L16: $l'\beta$ in regression

- 1. Confidence interval for E(y)
 - (1) Confidence interval for $E[y(x_0)]$. For regression $y \sim N(\beta_0 + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1}, \sigma^2)$ with data $Y \sim N(X\beta, \sigma^2 I_n)$, $E(y) = \beta_0 + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1}$ is the regression function. With $x_0 = (1, x_{01}, \dots x_{0,p-1})'$, $E[y(x_0)] = \beta_0 + \beta_1 x_{01} + \dots + \beta_{p-1} x_{0,p-1} = x'_0 \beta$ is of the type of $l'\beta$ and has $1 - \alpha$ CI

$$E[y(x_0)] = x_0'\beta \in x_0'\widehat{\beta} \pm t_{\alpha/2}(n-p)S_{x_0'\widehat{\beta}} = \widehat{y}(x_0) \pm t_{\alpha/2}(n-p)S_{\widehat{y}(x_0)}$$

where $\hat{y}(x_0) = x'_0 \hat{\beta} = \hat{\beta}_0 + \hat{\beta}_1 x_{01} + \dots + \hat{\beta}_{p-1} x_{0,p-1}, \ \hat{\beta} = X^+ Y = (X'X)^{-1} X' Y,$ $S^2_{\hat{y}(x_0)} = S^2_{x'_0 \hat{\beta}} = \text{MSE } x'_0 (X'X)^{-1} x_0.$

(2) Computation by SAS

Ex1: Suppose for $y \sim N(\beta_0 + \beta_1 x_1 + \beta_2 x_2, \sigma^2)$ we need 90% confidence interval for $E[y(x_0)]$ where $x_0 = (1, 3, -2)'$.

```
data a; infile "D:\ex.dat"; input y x1 x2;
data b; input y x1 x2; datalines;
. 3 -2
;
data c; set a b;
proc reg;
    model y=x1 x2/p alpha=0.10 clm;
run;
```

The output displays y_i , \hat{y}_i , $y_i - \hat{y}_i$, $S_{\hat{y}_i}$ and 90% CI for $E(y_i)$ for all i = 1, ..., n. For $x_0 = (1, 3, -2)'$, $\hat{y}(x_0)$, $S_{\hat{y}(x_0)}$ and 90% CI for $E[y(x_0)]$ are displayed.

- 2. Prediction intervals
 - (1) Definitions

Two different concepts

Suppose $y_f = y(x_0)$ is a future response with mean $E[y(x_0)] = x'_0\beta$ where vector x_0 is given but $y(x_0)$ has not been observed yet. Suppose L < U are two statistics and we predict that $y(x_0) \in (L, U)$. Then (L, U) is called a prediction interval for $y(x_0)$. If $P(L < y(x_0) < U) \ge 1 - \alpha$, then (L, U) is a prediction interval for $y(x_0)$ with confidence coefficient $1 - \alpha$.

(2) Predictors and estimators

Recall Statistic \hat{y} is an UP for $y(x_0) \iff$ Statistic \hat{y} is an UE for $E[y(x_0)] = x'_0\beta$. If $y_f = y(x_0)$ is independent to the data vector Y, then Statistic \hat{y} is a BLUP for $y(x_0) \iff$ Statistic \hat{y} is a BLUE for $E[y(x_0)] = x'_0\beta$.

(3) Prediction interval

Suppose $y_f = y(x_0)$ is independent to data vector Y, then

$$y(x_0) \in \widehat{y}(x_0) \pm t_{\alpha/2}(n-p)S_{y(x_0)-\widehat{y}(x_0)}$$

is a $1 - \alpha$ PI for $y(x_0)$ where $\widehat{y}(x_0) = x'_0 \widehat{\beta} = \widehat{\beta}_0 + \widehat{\beta}_1 x_{01} + \dots + \widehat{\beta}_{p-1} x_{0,p-1},$ $\widehat{\beta} = (X'X)^{-1} X'Y, S^2_{y(x_0) - \widehat{y}(x_0)} = S^2_{y(x_0)} + S^2_{\widehat{y}(x_0)} = MSE [1 + x'_0 (X'X)^{-1} x_0].$ **Proof.** $y(x_0) \sim N(x'_0\beta, \sigma^2)$ and $\hat{y}(x_0) = x'_0\hat{\beta} \sim N(x'_0\beta, \sigma^2 x'_0(X'X)^{-1}x_0)$ are independent. So $y(x_0) - \hat{y}(x_0) \sim N(0, \sigma^2 + \sigma^2 x'_0(X'X)^{-1}x_0)$ has the variance $\sigma^2_{y(x_0)-\hat{y}(x_0)} = \sigma^2 \left[1 + x'_0(X'X)^{-1}x_0\right]$ estimated by $S^2_{y(x_0)-\hat{y}(x_0)} = \text{MSE}\left[1 + x'_0(X'X)^{-1}x_0\right]$. Here $S^2_{y(x_0)-\hat{y}(x_0)} = \sigma^2_{y(x_0)-\hat{y}(x_0)} \frac{\text{MSE}}{\sigma^2}$. Note that $\frac{y(x_0)-\hat{y}(x_0)}{\sigma_{y(x_0)-\hat{y}(x_0)}} \sim N(0, 1^2)$ and $\frac{\text{SSE}}{\sigma^2} \sim \chi^2(n-p)$ are independent. Thus $t = \frac{y(x_0)-\hat{y}(x_0)}{\sigma_{y(x_0)-\hat{y}(x_0)}} \sqrt{\frac{\text{SSE}}{\sigma^2(n-p)}} \sim t(n-p)$, i.e., $\frac{y(x_0)-\hat{y}(x_0)}{S_{y(x_0)-\hat{y}(x_0)}} \sim t(n-p)$. Therefore $1 - \alpha = P(-t_{\alpha/2}(n-p) < t(n-p) < t_{\alpha/2}(n-p))$ $= P\left(\hat{y}(x_0) - t_{\alpha/2}(n-p)S_{y(x_0)-\hat{y}(x_0)} < y(x_0) < \hat{y}(x_0) + t_{\alpha/2}(n-p)S_{y(x_0)-\hat{y}(x_0)}\right)$.

Hence $\widehat{y}(x_0) \pm t_{\alpha/2}(n-p)S_{y(x_0)}-\widehat{y}(x_0)$ is a $1-\alpha$ PI for $y(x_0)$.

(4) SAS

Ex2: For the model and $y(x_0)$ in Ex1, find 90% prediction interval for $y(x_0)$.

proc reg; model y=x1 x2/p alpha=0.10 cli; run:

The output displays y_i , \hat{y}_i , $y_i - \hat{y}_i$, $S_{\hat{y}_i}$ and 90% PI for y_i for all i = 1, ..., n. For $x_0 = (1, 3, -2)'$, $\hat{y}(x_0)$, $S_{\hat{y}(x_0)}$ and 90% PI for $y(x_0)$ are displayed.

- 3. *F*-test on $l'\beta$
 - (1) *F*-test on $l'\beta$

To implement the test

$$H_0: l'\beta = 0 \text{ vs } H_a: l'\beta \neq b$$

Test Statistic: $F = \frac{(l'\hat{\beta}-b)'[l'(X'X)^{-1}l]^{-1}(l'\hat{\beta}-b)}{\text{MSE}}$
p-value: $P(F(1, n-p) > F_{ob})$

we need a computation table

	MS	DF	\mathbf{F}	р
Numerator	$(l'\widehat{\beta} - b)'[l'(X'X)^{-1}l]^{-1}(l'\widehat{\beta} - b)$	1	F_{ob}	p-value
Denominator	MSE	n-p		

(2) SAS

Ex3: Suppose we need to test $H_0: 2\beta_0 - 3\beta_1 + \beta_2 = -2$ vs $H_a: 2\beta_0 - 3\beta_1 + \beta_2 \neq -2$. The output of SAS code below will display the computation table

proc	reg;
	<pre>model y=x1 x2;</pre>
	<pre>test 2*intercept-3*x1+x2=-2;</pre>
	run;

L17: ANOVA table

1. SSE

(1) Model M

For model M: $Y = X\beta + \epsilon$, $\epsilon \sim N(0, \sigma^2 I_n)$, β is estimated by its LSE $\hat{\beta}$ that satisfies $||Y - X\widehat{\beta}||^2 \leq ||Y - X\beta||^2$ for all β . Then $E(Y) = X\beta$ is estimated by its BLUE $\hat{Y} = X\hat{\beta}^{"} = XX^+Y$. So $\|Y - \hat{Y}\|^2 = \|Y - X\hat{\beta}\|^2 = \|Y - XX^+Y\|^2$ is minimized $||Y - X\beta||^2.$

(2) Notation

 $||Y - \hat{Y}||^2 = \sum_i (y_i - \hat{y}_i)^2$ is a sum of squares (SS). This SS measures the error of the Model M and hence is denoted as SSE. So SSE is the variation in Y unexplained by the Model M.

(3) DF

 $SSE = ||Y - XX^+Y||^2 = ||(I - XX^+)Y||^2 = Y'(I - XX^+)Y$ is a quadratic form of Y with matrix $I - XX^+$. The rank of this matrix is called the DF of SSE. But $\operatorname{rank}(I - XX^+) = n - \operatorname{rank}(X) = n - r$. So we have

Source	SS	DF
Error	$SSE = Y'(I - XX^+)Y$	n-r

Ex1: For model $Y = X\beta + \epsilon$, $\epsilon \sim N(0, \sigma^2 \Sigma)$, β is estimated by its GLSE that satisfies $\|Y - X\widehat{\beta}\|_{\Sigma^{-1}}^2 \leq \|Y - X\beta\|_{\Sigma^{-1}}^2$ for all β . Then $E(Y) = X\beta$ is estimated by its BLUE $\widehat{Y} = X\widehat{\beta} = X(\Sigma^{-1/2}X)^+ \Sigma^{-1}Y. \text{ Thus}$ $SSE = \|Y - \widehat{Y}\|_{\Sigma^{-1}}^2 = \|Y - X(\Sigma^{-1/2}X)^+ \Sigma^{-1/2}Y\|_{\Sigma^{-1}}^2$ $\|Y - \widehat{Y}\|_{\Sigma^{-1}}^2 = \|Y - X(\Sigma^{-1/2}X)^+ \Sigma^{-1/2}Y\|_{\Sigma^{-1}}^2$

$$= \|(\Sigma^{-1/2}Y) - (\Sigma^{-1/2}X)(\Sigma^{-1/2}X)(\Sigma^{-1/2}Y)\|^{2}$$

= $(\Sigma^{-1}Y)' [I - (\Sigma^{-1/2}X)(\Sigma^{-1/2}X)^{+}] (\Sigma^{-1/2}Y).$

with DF = n - r.

- 2. ANOVA table for Model M with $\mathcal{R}(1_n) \subset \mathcal{R}(X)$.
 - (1) C.SSTO

 $\mathcal{R}(1_n) \subset \mathcal{R}(X)$ implies that Model $M_1: Y = 1_n \mu + \epsilon, \ \epsilon \sim N(0, \sigma^2 I_n)$ is a special case of Model M. Thus there exists a hypothesis H_0 under which the reduced model is Model M_1 . For this reduced model $SSE_0 = ||Y - 1_n \widehat{\mu}||^2 = ||Y - 1_n \overline{Y}||^2 = ||Y - 1_n 1_n^+ Y||^2$. $SSE_0 = ||Y - 1_n \overline{Y}||^2 = \sum_i (y_i - \overline{Y})^2$ is the CSS of Y.

CSS measures the total variation in Y and is denoted as C.SSTO.

- C.SSTO= $||Y 11^+Y||^2 = Y'(I 11^+)Y$ with DF rank $(I 11^+) = n 1$.
- (2) SSD

The difference between the estimated mean of Y in the Models M and M_1 is $SSD = \|XX^+Y - 11^+Y\|^2 = \|(XX^+ - 11^+)Y\|^2.$ The symmetric matrix $XX^+ - 11^+$ is idempotent as shown below. $\mathbf{R}(1) \subset \mathcal{R}(X) \Longrightarrow \mathbf{1}_n = Xh \text{ for some } h \Longrightarrow XX^+ \mathbf{11}^+ = XX^+ Xh\mathbf{1}^+ = Xh\mathbf{1}^+ = \mathbf{11}^+.$ So $11^+XX^+ = (XX^+11^+)' = (11^+)' = 11^+$. Thus $(XX^{+} - 11^{+})(XX^{+} - 11^{+}) = XX^{+} - 11^{+} - 11^{+} + 11^{+} = XX^{+} - 11^{+}.$

Therefore SSD = $||(XX^+ - 11^+)Y||^2 = Y'(XX^+ - 11^+)Y.$

(3) SSM

Note that

Total variation in Y – Variation unexplained by Model M = C.SSTO-SSE = $Y'(I-11^+)Y - Y'(I-XX^+)Y = Y'(XX^+-11^+)Y = SSD.$

Tus SSD is the variation in Y explained by Model M and hence is denoted as SSM. Clearly the DF of SSM is rank $(XX^+ - 11^+) = r - 1$. So we have ANOVA table

Source	SS	DF
Model	$SSM = Y'(XX^+ - 11^+)Y$	r-1
Error	$SSE = Y'(I - XX^+)Y$	n-r
C.Total	$C.SSTO = Y'(I - 11^+)Y$	n-1

Ex2: For M_1 : $Y = 1_n \mu + \epsilon$, $\epsilon \sim N(0, \sigma^2 \Sigma)$,

$$SSE_{0} = \|Y - 1_{n}\widehat{\mu}\|_{\Sigma^{-1}}^{2} = \|Y - 1_{n}(\Sigma^{-1/2}1_{n})^{+}(\Sigma^{-1/2}Y)\|_{\Sigma^{-1}}^{2}$$

$$= \|(\Sigma^{-1/2}Y) - (\Sigma^{-1/2}1)^{+}(\Sigma^{-1/2}1)(\Sigma^{-1/2}Y)\|_{\Sigma^{-1}}^{2}$$

$$= (\Sigma^{-1/2}Y)' \left[I - (\Sigma^{-1/2}1_{n})(\Sigma^{-1/2}1_{n})^{+}\right] (\Sigma^{-1/2}Y).$$

So one can have ANOVA table

Source	SS	DF
Model	$SSM = Y' \left[(\Sigma^{-1/2} X) (\Sigma^{-1/2} X)^+ - (\Sigma^{-1/2} 1) (\Sigma^{-1/2} 1)^+ \right] (\Sigma^{-1/2} Y)$	r-1
Error	$SSE = (\Sigma^{-1/2}Y)' \left[I - (\Sigma^{-1/2}X)(\Sigma^{-1/2}X)^+ \right] (\Sigma^{-1/2}Y)'$	n-r
C.Total	C.SSTO = $(\Sigma^{-1/2}Y)' [I - (\Sigma^{-1/2}1)(\Sigma^{-1/2}1)^+] (\Sigma^{-1/2}Y)$	n-1

- 3. ANOVA table for Model M, $\mathcal{R}(1_n) \not\subset \mathcal{R}(X)$
 - (1) U.SSTO

Model M $Y = X\beta + \epsilon, \epsilon \sim N(0, \sigma^2 I_n)$ where $\mathcal{R}(1_n) \not\subset \mathcal{R}(X)$, under $H_0: \beta = 0$ is reduced to Model $M_0: Y = 0 + \epsilon, \epsilon \sim N(0, \sigma^2 I_n)$. For this reduced model SSE₀ = $||Y - 0||^2 = \sum_i y_i^2$ is the uSS of Y.

This uss gives the total variation in Y and is denoted as u.SSTO.

C.SSTO= $||Y||^2 = Y'I_nY$ has DF rank(I) = n.

(2) SSD

The difference between the estimated mean of Y in the Models M and M_0 is $SSD = ||XX^+Y - 0||^2 = ||XX^+Y||^2 = Y'XX^+Y$. Note that

Total variation in Y – Variation unexplained by Model M = U.SSTO-SSE

 $= Y'I_nY - Y'(I - XX^+)Y = Y'XX^+Y = SSD.$

Thus SSD is the variation in Y explained by Model M and hence is denoted as SSM. Clearly the DF of SSM is $rank(XX^+) = r$. So we have ANOVA table

Source	SS	DF
Model	$SSM = Y'XX^+Y$	r
Error	$SSE = Y'(I - XX^+)Y$	n-r
C.Total	$U.SSTO = Y'I_nY$	n

Ex3: The regression model without intercept, $y = \beta_1 x_1 + \cdots + \beta_p x_p + \epsilon$, $\epsilon \sim N(0, \sigma^2)$ has data $Y \sim N(X\beta, \sigma^2 I_n)$ where $\mathcal{R}(1_n) \not\subset \mathcal{R}(X)$. So it has ANOVa table in (2).