L16: '3 in regression

1. Confidence interval for E(y)

(1)

Confidence interval for Ey(xo)].

For regression y ~ N(Bo + B1z1 + -+ + Bp_17p_1, 02) with data Y ~ N(XS, 021,),
E(y) = Bo+pfiz1+- - -+ Bp—12p—1 is the regression function. With z¢ = (1, o1, ...20p—1)’,
Ely(zo)] = Bo + Bizor + - - + Bp—120,p—1 = (B is of the type of IS and has 1 — a CI

Ely(wo)] = 28 € 248 £ toya(n — P)Sy 5 = Y(@o) £ laya(n = p)Sjay)
where §(zg) = (8 = Bo + Bizor + - + Bporzop1, B = XY = (X'X)7XY,
‘S%(:ro) = 52’3 = MSE z{,(X'X) 1.

Zo

Computation by SAS

Ex1: Suppose for y ~ N(By + 121 + B2ra, 02) we need 90% confidence interval for
Ely(zo)] where xo = (1, 3, —2)".

data a; infile "D:\ex.dat"; input y x1 x2;
data b; input y x1 x2; datalines;
.3 -2
data c; set a b;
proc reg;
model y=x1 x2/p alpha=0.10 clm;

run;
The output displays i, ¥i, vi — ¥i, Sy, and 90% CI for E(y;) for all i = 1,...,n.

For g = (1, 3, —2)', ¥(x0), Sg(z,) and 90% CI for E[y(xo)] are displayed.

2. Prediction intervals

(1)

Definitions

Two different concepts

Suppose yr = y(zo) is a future response with mean E[y(zo)] = z(8 where vector zg is
given but y(zp) has not been observed yet. Suppose L < U are two statistics and we
predict that y(z¢) € (L, U). Then (L, U) is called a prediction interval for y(xg). If
P(L <y(xg) <U)>1—aq, then (L, U) is a prediction interval for y(z¢) with confidence
coefficient 1 — a.

Predictors and estimators

Recall Statistic g is an UP for y(x¢) <= Statistic y is an UE for E[y(z¢)] = z(5.
If y5 = y(xo) is independent to the data vector Y, then

Statistic y is a BLUP for y(z() <= Statistic y is a BLUE for E[y(zo)] = z(/5.
Prediction interval

Suppose y5 = y(xo) is independent to data vector Y, then

y(70) € Y(wo) £ tas2(n — P)Sy(z)—g(xo)
is a 1 — «a PI for y(xg) where y(xg) = xf)B = Bo + Blzvm + -+ Bp—lx(],p—ly

B=(X'X)"IX"Y, 82 = 8200y T 5200y = MSE 1+ 2(X'X) o).

(w0)—y(wo) y(zo)

1



Proof. y(zg) ~ N(x)8, 0?) and y(xg) = 3:63 ~ N(x(8, o?xy(X'X) 1zg) are indepen-
dent. So y(zo) — Y(zo) ~ N(0, 02 + o%z((X'X)1xo) has the variance
Ui(xo)—ﬁ(wo) = 0% [1 + 2((X'X) x| estimated by 5’5( o) = MSE [1+ 2((X'X) " ag].

2 ) MSE
Here S 0) (zo) = Ty(ao)—a(ao) o2 -

zo)—Y(=

Note that Yz)=¥0) N(0, 12) and SE—QE ~ x%(n — p) are independent.

Ty(z0) = (o)

Thus t = y(xo)—y(xoéSE ~t(n —p), ie., % ~ t(n — p). Therefore
y(20)=(=0) \/ 72(n—p)
l—a = P(-tajp(n—p) <t(n—p) <tass(n—p))

= P (~tajpln—p) < HEITEL <y (0 - p)

y(zo)—¥(z0)
= P (g('r()) - ta/2(n _p)Sy(:vo)—ﬂ(wo) < y(ZEo) < Z/J\(JCo) + toz/2(n - p)Sy(wo)_g(io)) .
Hence @\($0) + ta/g(n - p)Sy(zo)—ﬁ(xo) isal—a PI for y(a:o)
(4) SAS
Ex2: For the model and y(zp) in Ex1, find 90% prediction interval for y(xo).

proc reg;
model y=x1 x2/p alpha=0.10 cli;

run;
The output displays y;, ¥i, i — ¥i, Sp, and 90% PI for y; for all i = 1,....n.
For o = (1, 3, =2)', ¥(x0), Sg(z) and 90% PI for y(xo) are displayed.

3. F-test on I'8

(1) F-test on l'B
To implement the test
Hy:1U'B=0vs H,:U'B+#D

I (14 i ) 4 [0, €, O I | i ()
Test Statistic: F = NSE
p-value: P(F(1, n—p) > Fy)

we need a computation table

| MS DF F p
Numerator | (I'8 —b)'[I'(X'X)~H])~1 ('8 —-b) 1 F,, p-value
Denominator | MSE n—p

(2) SAS

Ex3: Suppose we need to test Hy: 260 — 3081 + B2 = —2 vs Hy : 26y — 3081 + B2 # —2.
The output of SAS code below will display the computation table

proc reg;
model y=x1 x2;
test 2xintercept-3*x1+x2=-2;
run;




L17: ANOVA table

1. SSE
(1)

Model M
For model M: Y = X3 +¢, € ~ N(0, 0%1,), 3 is estimated by its LSE E that satisfies
HY XB||2 < ||y — XB||2 for all 3. Then E(Y) = Xf is estimated by its BLUE
= X3 = XX'Y. So |[Y —Y|? = ||[Y — XB|? = |Y — XX1Y]|? is minimized

HY XB|.
Notation
Iy —Y|?2 = > (yi — i)? is a sum of squares (SS). This SS measures the error of the
Model M and hence is denoted as SSE. So SSE is the variation in Y unexplained by the
Model M.
DF
SSE = Y — XXY|?2 = |(I - XXNY|? = Y/(I — XX1)Y is a quadratic form
of Y with matrix I — XX*. The rank of this matrix is called the DF of SSE. But
rank(/ — XX*) = n —rank(X) = n — r. So we have
Source SS DF
Error SSE=Y'(I — XXNY n-—r
Ex1: For model Y = X3+ ¢, e ~ N(0, 02X), 3 is estimated by its GLSE that satisfies

IY = XB||2 ., <||Y =XB||%, for all 8. Then E(Y) = X§ is estimated by its BLUE

Y =XB=X(2"V2X)*2-1Y. Thus

SSE = ||V =Y|i, =Y - X(57V2X)Fu 2y |2,
= [[(Z712Y) - (572X (T2 X) (B VRY)|P
(7YY [T - (5712X)(2712X)F] (2 1/%Y).

with DF=n —r.

2. ANOVA table for Model M with R(1,) C R(X).

(1)

C.SSTO
R(1,) C R(X) implies that Model My : Y = 1,u+¢€, e ~ N(0, 0%I,) is a special case
of Model M. Thus there exists a hypothesis Hy under which the reduced model is Model
M. For this reduced model SSEq = ||V — 1n,u||2 Y = LY|?=|Y - 1,1;Y|%

SSEo = ||V — 1,,Y||? = >, (yi — Y)? is the CSS of Y.
CSS measures the total variation in Y and is denoted as C.SSTO.

C.SSTO= ||Y — 111Y||2 = Y'(I — 11")Y with DF rank( — 117) =n — 1.
SSD
The difference between the estimated mean of Y in the Models M and M is

SSD = | XXty —11HY 2 = (X X — 11H)Y 2.
The symmetric matrix X X — 117 is idempotent as shown below.
R(1) € R(X) = 1, = Xh for some h = XX 11T = XXTXh1T = Xh1T = 117.
So 11T XX+ = (XX+11T) = (117) = 11*. Thus

(XXT-1T)(XXT-117) = XXT - 117 =117 + 117 = XX — 117 .

Therefore SSD = [[(XXT — 11TV |2 = V/(XXT —11M)Y.
SSM
Note that



Total variation in Y — Variation unexplained by Model M = C.SSTO-SSE
= Y({I-11")Y -Y'(I-XXNY =Y'(XX* -11")Y = SSD.
Tus SSD is the variation in Y explained by Model M and hence is denoted as SSM.
Clearly the DF of SSM is rank(X X+ — 117) = r — 1. So we have ANOVA table

Source  SS DF

Model  SSM=Y/(XX*t -11M)Y r—1
Error SSE=Y'(I - XX)Y n—r
C.Total C.SSTO=Y'(I-117)Y =n-1

Ex2: For My : Y = 1,u+¢€, € ~ N(0, 0°%),

SSEo = Y — Lyl = ¥ = 1n(2721,) T (S72Y) I
= [(@712Y) — (72 P) (R 2Y) )2
= (S7V2Y) I - (Z7V21,)(27Y21,) ] (27V/2%Y).

So one can have ANOVA table

Source  SS DF

Model — SSM=Y' [(2~12X)(S71/2X)T — (=~ 121)(=~12) 4] (27 Y%Y) r—1
Error  SSE= (S~Y2Y) [T — (S712X)(Z7V2X)*+] (271/%Y) n—r
C.Total C.SSTO= (X~YV2Y) [I — (2~1/21)(21/21)+] (Z1/2Y) n—1

3. ANOVA table for Model M, R(1,) ¢ R(X)

(1) U.SSTO
Model MY = X 3+¢, € ~ N(0, 02I,) where R(1,) ¢ R(X), under Hy : 3 = 0 is reduced
to Model Mg : Y = 0+ ¢, e ~ N(0, 0?I,). For this reduced model SSEy =

|Y —0||*> =3, y7? is the uSS of Y.
This uss gives the total variation in Y and is denoted as u.SSTO.
C.SSTO= ||Y||?> = Y'I,Y has DF rank(/) = n.

(2) SSD
The difference between the estimated mean of Y in the Models M and M, is
SSD = | XX+Y — 0|2 = | XX1Y||? = YXX Y. Note that

Total variation in Y — Variation unexplained by Model M = U.SSTO-SSE
= Y'LY-Y'({I-XXT)Y=Y'XXTY =SSD.
Thus SSD is the variation in Y explained by Model M and hence is denoted as SSM.
Clearly the DF of SSM is rank(X X*) = r. So we have ANOVA table

Source  SS DF
Model SSM=Y'XX"Y r
Error SSE=Y'(I - XX")Y n-r
C.Total U.SSTO=Y'IY n

Ex3: The regression model without intercept, y = Siz1 + -+ + Bpap + €, € ~ N(0, o?)
has data Y ~ N (XS, 021I,,) where R(1,) ¢ R(X). So it has ANOVa table in (2).



