L11 Bayes estimator

1. Bayes estimator

(1) Five distributions
In Bayesian statistics parameter § € RP is treated as a random vector with a prior dis-
tribution that reflects the prior knowledge on 6.
There will be the distribution of sample Y, the joint distribution of # and Y, the condi-
tional distribution of Y given 6 and the conditional distribution of 6 given Y.
The traditional distribution family of Y with parameter 6 is now treated as a conditional
distribution of Y given 6.

(2) Bayes estimator
The conditional distribution of 6 given Y is the posterior distribution of #. The mean of
this distribution, F(#]Y’), is a function of Y, a statistic. This statistic is often used to
estimate 0, and is called the Bayes estimator of 6.

(3) Finding the posterior pdf
Suppose fy(6) < fo(#) which means the prior pdf fy(é) is proportional to a given function

fo(0), i.e., fo(0) = cofo(0) where ¢y >0
Suppose L(0) = fyjo(y) oc f1(f) which means the likelihood function, the conditional
pdf of Y given 6 treated as a function of 6, is proportional to a given function fi(0), i.e.,

fyip(y) = c1(y) f1(0, y) where c1(y) > 0.
Then foy(0) oc fo(0)f1(0), i.e., the posterior pdf of § is proportional to fo(6)f1(0).

Proof. The joint pdf of ¢ and Y is f(y, 0) = fo(0) fy1o(y) = cofo(®)er(v) 1(0; v)-
Hence foy (0) = 454 = 42U £,(0) £1(0, y) o< fo(0) f1(0, v).

Ex1: For X ~ Np(p, X) let fo(x) = exp (%) The pdf of X
flx) = W exp [~g(z — 'Sz — )]
/y—1 z’ 71337 ! —1
- (27r)1)/£|2|1/2 €Xp (# E72 H) exp (W) = cfo(w)
So X ~ N(u, ¥) = f(x) « fo(z). On the other hand,

f(@) x folz) = f(z) =cfolz) = 1= [, f(x)dz = c [ fo(z)dz

= f(@)= 205 = X ~ N ).

2. Bayes estimator in linear model

(1) Prior and posterior distributions for g
For Y|B ~ N(Xf, 021,) assign prior 8 ~ N (S0, ¥o). Then the posterior

Lo X'x\Y/. XY o x'x\ !
5|YNN<<201+ = ) (20 Bo + 3 >, <ZO + 2 )

Because the posterior and prior are in the same distribution family, the prior is called a
conjugate prior.




Pf: 3~ N(Bo, o) = f3(8) x fo(B) = exp [5/2515—7225/25%].
Y[B ~ N(XB, 0*I,) = L(B) o f1(B) = exp [(Xﬁ)’(Xﬁ)}?(XB)’Y
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fay (B) o fo(B)f1(B) = exp [ﬁl( E— ; ]
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Thus BlY ~ N << o
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(2) Bayes estimator for f3

Let 3 = (X’X)71X'Y be the BLUE for 3 in classical statistics. Then the Bayesian
estimator for

(st

= exp

Bs = BEY) = (35" +55) 7 (256 + )

/ ]' !
(261 )fﬂx) (26150 )22)( (X'X)! X’Y)
LoN—1 R
= <261+)f72X) (E 150+)22Xﬁ>

Let Wy = 3g!, Wo = 25X and W = Wy + Wa. Then

B = W W15y + Wap).

So the Bayesian estimator for 3 is the weighted average of prior mean 3y and classical
BLUE B with weight matrices W1 and Wa.

. Loss functions and risk functions

(1) Risk function in Bayesian statistics
In Bayesian statistics, the risk is calculated with respect to the posterior distribution of
0, i.e.,
r(6,0)=E (6 —0)(@—0)|Y| € RP*P

where §(Y) is treated as non-random. With Bayesian estimator fp = E oY),
r(0p, 0) = E[(0 — 05)(6 — 05)] = Cov(d]Y).

(2) Bayes estimator dominates all estiamtors
Let 6 be an estimator for . Then

r@,6) = E|6- é)(e-@)qy}
= E|(0-Pp +/§B_§)(9_§B+BB_§)/|Y}
= B|(0-Bp)(0~BplY] + £ (35~ D)(B5 ~ )1V ]
= r(0s, 0) + (B — 0)(5p — 0)'
> 7’(93, 0).

Thus for Bayes estimator 8, E[L(85, 0)|Y] = Cov(8|Y) < E[L(8, 6)|Y].



L12 Confidence regions

1. SaszE 2(” —p)

(1) Expression of SSE
InY =XB+¢e e~ N(0,0%%), E(Y) = XJ3 is estimable with BLUE
Y= X3=Xx(2¥2x)" n-12y,
So e =Y — X is predicted by the residual vector
e=Y -V =Y - X (z7V2x) 512y = 512 [ - (27V2X) (512x) | =2y

ssE ZL |y — PR, = =y - ) 2
|[1- (=ex) (m2x) ] (miey) || = 274z
where Z = $712Y ~ N (S 1/2X5 0’I,), A=1—-DD" with D = £71/2X.
(2) S§—2E ~ x%(n — r) where r = rank(X)

Recall: X ~ N(u, X)), AXA=A=A" = X'AX ~ (/' Ap, tr(AY)).

With SSE — 774 7 where Z ~ N(2-1/2X8, 62I) and A= I — DD+, D = 12X,

+ + +
0_20-2IA I DD QII DD _ I- DD :£7

( 1/2Xﬁ)0( 1/2X5) ( 1/2X)’1 DD+(D5)_0and
tr (£ 2021) =tr(l — DDT) =n —rank(D) = n — r where r = rank(X).

SSE 2(n — 7).
(3) Consequences
MSE %2 szl;j is an UE for o2 since E (SSE> —r = E(MSE) =
QSSE y =3 SSE is a 1 — a CI for o2 since
Xa/2(n=T) lea/z(”_r)

SSE 2 SSE _op(Xap) X5
P <Xi/2("r) 07 s Xi_ a/g(”ﬂ) - P( SSE Sz s

= P <X%_a/2(n—r) < SUSQE < Xi/Q(n—r)) =1-aq.

Exl: For Y = X8 +¢, € ~ N(0,0%I), SSE = Y'(I — XX )Y, MSE = %Sf];) and
SSE 20
o2 (n —p).

2. (HB — HpyHXEZXTHIT (HE — HB) ~ x2(q).

(1) H3 — HB ~ N(0, 02H(X'S1X)"'H).
InY = XB+¢, e~ N(0, 0?Y), X has full column rank so § = HJ3 is estimable for all
H. With full row rank H, # = HB € R? has BLUE
HB = H (2712X)" 5712y = H(X'S™1X) ' X'S"1Y ~ N (HB, oH(X'S™ X)L H).
So H3 — HB ~ N(0, 02H(X'S™1X)"1H).
(2) (HB — Hpy X220 T (HE — HB) ~ x*(q).
Write (HB — HB)' s XHY L (HB — HB) as Z'AZ where Z = HB — Hf and
A= HEET 1X) HT Then Z ~ N(0, A~1). Note that
aa14Z A, O’AO =0 and tr(AA71) = tr(I,) = q.
So Z'AZ ~~ x*(q).




3. Confidence regions

(1) A pivotal quantity

HB—HB) [H(X'S"1X)"1H-Y(HB—HB
F — (HB—HP)'[H( qMSi—‘) 1~ 1(HB ﬁ)NF(q,n—p)

Proof. In Y = X8 +¢, e ~ N(0, 02%), X has full column rank.
With § = (57Y2X) " £71/2y = DE1/2Y where D = £71/2X and
SSE = (S7V2Y) |1 - (S7V2X) (572x) | (274/2Y) = Y's Y2 (1-DD Y)Y,

B and SSE are independent since
(DE~Y2) (o?%) [£~Y3(I — DD*)E~Y2] =0.
(Hp—HPB)'[H(X'S ' X)'H'|"'(Hp—HP)

oM

_ HB-HP)[HX'S'X)'H'|"'(HB-HP)/(0%q) _

- SSE/[UQ(n—p)} F(Qa n p)'
(2) 1 — « confidence region for § = Hf.

(HB—HB)'|H(X'S' X) ' H'| "\ (H3~HP)
P MS < Fal
the collection of all § € R? satisfying

Hence F

Because q,n —p)) =1-aq,

(0 — HBY[H(X'S'X)"'H'|"1(0 — Hp)
q MSE

SFa(qv n_p)

is a 1 — « confidence region for § = Hf. R
This region can be written as (6 — HJ3)’ A7Y6 — HB) < 1, and hence is an ellipsoid in
RY with center Hp.

Ex2: With H = I, the 1 — a confidence region for 3 is the collection of § satisfying

(8- B)(X'S'X)(8 - B)
p, MSE

< Fo(p, n—p)

Ex3: With H = I’ such that § = H3 = I’ € R, the 1 — « confidence region for 6
becomes a confidence interval.
O—UB) [I1(xX's1X)~1] " (0-1'B)
/[\ MSE ] SFa(la n_p)
(0 —1U'B)? < Fy(l,n—p)MSE I'(X'271X)~1]
0 €l'BE\/Fa(l,n—p) /MSE I'(X'S-1X)-1
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