
L16: l′β in regression

1. Confidence interval for E(y)

(1) Confidence interval for E[y(x0)].
For regression y ∼ N(β0 + β1x1 + · · · + βp−1xp−1, σ

2) with data Y ∼ N(Xβ, σ2In),
E(y) = β0+β1x1+· · ·+βp−1xp−1 is the regression function. With x0 = (1, x01, ...x0,p−1)

′,
E[y(x0)] = β0 + β1x01 + · · ·+ βp−1x0,p−1 = x′0β is of the type of l′β and has 1− α CI

E[y(x0)] = x′0β ∈ x′0β̂ ± tα/2(n− p)S
x′
0β̂

= ŷ(x0)± tα/2(n− p)Sŷ(x0)

where ŷ(x0) = x′0β̂ = β̂0 + β̂1x01 + · · · + β̂p−1x0,p−1, β̂ = X+Y = (X ′X)−1X ′Y ,
S2
ŷ(x0)

= S2
x′
0β̂

= MSE x′0(X
′X)−1x0.

(2) Computation by SAS

Ex1: Suppose for y ∼ N(β0 + β1x1 + β2x2, σ
2) we need 90% confidence interval for

E[y(x0)] where x0 = (1, 3, −2)′.

data a; infile "D:\ex.dat"; input y x1 x2;

data b; input y x1 x2; datalines;

. 3 -2

;

data c; set a b;

proc reg;

model y=x1 x2/p alpha=0.10 clm;

run;

The output displays yi, ŷi, yi − ŷi, Sŷi and 90% CI for E(yi) for all i = 1, ..., n.
For x0 = (1, 3, −2)′, ŷ(x0), Sŷ(x0) and 90% CI for E[y(x0)] are displayed.

2. Prediction intervals

(1) Definitions
Two different concepts
Suppose yf = y(x0) is a future response with mean E[y(x0)] = x′0β where vector x0 is
given but y(x0) has not been observed yet. Suppose L < U are two statistics and we
predict that y(x0) ∈ (L, U). Then (L, U) is called a prediction interval for y(x0). If
P (L < y(x0) < U) ≥ 1−α, then (L, U) is a prediction interval for y(x0) with confidence
coefficient 1− α.

(2) Predictors and estimators
Recall Statistic ŷ is an UP for y(x0) ⇐⇒ Statistic ŷ is an UE for E[y(x0)] = x′0β.
If yf = y(x0) is independent to the data vector Y , then
Statistic ŷ is a BLUP for y(x0) ⇐⇒ Statistic ŷ is a BLUE for E[y(x0)] = x′0β.

(3) Prediction interval
Suppose yf = y(x0) is independent to data vector Y , then

y(x0) ∈ ŷ(x0)± tα/2(n− p)Sy(x0)−ŷ(x0)

is a 1 − α PI for y(x0) where ŷ(x0) = x′0β̂ = β̂0 + β̂1x01 + · · · + β̂p−1x0,p−1,

β̂ = (X ′X)−1X ′Y , S2
y(x0)−ŷ(x0)

= S2
y(x0)

+ S2
ŷ(x0)

= MSE
[
1 + x′0(X

′X)−1x0
]
.
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Proof. y(x0) ∼ N(x′0β, σ
2) and ŷ(x0) = x′0β̂ ∼ N(x′0β, σ

2x′0(X
′X)−1x0) are indepen-

dent. So y(x0)− ŷ(x0) ∼ N(0, σ2 + σ2x′0(X
′X)−1x0) has the variance

σ2
y(x0)−ŷ(x0)

= σ2
[
1 + x′

0(X
′X)−1x0

]
estimated by S2

y(x0)−ŷ(x0)
= MSE

[
1 + x′

0(X
′X)−1x0

]
.

Here S2
y(x0)−ŷ(x0)

= σ2
y(x0)−ŷ(x0)

MSE
σ2 .

Note that y(x0)−ŷ(x0)
σy(x0)−ŷ(x0)

∼ N(0, 12) and SSE
σ2 ∼ χ2(n− p) are independent.

Thus t = y(x0)−ŷ(x0)

σy(x0)−ŷ(x0)

√
SSE

σ2(n−p)

∼ t(n− p), i.e., y(x0)−ŷ(x0)
Sy(x0)−ŷ(x0)

∼ t(n− p). Therefore

1− α = P (−tα/2(n− p) < t(n− p) < tα/2(n− p))

= P
(
−tα/2(n− p) < y(x0)−ŷ(x0)

Sy(x0)−ŷ(x0)
< tα/2(n− p)

)
= P

(
ŷ(x0)− tα/2(n− p)Sy(x0)−ŷ(x0) < y(x0) < ŷ(x0) + tα/2(n− p)Sy(x0)−ŷ(x0)

)
.

Hence ŷ(x0)± tα/2(n− p)Sy(x0)−ŷ(x0) is a 1− α PI for y(x0).

(4) SAS

Ex2: For the model and y(x0) in Ex1, find 90% prediction interval for y(x0).

proc reg;

model y=x1 x2/p alpha=0.10 cli;

run;

The output displays yi, ŷi, yi − ŷi, Sŷi and 90% PI for yi for all i = 1, ..., n.
For x0 = (1, 3, −2)′, ŷ(x0), Sŷ(x0) and 90% PI for y(x0) are displayed.

3. F -test on l′β

(1) F -test on l′β
To implement the test

H0 : l
′β = 0 vs Ha : l′β ̸= b

Test Statistic: F = (l′β̂−b)′[l′(X′X)−1l]−1(l′β̂−b)

MSE
p-value: P (F (1, n− p) > Fob)

we need a computation table

MS DF F p

Numerator (l′β̂ − b)′[l′(X ′X)−1l]−1(l′β̂ − b) 1 Fob p-value
Denominator MSE n− p

(2) SAS

Ex3: Suppose we need to test H0 : 2β0 − 3β1 + β2 = −2 vs Ha : 2β0 − 3β1 + β2 ̸= −2.
The output of SAS code below will display the computation table

proc reg;

model y=x1 x2;

test 2*intercept-3*x1+x2=-2;

run;
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L17: ANOVA table

1. SSE

(1) Model M
For model M: Y = Xβ + ϵ, ϵ ∼ N(0, σ2In), β is estimated by its LSE β̂ that satisfies
∥Y − Xβ̂∥2 ≤ ∥Y − Xβ∥2 for all β. Then E(Y ) = Xβ is estimated by its BLUE
Ŷ = Xβ̂ = XX+Y . So ∥Y − Ŷ ∥2 = ∥Y − Xβ̂∥2 = ∥Y − XX+Y ∥2 is minimized
∥Y −Xβ∥2.

(2) Notation
∥Y − Ŷ ∥2 =

∑
i(yi − ŷi)

2 is a sum of squares (SS). This SS measures the error of the
Model M and hence is denoted as SSE. So SSE is the variation in Y unexplained by the
Model M.

(3) DF
SSE = ∥Y − XX+Y ∥2 = ∥(I − XX+)Y ∥2 = Y ′(I − XX+)Y is a quadratic form
of Y with matrix I − XX+. The rank of this matrix is called the DF of SSE. But
rank(I −XX+) = n− rank(X) = n− r. So we have

Source SS DF
Error SSE= Y ′(I −XX+)Y n− r

Ex1: For model Y = Xβ + ϵ, ϵ ∼ N(0, σ2Σ), β is estimated by its GLSE that satisfies
∥Y −Xβ̂∥2Σ−1 ≤ ∥Y −Xβ∥2Σ−1 for all β. Then E(Y ) = Xβ is estimated by its BLUE

Ŷ = Xβ̂ = X(Σ−1/2X)+Σ−1Y . Thus

SSE = ∥Y − Ŷ ∥2Σ−1 = ∥Y −X(Σ−1/2X)+Σ−1/2Y ∥2Σ−1

= ∥(Σ−1/2Y )− (Σ−1/2X)(Σ−1/2X)(Σ−1/2Y )∥2
= (Σ−1Y )′

[
I − (Σ−1/2X)(Σ−1/2X)+

]
(Σ−1/2Y ).

with DF= n− r.

2. ANOVA table for Model M with R(1n) ⊂ R(X).

(1) C.SSTO
R(1n) ⊂ R(X) implies that Model M1 : Y = 1nµ + ϵ, ϵ ∼ N(0, σ2In) is a special case
of Model M. Thus there exists a hypothesis H0 under which the reduced model is Model
M1. For this reduced model SSE0 = ∥Y − 1nµ̂∥2 = ∥Y − 1nY ∥2 = ∥Y − 1n1

+
n Y ∥2.

SSE0 = ∥Y − 1nY ∥2 =
∑

i(yi − Y )2 is the CSS of Y .
CSS measures the total variation in Y and is denoted as C.SSTO.

C.SSTO= ∥Y − 11+Y ∥2 = Y ′(I − 11+)Y with DF rank(I − 11+) = n− 1.

(2) SSD
The difference between the estimated mean of Y in the Models M and M1 is

SSD = ∥XX+Y − 11+Y ∥2 = ∥(XX+ − 11+)Y ∥2.
The symmetric matrix XX+ − 11+ is idempotent as shown below.
R(1) ⊂ R(X) =⇒ 1n = Xh for some h =⇒ XX+11+ = XX+Xh1+ = Xh1+ = 11+.
So 11+XX+ = (XX+11+)′ = (11+)′ = 11+. Thus

(XX+ − 11+)(XX+ − 11+) = XX+ − 11+ − 11+ + 11+ = XX+ − 11+.
Therefore SSD = ∥(XX+ − 11+)Y ∥2 = Y ′(XX+ − 11+)Y .

(3) SSM
Note that
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Total variation in Y −Variation unexplained by Model M = C.SSTO-SSE
= Y ′(I − 11+)Y − Y ′(I −XX+)Y = Y ′(XX+ − 11+)Y = SSD.

Tus SSD is the variation in Y explained by Model M and hence is denoted as SSM.
Clearly the DF of SSM is rank(XX+ − 11+) = r − 1. So we have ANOVA table

Source SS DF
Model SSM= Y ′(XX+ − 11+)Y r − 1
Error SSE= Y ′(I −XX+)Y n− r
C.Total C.SSTO= Y ′(I − 11+)Y n− 1

Ex2: For M1 : Y = 1nµ+ ϵ, ϵ ∼ N(0, σ2Σ),

SSE0 = ∥Y − 1nµ̂∥2Σ−1 = ∥Y − 1n(Σ
−1/21n)

+(Σ−1/2Y )∥2Σ−1

= ∥(Σ−1/2Y )− (Σ−1/21)+(Σ−1/21)(Σ−1/2Y )∥2
= (Σ−1/2Y )′

[
I − (Σ−1/21n)(Σ

−1/21n)
+
]
(Σ−1/2Y ).

So one can have ANOVA table

Source SS DF

Model SSM= Y ′ [(Σ−1/2X)(Σ−1/2X)+ − (Σ−1/21)(Σ−1/21)+
]
(Σ−1/2Y ) r − 1

Error SSE= (Σ−1/2Y )′
[
I − (Σ−1/2X)(Σ−1/2X)+

]
(Σ−1/2Y ) n− r

C.Total C.SSTO= (Σ−1/2Y )′
[
I − (Σ−1/21)(Σ−1/21)+

]
(Σ−1/2Y ) n− 1

3. ANOVA table for Model M, R(1n) ̸⊂ R(X)

(1) U.SSTO
Model M Y = Xβ+ϵ, ϵ ∼ N(0, σ2In) whereR(1n) ̸⊂ R(X), underH0 : β = 0 is reduced
to Model M0 : Y = 0 + ϵ, ϵ ∼ N(0, σ2In). For this reduced model SSE0 =
∥Y − 0∥2 =

∑
i y

2
i is the uSS of Y .

This uss gives the total variation in Y and is denoted as u.SSTO.
C.SSTO= ∥Y ∥2 = Y ′InY has DF rank(I) = n.

(2) SSD
The difference between the estimated mean of Y in the Models M and M0 is

SSD = ∥XX+Y − 0∥2 = ∥XX+Y ∥2 = Y ′XX+Y . Note that

Total variation in Y −Variation unexplained by Model M = U.SSTO-SSE
= Y ′InY − Y ′(I −XX+)Y = Y ′XX+Y = SSD.

Thus SSD is the variation in Y explained by Model M and hence is denoted as SSM.
Clearly the DF of SSM is rank(XX+) = r. So we have ANOVA table

Source SS DF
Model SSM= Y ′XX+Y r
Error SSE= Y ′(I −XX+)Y n− r
C.Total U.SSTO= Y ′InY n

Ex3: The regression model without intercept, y = β1x1 + · · · + βpxp + ϵ, ϵ ∼ N(0, σ2)
has data Y ∼ N(Xβ, σ2In) where R(1n) ̸⊂ R(X). So it has ANOVa table in (2).
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