this Model M and $H_{0}: \beta=0$,

Source	SS	DF	MS	F	$P r>F$
Model	SSM	r	MSM	MSM $/$ MSE	$P\left(F(r, n-r)>F_{o b}\right)$
Error	SSE	$n-r$	MSE		
U.Total	U.SSTO	n			

(2) $F=$ distribution in ANOVA table II
$F=\frac{\text { MSM }}{\text { MSE }} \stackrel{H_{0}}{\sim} F(r, n-r)$.
Proof. $F=\frac{\mathrm{MSM}}{\mathrm{MSE}}=\frac{\frac{\mathrm{SSM}}{\sigma^{2}} /(r)}{\frac{\mathrm{SSE}}{\sigma^{2}} /(n-r)}$ where $\frac{\mathrm{SSM}}{\sigma^{2}} \stackrel{H_{0}}{\sim} \chi^{2}(r)$ and $\frac{\text { SSE }}{\sigma^{2}} \sim \chi^{2}(n-r)$. To have $F \stackrel{H_{0}}{\sim} F(r, n-r)$ we need the independence of $\frac{\mathrm{SSM}}{\sigma^{2}}$ and $\frac{\mathrm{SSE}}{\sigma^{2}}$ under H_{0}.

But $\frac{\text { SSM }}{\sigma^{2}}=\left(\Sigma^{-1 / 2} Y\right)^{\prime} A\left(\Sigma^{-1 / 2} Y\right)$ where $A=\frac{\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}}{\sigma^{2}}$ and $\frac{\text { SSE }}{\sigma^{2}}=\left(\Sigma^{-1 / 2} Y\right)^{\prime} B\left(\Sigma^{-1 / 2} Y\right)$ where $B=\frac{I-\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}}{\sigma^{2}}$.
Clearly, $A \sigma^{2} I_{n} B=0$. So $\frac{\text { SSM }}{\sigma^{2}}$ and $\frac{\text { SSE }}{\sigma^{2}}$ are independent under H_{0}.
Conclusion follows.
Comment: (1) gives a completed ANOVA table.
3. Computation for ANOVA tables
(1) Regression with intercept

Regression with intercept $y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon$ has data $Y \sim N\left(X \beta, \sigma^{2} I_{n}\right)$ where $X \in$ $R^{n \times 3}$ has rank 3 , and its first column is 1_{n}. This model is reduced to $Y \sim N\left(1_{n} \beta_{0}, \sigma^{2} I_{n}\right)$ under $H_{0}: \beta_{1}=0$ and $\beta_{2}=0$. Thus the model with H_{0} has ANOVA table I.

```
data a;
    infile "D:\ex.txt";
    input y x1 x2 @@;
proc reg;
    model y=x1 x2;
    run;
```

SAS output displays the ANOVA Table I.
(2) Regression without intercept

Regression without intercept $y=\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon$ has data $Y \sim N\left(X \beta, \sigma^{2} I_{n}\right)$. Here $X \in R^{n \times 2}$ has full column rank, but $1_{n} \notin \mathcal{R}(X)$. Under $H_{0}: \beta_{1}=0$ and $\beta_{2}=0$ the reduced model is $Y \sim N\left(0, \sigma^{2} I_{n}\right)$. Thus the model with H_{0} has ANOVA Table II

```
proc reg;
    model y=x1 x2/noint;
    run;
```

SAS output displays the ANOVA Table II.
(3) One-way ANOVA
$y=\mu_{1} I_{1}+\mu_{2} I_{2}+\mu_{3} I_{3}+\epsilon$ is ANOVA model with one factor and three levels. Here I_{i} is the indicator for the i th level, i.e., $I_{i}=\left\{\begin{array}{ll}0 & \text { if } y \text { is not the response to level } i \text { of the factor } \\ 1 & \text { if } y \text { is the response to level } i \text { of the factor }\end{array}\right.$.
This model has data $Y \sim N\left(J \mu, \sigma^{2} I_{n}\right)$. Here $J=\left(\begin{array}{ccc}1_{n_{1}} & 0 & 0 \\ 0 & 1_{n_{2}} & 0 \\ 0 & 0 & 1_{n_{3}}\end{array}\right), \mu=\left(\begin{array}{l}\mu_{1} \\ \mu_{2} \\ \mu_{3}\end{array}\right)$.
Under $H_{0}: \mu_{1}=\mu_{2}=\mu_{3}$ the model is reduced to $Y \sim N\left(1_{n} \mu_{1}, \sigma^{2} I_{n}\right)$. So it has ANOVA table I.

```
data a;
    infile "D:\ex3.txt";
    input y Sname $ @@;
proc anova;
    class Sname;
    model y=Sname;
    run;
```

SAS output displays the ANOVA Table I.

