L11 Bayes estimator

- 1. Bayes estimator
 - (1) Five distributions

In Bayesian statistics parameter $\theta \in \mathbb{R}^p$ is treated as a random vector with a prior distribution that reflects the prior knowledge on θ .

There will be the distribution of sample Y, the joint distribution of θ and Y, the conditional distribution of Y given θ and the conditional distribution of θ given Y.

The traditional distribution family of Y with parameter θ is now treated as a conditional distribution of Y given θ .

(2) Bayes estimator

The conditional distribution of θ given Y is the posterior distribution of θ . The mean of this distribution, $E(\theta|Y)$, is a function of Y, a statistic. This statistic is often used to estimate θ , and is called the Bayes estimator of θ .

(3) Finding the posterior pdf

Suppose $f_{\theta}(\theta) \propto f_0(\theta)$ which means the prior pdf $f_{\theta}(\theta)$ is proportional to a given function $f_0(\theta)$, i.e., $f_{\theta}(\theta) = c_0 f_0(\theta)$ where $c_0 > 0$

Suppose $L(\theta) = f_{Y|\theta}(y) \propto f_1(\theta)$ which means the likelihood function, the conditional pdf of Y given θ treated as a function of θ , is proportional to a given function $f_1(\theta)$, i.e., $f_{Y|\theta}(y) = c_1(y)f_1(\theta, y)$ where $c_1(y) > 0$.

Then $f_{\theta|Y}(\theta) \propto f_0(\theta) f_1(\theta)$, i.e., the posterior pdf of θ is proportional to $f_0(\theta) f_1(\theta)$.

Proof. The joint pdf of θ and Y is $f(y, \theta) = f_{\theta}(\theta) f_{Y|\theta}(y) = c_0 f_0(\theta) c_1(y) f_1(\theta, y)$. Hence $f_{\theta|Y}(\theta) = \frac{f(\theta, y)}{f_Y(y)} = \frac{c_0 c_1(y)}{f_Y(y)} f_0(\theta) f_1(\theta, y) \propto f_0(\theta) f_1(\theta, y)$.

Ex1: For $X \sim N_p(\mu, \Sigma)$ let $f_0(x) = \exp\left(\frac{x'\Sigma^{-1}x - 2x'\Sigma^{-1}\mu}{-2}\right)$. The pdf of X

$$f(x) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)\right]$$

= $\frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left(\frac{\mu'\Sigma^{-1}\mu}{-2}\right) \exp\left(\frac{x'\Sigma^{-1}x-2x'\Sigma^{-1}\mu}{-2}\right) = cf_0(x)$

So $X \sim N(\mu, \Sigma) \Longrightarrow f(x) \propto f_0(x)$. On the other hand,

$$\begin{array}{rcl} f(x) \propto f_0(x) & \Longrightarrow & f(x) = cf_0(x) \Longrightarrow 1 = \int_R f(x)dx = c\int_R f_0(x)dx \\ & \Longrightarrow & f(x) = \frac{f_0(x)}{\int_R f_0(x)dx} \Longrightarrow X \sim N(\mu, \Sigma). \end{array}$$

2. Bayes estimator in linear model

(1) Prior and posterior distributions for β For $Y|\beta \sim N(X\beta, \sigma^2 I_n)$ assign prior $\beta \sim N(\beta_0, \Sigma_0)$. Then the posterior

$$\beta | Y \sim N\left(\left(\Sigma_0^{-1} + \frac{X'X}{\sigma^2}\right)^{-1} \left(\Sigma_0^{-1}\beta_0 + \frac{X'Y}{\sigma^2}\right), \left(\Sigma_0^{-1} + \frac{X'X}{\sigma^2}\right)^{-1}\right)$$

Because the posterior and prior are in the same distribution family, the prior is called a conjugate prior.

$$\begin{aligned} \mathbf{Pf:} \ \beta &\sim N(\beta_0, \Sigma_0) \Longrightarrow f_{\beta}(\beta) \propto f_0(\beta) = \exp\left[\frac{\beta' \Sigma_0^{-1} \beta - 2\beta' \Sigma_0^{-1} \beta_0}{-2}\right]. \\ Y|\beta &\sim N(X\beta, \sigma^2 I_n) \Longrightarrow L(\beta) \propto f_1(\beta) = \exp\left[\frac{(X\beta)'(X\beta) - 2(X\beta)'Y}{-2\sigma^2}\right]. \\ f_{\beta|Y}(\beta) &\propto f_0(\beta) f_1(\beta) = \exp\left[\frac{\beta' \left(\Sigma_0^{-1} + \frac{X'X}{\sigma^2}\right)\beta - 2\beta' \left(\Sigma_0^{-1} + \beta_0 + \frac{X'Y}{\sigma^2}\right)}{-2}\right] \\ &= \exp\left[\frac{\beta' \left(\Sigma_0^{-1} + \frac{X'X}{\sigma^2}\right)\beta - 2\beta' \left(\Sigma_0^{-1} + \frac{X'X}{\sigma^2}\right) \left(\Sigma_0^{-1} + \frac{X'X}{\sigma^2}\right)^{-1} \left(\Sigma_0^{-1} \beta_0 + \frac{X'Y}{\sigma^2}\right)}{-2}\right] \\ &\text{Thus } \beta|Y \sim N\left(\left(\Sigma_0^{-1} + \frac{X'X}{\sigma^2}\right)^{-1} \left(\Sigma_0^{-1} \beta_0 + \frac{X'Y}{\sigma^2}\right), \left(\Sigma_0^{-1} + \frac{X'X}{\sigma^2}\right)^{-1}\right) \end{aligned}$$

(2) Bayes estimator for β

Let $\hat{\beta} = (X'X)^{-1}X'Y$ be the BLUE for β in classical statistics. Then the Bayesian estimator for β

$$\begin{aligned} \widehat{\beta}_B &= E(\beta|Y) = \left(\Sigma_0^{-1} + \frac{X'X}{\sigma^2}\right)^{-1} \left(\Sigma_0^{-1}\beta_0 + \frac{X'Y}{\sigma^2}\right) \\ &= \left(\Sigma_0^{-1} + \frac{X'X}{\sigma^2}\right)^{-1} \left(\Sigma_0^{-1}\beta_0 + \frac{X'X}{\sigma^2}(X'X)^{-1}X'Y\right) \\ &= \left(\Sigma_0^{-1} + \frac{X'X}{\sigma^2}\right)^{-1} \left(\Sigma_0^{-1}\beta_0 + \frac{X'X}{\sigma^2}\widehat{\beta}\right). \end{aligned}$$

Let $W_1 = \Sigma_0^{-1}$, $W_2 = \frac{X'X}{\sigma^2}$ and $W = W_1 + W_2$. Then

$$\widehat{\beta}_B = W^{-1}(W_1\beta_0 + W_2\widehat{\beta}).$$

So the Bayesian estimator for β is the weighted average of prior mean β_0 and classical BLUE $\hat{\beta}$ with weight matrices W_1 and W_2 .

3. Loss functions and risk functions

(1) Risk function in Bayesian statistics

In Bayesian statistics, the risk is calculated with respect to the posterior distribution of θ , i.e.,

$$r(\widehat{\theta}, \theta) = E\left[(\widehat{\theta} - \theta)(\widehat{\theta} - \theta)'|Y\right] \in R^{p \times p}$$

where $\hat{\theta}(Y)$ is treated as non-random. With Bayesian estimator $\hat{\theta}_B = E(\theta|Y)$,

$$r(\widehat{\theta}_B, \theta) = E[(\theta - \widehat{\theta}_B)(\theta - \widehat{\theta}_B)'] = \operatorname{Cov}(\theta|Y).$$

(2) Bayes estimator dominates all estiamtors

Let $\hat{\theta}$ be an estimator for θ . Then

$$\begin{aligned} r(\widehat{\theta}, \theta) &= E \left[(\theta - \widehat{\theta})(\theta - \widehat{\theta})' | Y \right] \\ &= E \left[(\theta - \widehat{\beta}_B + \widehat{\beta}_B - \widehat{\theta})(\theta - \widehat{\beta}_B + \widehat{\beta}_B - \widehat{\theta})' | Y \right] \\ &= E \left[(\theta - \widehat{\beta}_B)(\theta - \widehat{\beta}_B | Y \right] + E \left[(\widehat{\beta}_B - \widehat{\theta})(\widehat{\beta}_B - \widehat{\theta})' | Y \right] \\ &= r(\widehat{\theta}_B, \theta) + (\widehat{\beta}_B - \widehat{\theta})(\widehat{\beta}_B - \widehat{\theta})' \\ &\geq r(\widehat{\theta}_B, \theta). \end{aligned}$$

Thus for Bayes estimator $\widehat{\theta}_B$, $E[L(\widehat{\theta}_B, \theta)|Y] = \operatorname{Cov}(\theta|Y) \le E[L(\widehat{\theta}, \theta)|Y].$

L12 Confidence regions

1.
$$\frac{SSE}{\sigma^2} \sim \chi^2(n-p)$$
(1) Expression of SSE
In $Y = X\beta + \epsilon$, $\epsilon \sim N(0, \sigma^2 \Sigma)$, $E(Y) = X\beta$ is estimable with BLUE
 $\hat{Y} = X\hat{\beta} = X (\Sigma^{-1/2}X)^{\dagger} \Sigma^{-1/2}Y$.
So $\epsilon = Y - X\beta$ is predicted by the residual vector
 $e = Y - \hat{Y} = Y - X (\Sigma^{-1/2}X)^{\dagger} \Sigma^{-1/2}Y = \Sigma^{1/2} \left[I - (\Sigma^{-1/2}X) (\Sigma^{-1/2}X)^{\dagger}\right] \Sigma^{-1/2}Y$.
SSE $\stackrel{def}{=} ||Y - \hat{Y}||_{\Sigma^{-1}}^2 = ||\Sigma^{-1/2}(Y - \hat{Y})||^2$
 $= \left\| \left[I - (\Sigma^{-1/2}X) (\Sigma^{-1/2}X)^{\dagger}\right] (\Sigma^{-1/2}Y) \right\|^2 = Z'AZ$.
where $Z = \Sigma^{-1/2}Y \sim N (\Sigma^{-1/2}X\beta, \sigma^2 I_n)$, $A = I - DD^+$ with $D = \Sigma^{-1/2}X$.
(2) $\frac{SSE}{\sigma^2} \sim \chi^2(n-r)$ where $r = \operatorname{rank}(X)$
Recall: $X \sim N(\mu, \Sigma)$, $A\Sigma A = A = A' \Longrightarrow X'AX \sim \chi^2(\mu'A\mu, \operatorname{tr}(A\Sigma))$.
With $\frac{SgE}{\sigma^2} = Z' \frac{A^2}{\sigma^2}Z$ where $Z \sim N(\Sigma^{-1/2}X\beta, \sigma^2 I)$ and $A = I - DD^+$, $D = \Sigma^{-1/2}X$,
 $\frac{A_2\sigma^2 rI}{\sigma^2} \frac{A_2}{\sigma^2} = \frac{I - DD^+}{\sigma^2} \sigma^2 I \frac{I - DD^+}{\sigma^2} = \frac{I - DD^+}{\sigma^2} = \frac{A_{\sigma^2}}{\sigma}$,
 $(\Sigma^{-1/2}X\beta)' \frac{A}{\sigma^2} (\Sigma^{-1/2}X\beta) = (\Sigma^{-1/2}X)' \frac{I - DD^+}{\sigma^2} (D\beta) = 0$ and
 $\operatorname{tr}(\frac{A_{\sigma^2}\sigma^2 I}{\sigma^2}) = \operatorname{tr}(I - DD^+) = n - \operatorname{rank}(D) = n - r$ where $r = \operatorname{rank}(X)$.
Hence $\frac{SSE}{\sigma^2} \sim \chi^2(n - r)$.
(3) Consequences
 $MSE \stackrel{def}{=} \frac{SSE}{n-r}$ is an UE for σ^2 since $E\left(\frac{SSE}{\sigma^2}\right) = n - r \Longrightarrow E(MSE) = \sigma^2$.
 $\left(\frac{SSE}{\chi^2_{\alpha/2}(n-r)}, \frac{SSE}{\chi^2_{\alpha/2}(n-r)}\right)$ is a $1 - \alpha$ CI for σ^2 since
 $P\left(\frac{SSE}{\chi^2_{\alpha/2}(n-r)} \leq \sigma^2 \leq \frac{SSE}{\chi^2_{\alpha/2}(n-r)}\right) = P\left(\frac{\chi^{1-\alpha/2}(n-r)}{SSE} \leq \frac{1}{\sigma^2} \leq \frac{\chi^2_{\alpha/2}(n-r)}{SSE}\right)$
 $= P\left(\chi^2_{1-\alpha/2}(n-r) \leq \frac{SSE}{\Sigma^2} \times \chi^2_{\alpha/2}(n-r)\right) = 1 - \alpha$.

Ex1: For $Y = X\beta + \epsilon$, $\epsilon \sim N(0, \sigma^2 I)$, SSE = $Y'(I - XX^+)Y$, MSE = $\frac{SSE}{n-p}$ and $\frac{SSE}{\sigma^2} \sim \chi^2(n-p)$.

2.
$$(H\widehat{\beta} - H\beta)' \frac{[H(X'\Sigma^{-1}X)^{-1}H']^{-1}}{\sigma^2} (H\widehat{\beta} - H\beta) \sim \chi^2(q).$$

- (1) $H\widehat{\beta} H\beta \sim N(0, \sigma^2 H(X'\Sigma^{-1}X)^{-1}H)$. In $Y = X\beta + \epsilon, \epsilon \sim N(0, \sigma^2\Sigma)$, X has full column rank so $\theta = H\beta$ is estimable for all H. With full row rank $H, \theta = H\beta \in R^q$ has BLUE $H\widehat{\beta} = H\left(\Sigma^{-1/2}X\right)^+ \Sigma^{-1/2}Y = H(X'\Sigma^{-1}X)^{-1}X'\Sigma^{-1}Y \sim N\left(H\beta, \sigma^2 H(X'\Sigma^{-1}X)^{-1}H\right)$. So $H\widehat{\beta} - H\beta \sim N(0, \sigma^2 H(X'\Sigma^{-1}X)^{-1}H)$.
- (2) $(H\widehat{\beta} H\beta)' \frac{[H(X'\Sigma^{-1}X)^{-1}H']^{-1}}{\sigma^2} (H\widehat{\beta} H\beta) \sim \chi^2(q).$ Write $(H\widehat{\beta} - H\beta)' \frac{[H(X'\Sigma^{-1}X)^{-1}H']^{-1}}{\sigma^2} (H\widehat{\beta} - H\beta)$ as Z'AZ where $Z = H\widehat{\beta} - H\beta$ and $A = \frac{[H(X'\Sigma^{-1}X)^{-1}H']^{-1}}{\sigma^2}.$ Then $Z \sim N(0, A^{-1}).$ Note that $AA^{-1}A = A, \ 0'A0 = 0$ and $\operatorname{tr}(AA^{-1}) = \operatorname{tr}(I_q) = q.$ So $Z'AZ \sim \chi^2(q).$

3. Confidence regions

- (1) A pivotal quantity $F = \frac{(H\beta - H\hat{\beta})'[H(X'\Sigma^{-1}X)^{-1}H']^{-1}(H\beta - H\hat{\beta})}{q \operatorname{MSE}} \sim F(q, n - p)$ Proof. In $Y = X\beta + \epsilon$, $\epsilon \sim N(0, \sigma^{2}\Sigma)$, X has full column rank. With $\hat{\beta} = (\Sigma^{-1/2}X)^{+} \Sigma^{-1/2}Y = D\Sigma^{-1/2}Y$ where $D = \Sigma^{-1/2}X$ and $\operatorname{SSE} = (\Sigma^{-1/2}Y)' \left[I - (\Sigma^{-1/2}X) (\Sigma^{-1/2}X)^{+}\right] (\Sigma^{-1/2}Y) = Y'\Sigma^{-1/2}(I - DD^{+})\Sigma^{-1/2}Y,$ $\hat{\beta}$ and SSE are independent since $(D\Sigma^{-1/2}) (\sigma^{2}\Sigma) \left[\Sigma^{-1/2}(I - DD^{+})\Sigma^{-1/2}\right] = 0.$ Hence $F = \frac{(H\beta - H\hat{\beta})'[H(X'\Sigma^{-1}X)^{-1}H']^{-1}(H\beta - H\hat{\beta})}{q \operatorname{MSE}}$ $= \frac{(H\beta - H\hat{\beta})'[H(X'\Sigma^{-1}X)^{-1}H']^{-1}(H\beta - H\hat{\beta})/(\sigma^{2}q)}{\operatorname{SSE}/[\sigma^{2}(n-p)]} \sim F(q, n - p).$
- (2) 1α confidence region for $\theta = H\beta$. Because $P\left(\frac{(H\beta - H\widehat{\beta})'[H(X'\Sigma^{-1}X)^{-1}H']^{-1}(H\beta - H\widehat{\beta})}{q \operatorname{MSE}} \leq F_{\alpha}(q, n-p)\right) = 1 - \alpha$, the collection of all $\theta \in R^{q}$ satisfying

$$\frac{(\theta - H\widehat{\beta})'[H(X'\Sigma^{-1}X)^{-1}H']^{-1}(\theta - H\widehat{\beta})}{q\,\mathrm{MSE}} \le F_{\alpha}(q, n-p)$$

is a $1 - \alpha$ confidence region for $\theta = H\beta$. This region can be written as $(\theta - H\hat{\beta})'A^{-1}(\theta - H\hat{\beta}) \leq 1$, and hence is an ellipsoid in R^q with center $H\hat{\beta}$.

Ex2: With $H = I_p$, the $1 - \alpha$ confidence region for β is the collection of β satisfying

$$\frac{(\beta - \hat{\beta})'(X'\Sigma^{-1}X)(\beta - \hat{\beta})}{p, \text{MSE}} \le F_{\alpha}(p, n-p)$$

Ex3: With H = l' such that $\theta = H\beta = l'\beta \in R$, the $1 - \alpha$ confidence region for θ becomes a confidence interval.

$$\begin{array}{l} \frac{(\theta - l'\widehat{\beta})' [l'(X'\Sigma^{-1}X)^{-1}l]^{-1}(\theta - l'\widehat{\beta})}{\mathrm{MSE}} \leq F_{\alpha}(1, n-p) \\ \Leftrightarrow \quad (\theta - l'\widehat{\beta})^{2} \leq F_{\alpha}(1, n-p) \, \mathrm{MSE} \ l'(X'\Sigma^{-1}X)^{-1}l \\ \Leftrightarrow \quad \theta \in l'\widehat{\beta} \pm \sqrt{F_{\alpha}(1, n-p)} \, \sqrt{\mathrm{MSE} \ l'(X'\Sigma^{-1}X)^{-1}l} \end{array}$$