L16: $l^{\prime} \beta$ in regression

1. Confidence interval for $E(y)$
(1) Confidence interval for $E\left[y\left(x_{0}\right)\right]$.

For regression $y \sim N\left(\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{p-1} x_{p-1}, \sigma^{2}\right)$ with data $Y \sim N\left(X \beta, \sigma^{2} I_{n}\right)$, $E(y)=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{p-1} x_{p-1}$ is the regression function. With $x_{0}=\left(1, x_{01}, \ldots x_{0, p-1}\right)^{\prime}$, $E\left[y\left(x_{0}\right)\right]=\beta_{0}+\beta_{1} x_{01}+\cdots+\beta_{p-1} x_{0, p-1}=x_{0}^{\prime} \beta$ is of the type of $l^{\prime} \beta$ and has $1-\alpha$ CI

$$
E\left[y\left(x_{0}\right)\right]=x_{0}^{\prime} \beta \in x_{0}^{\prime} \widehat{\beta} \pm t_{\alpha / 2}(n-p) S_{x_{0}^{\prime} \widehat{\beta}}=\widehat{y}\left(x_{0}\right) \pm t_{\alpha / 2}(n-p) S_{\widehat{y}\left(x_{0}\right)}
$$

where $\widehat{y}\left(x_{0}\right)=x_{0}^{\prime} \widehat{\beta}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{01}+\cdots+\widehat{\beta}_{p-1} x_{0, p-1}, \widehat{\beta}=X^{+} Y=\left(X^{\prime} X\right)^{-1} X^{\prime} Y$, $S_{\widehat{y}\left(x_{0}\right)}^{2}=S_{x_{0}^{\prime} \widehat{\beta}}^{2}=\operatorname{MSE} x_{0}^{\prime}\left(X^{\prime} X\right)^{-1} x_{0}$.
(2) Computation by SAS

Ex1: Suppose for $y \sim N\left(\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}, \sigma^{2}\right)$ we need 90% confidence interval for $E\left[y\left(x_{0}\right)\right]$ where $x_{0}=(1,3,-2)^{\prime}$.

```
data a; infile "D:\ex.dat"; input y x1 x2;
data b; input y x1 x2; datalines;
    3-2
;
data c; set a b;
proc reg;
    model y=x1 x2/p alpha=0.10 clm;
    run;
```

The output displays $y_{i}, \widehat{y}_{i}, y_{i}-\widehat{y}_{i}, S_{\widehat{y}_{i}}$ and 90% CI for $E\left(y_{i}\right)$ for all $i=1, \ldots, n$. For $x_{0}=(1,3,-2)^{\prime}, \widehat{y}\left(x_{0}\right), S_{\widehat{y}\left(x_{0}\right)}$ and 90% CI for $E\left[y\left(x_{0}\right)\right]$ are displayed.
2. Prediction intervals
(1) Definitions

Two different concepts
Suppose $y_{f}=y\left(x_{0}\right)$ is a future response with mean $E\left[y\left(x_{0}\right)\right]=x_{0}^{\prime} \beta$ where vector x_{0} is given but $y\left(x_{0}\right)$ has not been observed yet. Suppose $L<U$ are two statistics and we predict that $y\left(x_{0}\right) \in(L, U)$. Then (L, U) is called a prediction interval for $y\left(x_{0}\right)$. If $P\left(L<y\left(x_{0}\right)<U\right) \geq 1-\alpha$, then (L, U) is a prediction interval for $y\left(x_{0}\right)$ with confidence coefficient $1-\alpha$.
(2) Predictors and estimators

Recall Statistic \widehat{y} is an UP for $y\left(x_{0}\right) \Longleftrightarrow$ Statistic \widehat{y} is an UE for $E\left[y\left(x_{0}\right)\right]=x_{0}^{\prime} \beta$. If $y_{f}=y\left(x_{0}\right)$ is independent to the data vector Y, then
Statistic \widehat{y} is a BLUP for $y\left(x_{0}\right) \Longleftrightarrow$ Statistic \widehat{y} is a BLUE for $E\left[y\left(x_{0}\right)\right]=x_{0}^{\prime} \beta$.
(3) Prediction interval

Suppose $y_{f}=y\left(x_{0}\right)$ is independent to data vector Y, then

$$
y\left(x_{0}\right) \in \widehat{y}\left(x_{0}\right) \pm t_{\alpha / 2}(n-p) S_{y\left(x_{0}\right)-\widehat{y}\left(x_{0}\right)}
$$

is a $1-\alpha \mathrm{PI}$ for $y\left(x_{0}\right)$ where $\widehat{y}\left(x_{0}\right)=x_{0}^{\prime} \widehat{\beta}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{01}+\cdots+\widehat{\beta}_{p-1} x_{0, p-1}$, $\widehat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y, S_{y\left(x_{0}\right)-\widehat{y}\left(x_{0}\right)}^{2}=S_{y\left(x_{0}\right)}^{2}+S_{\widehat{y}\left(x_{0}\right)}^{2}=\operatorname{MSE}\left[1+x_{0}^{\prime}\left(X^{\prime} X\right)^{-1} x_{0}\right]$.

Proof. $y\left(x_{0}\right) \sim N\left(x_{0}^{\prime} \beta, \sigma^{2}\right)$ and $\widehat{y}\left(x_{0}\right)=x_{0}^{\prime} \widehat{\beta} \sim N\left(x_{0}^{\prime} \beta, \sigma^{2} x_{0}^{\prime}\left(X^{\prime} X\right)^{-1} x_{0}\right)$ are independent. So $y\left(x_{0}\right)-\widehat{y}\left(x_{0}\right) \sim N\left(0, \sigma^{2}+\sigma^{2} x_{0}^{\prime}\left(X^{\prime} X\right)^{-1} x_{0}\right)$ has the variance
$\sigma_{y\left(x_{0}\right)-\widehat{y}\left(x_{0}\right)}^{2}=\sigma^{2}\left[1+x_{0}^{\prime}\left(X^{\prime} X\right)^{-1} x_{0}\right]$ estimated by $S_{y\left(x_{0}\right)-\widehat{y}\left(x_{0}\right)}^{2}=\operatorname{MSE}\left[1+x_{0}^{\prime}\left(X^{\prime} X\right)^{-1} x_{0}\right]$.
Here $S_{y\left(x_{0}\right)-\widehat{y}\left(x_{0}\right)}^{2}=\sigma_{y\left(x_{0}\right)-\widehat{y}\left(x_{0}\right)}^{2} \frac{\mathrm{MSE}}{\sigma^{2}}$.
Note that $\frac{y\left(x_{0}\right)-\widehat{y}\left(x_{0}\right)}{\sigma_{y\left(x_{0}\right)-\widehat{y}\left(x_{0}\right)}} \sim N\left(0,1^{2}\right)$ and $\frac{\mathrm{SSE}}{\sigma^{2}} \sim \chi^{2}(n-p)$ are independent.
Thus $t=\frac{y\left(x_{0}\right)-\widehat{y}\left(x_{0}\right)}{\sigma_{y\left(x_{0}\right)-\widehat{y}\left(x_{0}\right)} \sqrt{\frac{\mathrm{SSE}}{\sigma^{2}(n-p)}}} \sim t(n-p)$, i.e., $\frac{y\left(x_{0}\right)-\widehat{y}\left(x_{0}\right)}{S_{y\left(x_{0}\right)-\widehat{y}\left(x_{0}\right)}} \sim t(n-p)$. Therefore

$$
\begin{aligned}
1-\alpha & =P\left(-t_{\alpha / 2}(n-p)<t(n-p)<t_{\alpha / 2}(n-p)\right) \\
& =P\left(-t_{\alpha / 2}(n-p)<\frac{y\left(x_{0}\right)-\widehat{y}\left(x_{0}\right)}{S_{y\left(x_{0}\right)-\widehat{y}\left(x_{0}\right)}}<t_{\alpha / 2}(n-p)\right) \\
& =P\left(\widehat{y}\left(x_{0}\right)-t_{\alpha / 2}(n-p) S_{y\left(x_{0}\right)-\widehat{y}\left(x_{0}\right)}<y\left(x_{0}\right)<\widehat{y}\left(x_{0}\right)+t_{\alpha / 2}(n-p) S_{y\left(x_{0}\right)-\widehat{y}\left(x_{0}\right)}\right) .
\end{aligned}
$$

Hence $\widehat{y}\left(x_{0}\right) \pm t_{\alpha / 2}(n-p) S_{y\left(x_{0}\right)-\widehat{y}\left(x_{0}\right)}$ is a $1-\alpha$ PI for $y\left(x_{0}\right)$.
(4) SAS

Ex2: For the model and $y\left(x_{0}\right)$ in Ex1, find 90% prediction interval for $y\left(x_{0}\right)$.

```
proc reg;
    model y=x1 x2/p alpha=0.10 cli;
    run;
```

The output displays $y_{i}, \widehat{y}_{i}, y_{i}-\widehat{y}_{i}, S_{\widehat{y}_{i}}$ and 90% PI for y_{i} for all $i=1, \ldots, n$. For $x_{0}=(1,3,-2)^{\prime}, \widehat{y}\left(x_{0}\right), S_{\widehat{y}\left(x_{0}\right)}$ and 90% PI for $y\left(x_{0}\right)$ are displayed.
3. F-test on $l^{\prime} \beta$
(1) F-test on $l^{\prime} \beta$

To implement the test

$H_{0}: l^{\prime} \beta=0$ vs $H_{a}: l^{\prime} \beta \neq b$
Test Statistic: $F=\frac{\left(l^{\prime} \widehat{\beta}-b\right)^{\prime}\left[l^{\prime}\left(X^{\prime} X\right)^{-1} l\right]^{-1}\left(l^{\prime} \widehat{\beta}-b\right)}{\mathrm{MSE}}$
p-value: $P\left(F(1, n-p)>F_{o b}\right)$

we need a computation table

	MS	DF	F	p
Numerator	$\left(l^{\prime} \widehat{\beta}-b\right)^{\prime}\left[l^{\prime}\left(X^{\prime} X\right)^{-1} l\right]^{-1}\left(l^{\prime} \widehat{\beta}-b\right)$	1	$F_{o b}$	p-value
Denominator	MSE	$n-p$		

(2) SAS

Ex3: Suppose we need to test $H_{0}: 2 \beta_{0}-3 \beta_{1}+\beta_{2}=-2$ vs $H_{a}: 2 \beta_{0}-3 \beta_{1}+\beta_{2} \neq-2$.
The output of SAS code below will display the computation table

```
proc reg;
    model y=x1 x2;
    test 2*intercept-3*x1+x2=-2;
    run;
```


L17: ANOVA table

1. SSE
(1) Model M

For model M: $Y=X \beta+\epsilon, \epsilon \sim N\left(0, \sigma^{2} I_{n}\right), \beta$ is estimated by its LSE $\widehat{\beta}$ that satisfies $\|Y-X \widehat{\beta}\|^{2} \leq\|Y-X \beta\|^{2}$ for all β. Then $E(Y)=X \beta$ is estimated by its BLUE $\widehat{Y}=X \widehat{\beta}=X X^{+} Y$. So $\|Y-\widehat{Y}\|^{2}=\|Y-X \widehat{\beta}\|^{2}=\left\|Y-X X^{+} Y\right\|^{2}$ is minimized $\|Y-X \beta\|^{2}$.
(2) Notation
$\|Y-\widehat{Y}\|^{2}=\sum_{i}\left(y_{i}-\widehat{y}_{i}\right)^{2}$ is a sum of squares (SS). This SS measures the error of the Model M and hence is denoted as SSE. So SSE is the variation in Y unexplained by the Model M.
(3) DF

SSE $=\left\|Y-X X^{+} Y\right\|^{2}=\left\|\left(I-X X^{+}\right) Y\right\|^{2}=Y^{\prime}\left(I-X X^{+}\right) Y$ is a quadratic form of Y with matrix $I-X X^{+}$. The rank of this matrix is called the DF of SSE. But $\operatorname{rank}\left(I-X X^{+}\right)=n-\operatorname{rank}(X)=n-r$. So we have

Source	SS	DF
Error	$\mathrm{SSE}=Y^{\prime}\left(I-X X^{+}\right) Y$	$n-r$

Ex1: For model $Y=X \beta+\epsilon, \epsilon \sim N\left(0, \sigma^{2} \Sigma\right), \beta$ is estimated by its GLSE that satisfies $\|Y-X \widehat{\beta}\|_{\Sigma^{-1}}^{2} \leq\|Y-X \beta\|_{\Sigma^{-1}}^{2}$ for all β. Then $E(Y)=X \beta$ is estimated by its BLUE $\widehat{Y}=X \widehat{\beta}=X\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{-1} Y$. Thus

$$
\begin{aligned}
\mathrm{SSE} & =\|Y-\widehat{Y}\|_{\Sigma^{-1}}^{2}=\left\|Y-X\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{-1 / 2} Y\right\|_{\Sigma^{-1}}^{2} \\
& =\left\|\left(\Sigma^{-1 / 2} Y\right)-\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} Y\right)\right\|^{2} \\
& =\left(\Sigma^{-1} Y\right)^{\prime}\left[I-\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}\right]\left(\Sigma^{-1 / 2} Y\right) .
\end{aligned}
$$

with $\mathrm{DF}=n-r$.
2. ANOVA table for Model M with $\mathcal{R}\left(1_{n}\right) \subset \mathcal{R}(X)$.
(1) C.SSTO
$\mathcal{R}\left(1_{n}\right) \subset \mathcal{R}(X)$ implies that Model $M_{1}: Y=1_{n} \mu+\epsilon, \epsilon \sim N\left(0, \sigma^{2} I_{n}\right)$ is a special case of Model M. Thus there exists a hypothesis H_{0} under which the reduced model is Model M_{1}. For this reduced model $\mathrm{SSE}_{0}=\left\|Y-1_{n} \widehat{\mu}\right\|^{2}=\left\|Y-1_{n} \bar{Y}\right\|^{2}=\left\|Y-1_{n} 1_{n}^{+} Y\right\|^{2}$.

$$
\mathrm{SSE}_{0}=\left\|Y-1_{n} \bar{Y}\right\|^{2}=\sum_{i}\left(y_{i}-\bar{Y}\right)^{2} \text { is the CSS of } Y .
$$

CSS measures the total variation in Y and is denoted as C.SSTO.

$$
\text { C.SSTO }=\left\|Y-11^{+} Y\right\|^{2}=Y^{\prime}\left(I-11^{+}\right) Y \text { with } \mathrm{DF} \operatorname{rank}\left(I-11^{+}\right)=n-1 .
$$

(2) SSD

The difference between the estimated mean of Y in the Models M and M_{1} is

$$
\mathrm{SSD}=\left\|X X^{+} Y-11^{+} Y\right\|^{2}=\left\|\left(X X^{+}-11^{+}\right) Y\right\|^{2}
$$

The symmetric matrix $X X^{+}-11^{+}$is idempotent as shown below.
$\mathrm{R}(1) \subset \mathcal{R}(X) \Longrightarrow 1_{n}=X h$ for some $h \Longrightarrow X X^{+} 11^{+}=X X^{+} X h 1^{+}=X h 1^{+}=11^{+}$.
So $11^{+} X X^{+}=\left(X X^{+} 11^{+}\right)^{\prime}=\left(11^{+}\right)^{\prime}=11^{+}$. Thus

$$
\left(X X^{+}-11^{+}\right)\left(X X^{+}-11^{+}\right)=X X^{+}-11^{+}-11^{+}+11^{+}=X X^{+}-11^{+}
$$

Therefore SSD $=\left\|\left(X X^{+}-11^{+}\right) Y\right\|^{2}=Y^{\prime}\left(X X^{+}-11^{+}\right) Y$.
(3) SSM

Note that

Total variation in Y - Variation unexplained by Model $\mathrm{M}=$ C.SSTO-SSE

$$
=Y^{\prime}\left(I-11^{+}\right) Y-Y^{\prime}\left(I-X X^{+}\right) Y=Y^{\prime}\left(X X^{+}-11^{+}\right) Y=\text { SSD } .
$$

Tus SSD is the variation in Y explained by Model M and hence is denoted as SSM. Clearly the DF of SSM is $\operatorname{rank}\left(X X^{+}-11^{+}\right)=r-1$. So we have ANOVA table

Source	SS	DF
Model	$\mathrm{SSM}=Y^{\prime}\left(X X^{+}-11^{+}\right) Y$	$r-1$
Error	$\mathrm{SSE}=Y^{\prime}\left(I-X X^{+}\right) Y$	$n-r$
C.Total	$\mathrm{C} . \mathrm{SSTO}=Y^{\prime}\left(I-11^{+}\right) Y$	$n-1$

Ex2: For $M_{1}: Y=1_{n} \mu+\epsilon, \epsilon \sim N\left(0, \sigma^{2} \Sigma\right)$,

$$
\begin{aligned}
\mathrm{SSE}_{0} & =\left\|Y-1_{n} \widehat{\mu}\right\|_{\Sigma^{-1}}^{2}=\left\|Y-1_{n}\left(\Sigma^{-1 / 2} 1_{n}\right)^{+}\left(\Sigma^{-1 / 2} Y\right)\right\|_{\Sigma^{-1}}^{2} \\
& =\left\|\left(\Sigma^{-1 / 2} Y\right)-\left(\Sigma^{-1 / 2} 1\right)^{+}\left(\Sigma^{-1 / 2} 1\right)\left(\Sigma^{-1 / 2} Y\right)\right\|^{2} \\
& =\left(\Sigma^{-1 / 2} Y\right)^{\prime}\left[I-\left(\Sigma^{-1 / 2} 1_{n}\right)\left(\Sigma^{-1 / 2} 1_{n}\right)^{+}\right]\left(\Sigma^{-1 / 2} Y\right) .
\end{aligned}
$$

So one can have ANOVA table

Source	SS	DF
Model	$\mathrm{SSM}=Y^{\prime}\left[\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}-\left(\Sigma^{-1 / 2} 1\right)\left(\Sigma^{-1 / 2} 1\right)^{+}\right]\left(\Sigma^{-1 / 2} Y\right)$	$r-1$
Error	$\mathrm{SSE}=\left(\Sigma^{-1 / 2} Y\right)^{\prime}\left[I-\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}\right]\left(\Sigma^{-1 / 2} Y\right)$	$n-r$
C.Total	$\mathrm{C} . \operatorname{SSTO}=\left(\Sigma^{-1 / 2} Y\right)^{\prime}\left[I-\left(\Sigma^{-1 / 2} 1\right)\left(\Sigma^{-1 / 2} 1\right)^{+}\right]\left(\Sigma^{-1 / 2} Y\right)$	$n-1$

3. ANOVA table for Model M, $\mathcal{R}\left(1_{n}\right) \not \subset \mathcal{R}(X)$
(1) U.SSTO

Model M $Y=X \beta+\epsilon, \epsilon \sim N\left(0, \sigma^{2} I_{n}\right)$ where $\mathcal{R}\left(1_{n}\right) \not \subset \mathcal{R}(X)$, under $H_{0}: \beta=0$ is reduced to Model $M_{0}: Y=0+\epsilon, \epsilon \sim N\left(0, \sigma^{2} I_{n}\right)$. For this reduced model $\quad \mathrm{SSE}_{0}=$ $\|Y-0\|^{2}=\sum_{i} y_{i}^{2}$ is the uSS of Y.
This uss gives the total variation in Y and is denoted as u.SSTO.
C.SSTO $=\|Y\|^{2}=Y^{\prime} I_{n} Y$ has DF $\operatorname{rank}(I)=n$.
(2) SSD

The difference between the estimated mean of Y in the Models M and M_{0} is

$$
\mathrm{SSD}=\left\|X X^{+} Y-0\right\|^{2}=\left\|X X^{+} Y\right\|^{2}=Y^{\prime} X X^{+} Y . \text { Note that }
$$

Total variation in Y - Variation unexplained by Model M $=$ U.SSTO-SSE
$=Y^{\prime} I_{n} Y-Y^{\prime}\left(I-X X^{+}\right) Y=Y^{\prime} X X^{+} Y=\mathrm{SSD}$.
Thus SSD is the variation in Y explained by Model M and hence is denoted as SSM. Clearly the DF of SSM is $\operatorname{rank}\left(X X^{+}\right)=r$. So we have ANOVA table

Source	SS	DF
Model	$\mathrm{SSM}=Y^{\prime} X X^{+} Y$	r
Error	$\mathrm{SSE}=Y^{\prime}\left(I-X X^{+}\right) Y$	$n-r$
C.Total	$\mathrm{U} . \mathrm{SSTO}=Y^{\prime} I_{n} Y$	n

Ex3: The regression model without intercept, $y=\beta_{1} x_{1}+\cdots+\beta_{p} x_{p}+\epsilon, \epsilon \sim N\left(0, \sigma^{2}\right)$ has data $Y \sim N\left(X \beta, \sigma^{2} I_{n}\right)$ where $\mathcal{R}\left(1_{n}\right) \not \subset \mathcal{R}(X)$. So it has ANOVa table in (2).

