
L11 Bayes estimator

1. Bayes estimator

(1) Five distributions
In Bayesian statistics parameter θ ∈ Rp is treated as a random vector with a prior dis-
tribution that reflects the prior knowledge on θ.
There will be the distribution of sample Y , the joint distribution of θ and Y , the condi-
tional distribution of Y given θ and the conditional distribution of θ given Y .
The traditional distribution family of Y with parameter θ is now treated as a conditional
distribution of Y given θ.

(2) Bayes estimator
The conditional distribution of θ given Y is the posterior distribution of θ. The mean of
this distribution, E(θ|Y ), is a function of Y , a statistic. This statistic is often used to
estimate θ, and is called the Bayes estimator of θ.

(3) Finding the posterior pdf
Suppose fθ(θ) ∝ f0(θ) which means the prior pdf fθ(θ) is proportional to a given function
f0(θ), i.e., fθ(θ) = c0f0(θ) where c0 > 0
Suppose L(θ) = fY |θ(y) ∝ f1(θ) which means the likelihood function, the conditional
pdf of Y given θ treated as a function of θ, is proportional to a given function f1(θ), i.e.,
fY |θ(y) = c1(y)f1(θ, y) where c1(y) > 0.
Then fθ|Y (θ) ∝ f0(θ)f1(θ), i.e., the posterior pdf of θ is proportional to f0(θ)f1(θ).

Proof. The joint pdf of θ and Y is f(y, θ) = fθ(θ)fY |θ(y) = c0f0(θ)c1(y)f1(θ, y).

Hence fθ|Y (θ) =
f(θ, y)
fY (y) = c0c1(y)

fY (y) f0(θ)f1(θ, y) ∝ f0(θ)f1(θ, y).

Ex1: For X ∼ Np(µ, Σ) let f0(x) = exp
(
x′Σ−1x−2x′Σ−1µ

−2

)
. The pdf of X

f(x) = 1
(2π)p/2|Σ|1/2 exp

[
−1

2(x− µ)′Σ−1(x− µ)
]

= 1
(2π)p/2|Σ|1/2 exp

(
µ′Σ−1µ

−2

)
exp

(
x′Σ−1x−2x′Σ−1µ

−2

)
= cf0(x)

So X ∼ N(µ, Σ) =⇒ f(x) ∝ f0(x). On the other hand,

f(x) ∝ f0(x) =⇒ f(x) = cf0(x) =⇒ 1 =
∫
R f(x)dx = c

∫
R f0(x)dx

=⇒ f(x) = f0(x)∫
R f0(x)dx

=⇒ X ∼ N(µ, Σ).

2. Bayes estimator in linear model

(1) Prior and posterior distributions for β
For Y |β ∼ N(Xβ, σ2In) assign prior β ∼ N(β0, Σ0). Then the posterior

β|Y ∼ N

((
Σ−1
0 +

X ′X

σ2

)−1(
Σ−1
0 β0 +

X ′Y

σ2

)
,

(
Σ−1
0 +

X ′X

σ2

)−1
)

Because the posterior and prior are in the same distribution family, the prior is called a
conjugate prior.
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Pf: β ∼ N(β0, Σ0) =⇒ fβ(β) ∝ f0(β) = exp
[
β′Σ−1

0 β−2β′Σ−1
0 β0

−2

]
.

Y |β ∼ N(Xβ, σ2In) =⇒ L(β) ∝ f1(β) = exp
[
(Xβ)′(Xβ)−2(Xβ)′Y

−2σ2

]
.

fβ|Y (β) ∝ f0(β)f1(β) = exp

[
β′
(
Σ−1

0 +X′X
σ2

)
β−2β′

(
Σ−1

0 β0+
X′Y
σ2

)
−2

]

= exp

[
β′
(
Σ−1

0 +X′X
σ2

)
β−2β′

(
Σ−1

0 +X′X
σ2

)(
Σ−1

0 +X′X
σ2

)−1(
Σ−1

0 β0+
X′Y
σ2

)
−2

]
Thus β|Y ∼ N

((
Σ−1
0 + X′X

σ2

)−1 (
Σ−1
0 β0 +

X′Y
σ2

)
,
(
Σ−1
0 + X′X

σ2

)−1
)

(2) Bayes estimator for β
Let β̂ = (X ′X)−1X ′Y be the BLUE for β in classical statistics. Then the Bayesian
estimator for β

β̂B = E(β|Y ) =
(
Σ−1
0 + X′X

σ2

)−1 (
Σ−1
0 β0 +

X′Y
σ2

)
=

(
Σ−1
0 + X′X

σ2

)−1 (
Σ−1
0 β0 +

X′X
σ2 (X ′X)−1X ′Y

)
=

(
Σ−1
0 + X′X

σ2

)−1 (
Σ−1
0 β0 +

X′X
σ2 β̂

)
.

Let W1 = Σ−1
0 , W2 =

X′X
σ2 and W = W1 +W2. Then

β̂B = W−1(W1β0 +W2β̂).

So the Bayesian estimator for β is the weighted average of prior mean β0 and classical
BLUE β̂ with weight matrices W1 and W2.

3. Loss functions and risk functions

(1) Risk function in Bayesian statistics
In Bayesian statistics, the risk is calculated with respect to the posterior distribution of
θ, i.e.,

r(θ̂, θ) = E
[
(θ̂ − θ)(θ̂ − θ)′|Y

]
∈ Rp×p

where θ̂(Y ) is treated as non-random. With Bayesian estimator θ̂B = E(θ|Y ),

r(θ̂B, θ) = E[(θ − θ̂B)(θ − θ̂B)
′] = Cov(θ|Y ).

(2) Bayes estimator dominates all estiamtors
Let θ̂ be an estimator for θ. Then

r(θ̂, θ) = E
[
(θ − θ̂)(θ − θ̂)′|Y

]
= E

[
(θ − β̂B + β̂B − θ̂)(θ − β̂B + β̂B − θ̂)′|Y

]
= E

[
(θ − β̂B)(θ − β̂B|Y

]
+ E

[
(β̂B − θ̂)(β̂B − θ̂)′|Y

]
= r(θ̂B, θ) + (β̂B − θ̂)(β̂B − θ̂)′

≥ r(θ̂B, θ).

Thus for Bayes estimator θ̂B, E[L(θ̂B, θ)|Y ] = Cov(θ|Y ) ≤ E[L(θ̂, θ)|Y ].
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L12 Confidence regions

1. SSE
σ2 ∼ χ2(n− p)

(1) Expression of SSE
In Y = Xβ + ϵ, ϵ ∼ N(0, σ2Σ), E(Y ) = Xβ is estimable with BLUE

Ŷ = Xβ̂ = X
(
Σ−1/2X

)+
Σ−1/2Y .

So ϵ = Y −Xβ is predicted by the residual vector

e = Y − Ŷ = Y −X
(
Σ−1/2X

)+
Σ−1/2Y = Σ1/2

[
I −

(
Σ−1/2X

) (
Σ−1/2X

)+]
Σ−1/2Y .

SSE
def
== ∥Y − Ŷ ∥2Σ−1 = ∥Σ−1/2(Y − Ŷ )∥2

=
∥∥∥[I − (Σ−1/2X

) (
Σ−1/2X

)+] (
Σ−1/2Y

)∥∥∥2 = Z ′AZ.

where Z = Σ−1/2Y ∼ N
(
Σ−1/2Xβ, σ2In

)
, A = I −DD+ with D = Σ−1/2X.

(2) SSE
σ2 ∼ χ2(n− r) where r = rank(X)

Recall: X ∼ N(µ, Σ), AΣA = A = A′ =⇒ X ′AX ∼ χ2(µ′Aµ, tr(AΣ)).

With SSE
σ2 = Z ′ A

σ2Z where Z ∼ N(Σ−1/2Xβ, σ2I) and A = I −DD+, D = Σ−1/2X,
A
σ2σ

2I A
σ2 = I−DD+

σ2 σ2I I−DD+

σ2 = I−DD+

σ2 = A
σ2 ,(

Σ−1/2Xβ
)′ A

σ2

(
Σ−1/2Xβ

)
=
(
Σ−1/2X

)′ I−DD+

σ2 (Dβ) = 0 and

tr
(
A
σ2σ

2I
)
= tr(I −DD+) = n− rank(D) = n− r where r = rank(X).

Hence SSE
σ2 ∼ χ2(n− r).

(3) Consequences

MSE
def
== SSE

n−r is an UE for σ2 since E
(
SSE
σ2

)
= n− r =⇒ E(MSE) = σ2.(

SSE
χ2
α/2

(n−r)
, SSE
χ2
1−α/2

(n−r)

)
is a 1− α CI for σ2 since

P

(
SSE

χ2
α/2

(n−r)
≤ σ2 ≤ SSE

χ2
1−α/2

(n−r)

)
= P

(
χ2
1−α/2

(n−r)

SSE ≤ 1
σ2 ≤

χ2
α/2

(n−r)

SSE

)
= P

(
χ2
1−α/2(n− r) ≤ SSE

σ2 ≤ χ2
α/2(n− r)

)
= 1− α.

Ex1: For Y = Xβ + ϵ, ϵ ∼ N(0, σ2I), SSE = Y ′(I − XX+)Y , MSE = SSE
n−p and

SSE
σ2 ∼ χ2(n− p).

2. (Hβ̂ −Hβ)′ [H(X′Σ−1X)−1H′]−1

σ2 (Hβ̂ −Hβ) ∼ χ2(q).

(1) Hβ̂ −Hβ ∼ N(0, σ2H(X ′Σ−1X)−1H).
In Y = Xβ + ϵ, ϵ ∼ N(0, σ2Σ), X has full column rank so θ = Hβ is estimable for all
H. With full row rank H, θ = Hβ ∈ Rq has BLUE

Hβ̂ = H
(
Σ−1/2X

)+
Σ−1/2Y = H(X ′Σ−1X)−1X ′Σ−1Y ∼ N

(
Hβ, σ2H(X ′Σ−1X)−1H

)
.

So Hβ̂ −Hβ ∼ N(0, σ2H(X ′Σ−1X)−1H).

(2) (Hβ̂ −Hβ)′ [H(X′Σ−1X)−1H′]−1

σ2 (Hβ̂ −Hβ) ∼ χ2(q).

Write (Hβ̂ −Hβ)′ [H(X′Σ−1X)−1H′]−1

σ2 (Hβ̂ −Hβ) as Z ′AZ where Z = Hβ̂ −Hβ and

A = [H(X′Σ−1X)−1H′]−1

σ2 . Then Z ∼ N(0, A−1). Note that
AA−1A = A, 0′A0 = 0 and tr(AA−1) = tr(Iq) = q.

So Z ′AZ ∼∼ χ2(q).
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3. Confidence regions

(1) A pivotal quantity

F = (Hβ−Hβ̂)′[H(X′Σ−1X)−1H′]−1(Hβ−Hβ̂)

qMSE ∼ F (q, n− p)

Proof. In Y = Xβ + ϵ, ϵ ∼ N(0, σ2Σ), X has full column rank.

With β̂ =
(
Σ−1/2X

)+
Σ−1/2Y = DΣ−1/2Y where D = Σ−1/2X and

SSE = (Σ−1/2Y )′
[
I −

(
Σ−1/2X

) (
Σ−1/2X

)+]
(Σ−1/2Y ) = Y ′Σ−1/2(I−DD+)Σ−1/2Y ,

β̂ and SSE are independent since(
DΣ−1/2

) (
σ2Σ

) [
Σ−1/2(I −DD+)Σ−1/2

]
= 0.

Hence F = (Hβ−Hβ̂)′[H(X′Σ−1X)−1H′]−1(Hβ−Hβ̂)

qMSE

= (Hβ−Hβ̂)′[H(X′Σ−1X)−1H′]−1(Hβ−Hβ̂)/(σ2q)

SSE/[σ2(n−p)]
∼ F (q, n− p).

(2) 1− α confidence region for θ = Hβ.

Because P
(
(Hβ−Hβ̂)′[H(X′Σ−1X)−1H′]−1(Hβ−Hβ̂)

qMSE ≤ Fα(q, n− p)
)
= 1− α,

the collection of all θ ∈ Rq satisfying

(θ −Hβ̂)′[H(X ′Σ−1X)−1H ′]−1(θ −Hβ̂)

qMSE
≤ Fα(q, n− p)

is a 1− α confidence region for θ = Hβ.
This region can be written as (θ −Hβ̂)′A−1(θ −Hβ̂) ≤ 1, and hence is an ellipsoid in
Rq with center Hβ̂.

Ex2: With H = Ip, the 1− α confidence region for β is the collection of β satisfying

(β − β̂)′(X ′Σ−1X)(β − β̂)

p,MSE
≤ Fα(p, n− p)

Ex3: With H = l′ such that θ = Hβ = l′β ∈ R, the 1 − α confidence region for θ
becomes a confidence interval.

(θ−l′β̂)′[l′(X′Σ−1X)−1l]
−1

(θ−l′β̂)

MSE ≤ Fα(1, n− p)

⇐⇒ (θ − l′β̂)2 ≤ Fα(1, n− p)MSE l′(X ′Σ−1X)−1l

⇐⇒ θ ∈ l′β̂ ±
√
Fα(1, n− p)

√
MSE l′(X ′Σ−1X)−1l
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