L11 Bayes estimator

1. Bayes estimator

(1) Five distributions

In Bayesian statistics parameter $\theta \in R^{p}$ is treated as a random vector with a prior distribution that reflects the prior knowledge on θ.
There will be the distribution of sample Y, the joint distribution of θ and Y, the conditional distribution of Y given θ and the conditional distribution of θ given Y.
The traditional distribution family of Y with parameter θ is now treated as a conditional distribution of Y given θ.
(2) Bayes estimator

The conditional distribution of θ given Y is the posterior distribution of θ. The mean of this distribution, $E(\theta \mid Y)$, is a function of Y, a statistic. This statistic is often used to estimate θ, and is called the Bayes estimator of θ.
(3) Finding the posterior pdf

Suppose $f_{\theta}(\theta) \propto f_{0}(\theta)$ which means the prior pdf $f_{\theta}(\theta)$ is proportional to a given function $f_{0}(\theta)$, i.e., $f_{\theta}(\theta)=c_{0} f_{0}(\theta)$ where $c_{0}>0$
Suppose $L(\theta)=f_{Y \mid \theta}(y) \propto f_{1}(\theta)$ which means the likelihood function, the conditional pdf of Y given θ treated as a function of θ, is proportional to a given function $f_{1}(\theta)$, i.e., $f_{Y \mid \theta}(y)=c_{1}(y) f_{1}(\theta, y)$ where $c_{1}(y)>0$.
Then $f_{\theta \mid Y}(\theta) \propto f_{0}(\theta) f_{1}(\theta)$, i.e., the posterior pdf of θ is proportional to $f_{0}(\theta) f_{1}(\theta)$.
Proof. The joint pdf of θ and Y is $f(y, \theta)=f_{\theta}(\theta) f_{Y \mid \theta}(y)=c_{0} f_{0}(\theta) c_{1}(y) f_{1}(\theta, y)$.

$$
\text { Hence } f_{\theta \mid Y}(\theta)=\frac{f(\theta, y)}{f_{Y}(y)}=\frac{c_{0} c_{1}(y)}{f_{Y}(y)} f_{0}(\theta) f_{1}(\theta, y) \propto f_{0}(\theta) f_{1}(\theta, y)
$$

Ex1: For $X \sim N_{p}(\mu, \Sigma)$ let $f_{0}(x)=\exp \left(\frac{x^{\prime} \Sigma^{-1} x-2 x^{\prime} \Sigma^{-1} \mu}{-2}\right)$. The pdf of X

$$
\begin{aligned}
f(x) & =\frac{1}{(2 \pi)^{p / 2}|\Sigma|^{1 / 2}} \exp \left[-\frac{1}{2}(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)\right] \\
& =\frac{1}{(2 \pi)^{p / 2}|\Sigma|^{1 / 2}} \exp \left(\frac{\mu^{\prime} \Sigma^{-1} \mu}{-2}\right) \exp \left(\frac{x^{\prime} \Sigma^{-1} x-2 x^{\prime} \Sigma^{-1} \mu}{-2}\right)=c f_{0}(x)
\end{aligned}
$$

So $X \sim N(\mu, \Sigma) \Longrightarrow f(x) \propto f_{0}(x)$. On the other hand,

$$
\begin{aligned}
f(x) \propto f_{0}(x) & \Longrightarrow f(x)=c f_{0}(x) \Longrightarrow 1=\int_{R} f(x) d x=c \int_{R} f_{0}(x) d x \\
& \Longrightarrow f(x)=\frac{f_{0}(x)}{\int_{R} f_{0}(x) d x} \Longrightarrow X \sim N(\mu, \Sigma) .
\end{aligned}
$$

2. Bayes estimator in linear model
(1) Prior and posterior distributions for β

For $Y \mid \beta \sim N\left(X \beta, \sigma^{2} I_{n}\right)$ assign prior $\beta \sim N\left(\beta_{0}, \Sigma_{0}\right)$. Then the posterior

$$
\beta \left\lvert\, Y \sim N\left(\left(\Sigma_{0}^{-1}+\frac{X^{\prime} X}{\sigma^{2}}\right)^{-1}\left(\Sigma_{0}^{-1} \beta_{0}+\frac{X^{\prime} Y}{\sigma^{2}}\right),\left(\Sigma_{0}^{-1}+\frac{X^{\prime} X}{\sigma^{2}}\right)^{-1}\right)\right.
$$

Because the posterior and prior are in the same distribution family, the prior is called a conjugate prior.

Pf: $\beta \sim N\left(\beta_{0}, \Sigma_{0}\right) \Longrightarrow f_{\beta}(\beta) \propto f_{0}(\beta)=\exp \left[\frac{\beta^{\prime} \Sigma_{0}^{-1} \beta-2 \beta^{\prime} \Sigma_{0}^{-1} \beta_{0}}{-2}\right]$.

$$
\begin{aligned}
& Y \left\lvert\, \beta \sim N\left(X \beta, \sigma^{2} I_{n}\right) \Longrightarrow L(\beta) \propto f_{1}(\beta)=\exp \left[\frac{(X \beta)^{\prime}(X \beta)-2(X \beta)^{\prime} Y}{-2 \sigma^{2}}\right]\right. \\
& f_{\beta \mid Y}(\beta) \propto f_{0}(\beta) f_{1}(\beta)=\exp \left[\frac{\beta^{\prime}\left(\Sigma_{0}^{-1}+\frac{X^{\prime} X}{\sigma^{2}}\right) \beta-2 \beta^{\prime}\left(\Sigma_{0}^{-1} \beta_{0}+\frac{X^{\prime} Y}{\sigma^{2}}\right)}{-2}\right] \\
& \quad=\exp \left[\frac{\beta^{\prime}\left(\Sigma_{0}^{-1}+\frac{X^{\prime} X}{\sigma^{2}}\right) \beta-2 \beta^{\prime}\left(\Sigma_{0}^{-1}+\frac{X^{\prime} X}{\sigma^{2}}\right)\left(\Sigma_{0}^{-1}+\frac{X^{\prime} X}{\sigma^{2}}\right)^{-1}\left(\Sigma_{0}^{-1} \beta_{0}+\frac{X^{\prime} Y}{\sigma^{2}}\right)}{-2}\right]
\end{aligned}
$$

$$
\text { Thus } \beta \left\lvert\, Y \sim N\left(\left(\Sigma_{0}^{-1}+\frac{X^{\prime} X}{\sigma^{2}}\right)^{-1}\left(\Sigma_{0}^{-1} \beta_{0}+\frac{X^{\prime} Y}{\sigma^{2}}\right),\left(\Sigma_{0}^{-1}+\frac{X^{\prime} X}{\sigma^{2}}\right)^{-1}\right)\right.
$$

(2) Bayes estimator for β

Let $\widehat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y$ be the BLUE for β in classical statistics. Then the Bayesian estimator for β

$$
\begin{aligned}
\widehat{\beta}_{B} & =E(\beta \mid Y)=\left(\Sigma_{0}^{-1}+\frac{X^{\prime} X}{\sigma^{2}}\right)^{-1}\left(\Sigma_{0}^{-1} \beta_{0}+\frac{X^{\prime} Y}{\sigma^{2}}\right) \\
& =\left(\Sigma_{0}^{-1}+\frac{X^{\prime} X}{\sigma^{2}}\right)^{-1}\left(\Sigma_{0}^{-1} \beta_{0}+\frac{X^{\prime} X}{\sigma^{2}}\left(X^{\prime} X\right)^{-1} X^{\prime} Y\right) \\
& =\left(\Sigma_{0}^{-1}+\frac{X^{\prime} X}{\sigma^{2}}\right)^{-1}\left(\Sigma_{0}^{-1} \beta_{0}+\frac{X^{\prime} X}{\sigma^{2}} \widehat{\beta}\right) .
\end{aligned}
$$

Let $W_{1}=\Sigma_{0}^{-1}, W_{2}=\frac{X^{\prime} X}{\sigma^{2}}$ and $W=W_{1}+W_{2}$. Then

$$
\widehat{\beta}_{B}=W^{-1}\left(W_{1} \beta_{0}+W_{2} \widehat{\beta}\right) .
$$

So the Bayesian estimator for β is the weighted average of prior mean β_{0} and classical BLUE $\widehat{\beta}$ with weight matrices W_{1} and W_{2}.
3. Loss functions and risk functions
(1) Risk function in Bayesian statistics

In Bayesian statistics, the risk is calculated with respect to the posterior distribution of θ, i.e.,

$$
r(\widehat{\theta}, \theta)=E\left[(\widehat{\theta}-\theta)(\widehat{\theta}-\theta)^{\prime} \mid Y\right] \in R^{p \times p}
$$

where $\widehat{\theta}(Y)$ is treated as non-random. With Bayesian estimator $\widehat{\theta}_{B}=E(\theta \mid Y)$,

$$
r\left(\widehat{\theta}_{B}, \theta\right)=E\left[\left(\theta-\widehat{\theta}_{B}\right)\left(\theta-\widehat{\theta}_{B}\right)^{\prime}\right]=\operatorname{Cov}(\theta \mid Y) .
$$

(2) Bayes estimator dominates all estiamtors

Let $\widehat{\theta}$ be an estimator for θ. Then

$$
\begin{aligned}
r(\widehat{\theta}, \theta) & =E\left[(\theta-\widehat{\theta})(\theta-\widehat{\theta})^{\prime} \mid Y\right] \\
& =E\left[\left(\theta-\widehat{\beta}_{B}+\widehat{\beta}_{B}-\widehat{\theta}\right)\left(\theta-\widehat{\beta}_{B}+\widehat{\beta}_{B}-\widehat{\theta}\right)^{\prime} \mid Y\right] \\
& =E\left[\left(\theta-\widehat{\beta}_{B}\right)\left(\theta-\widehat{\beta}_{B} \mid Y\right]+E\left[\left(\widehat{\beta}_{B}-\widehat{\theta}\right)\left(\widehat{\beta}_{B}-\widehat{\theta}\right)^{\prime} \mid Y\right]\right. \\
& =r\left(\widehat{\theta}_{B}, \theta\right)+\left(\widehat{\beta}_{B}-\widehat{\theta}\right)\left(\widehat{\beta}_{B}-\widehat{\theta}\right)^{\prime} \\
& \geq r\left(\widehat{\theta}_{B}, \theta\right) .
\end{aligned}
$$

Thus for Bayes estimator $\widehat{\theta}_{B}, E\left[L\left(\widehat{\theta}_{B}, \theta\right) \mid Y\right]=\operatorname{Cov}(\theta \mid Y) \leq E[L(\widehat{\theta}, \theta) \mid Y]$.

L12 Confidence regions

1. $\frac{\mathrm{SSE}}{\sigma^{2}} \sim \chi^{2}(n-p)$
(1) Expression of SSE

In $Y=X \beta+\epsilon, \epsilon \sim N\left(0, \sigma^{2} \Sigma\right), E(Y)=X \beta$ is estimable with BLUE

$$
\widehat{Y}=X \widehat{\beta}=X\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{-1 / 2} Y
$$

So $\epsilon=Y-X \beta$ is predicted by the residual vector

$$
e=Y-\widehat{Y}=Y-X\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{-1 / 2} Y=\Sigma^{1 / 2}\left[I-\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}\right] \Sigma^{-1 / 2} Y
$$

SSE $\xlongequal{\text { def }}\|Y-\widehat{Y}\|_{\Sigma^{-1}}^{2}=\left\|\Sigma^{-1 / 2}(Y-\widehat{Y})\right\|^{2}$

$$
=\left\|\left[I-\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}\right]\left(\Sigma^{-1 / 2} Y\right)\right\|^{2}=Z^{\prime} A Z
$$

where $Z=\Sigma^{-1 / 2} Y \sim N\left(\Sigma^{-1 / 2} X \beta, \sigma^{2} I_{n}\right), A=I-D D^{+}$with $D=\Sigma^{-1 / 2} X$.
(2) $\frac{\text { SSE }}{\sigma^{2}} \sim \chi^{2}(n-r)$ where $r=\operatorname{rank}(X)$

Recall: $X \sim N(\mu, \Sigma), A \Sigma A=A=A^{\prime} \Longrightarrow X^{\prime} A X \sim \chi^{2}\left(\mu^{\prime} A \mu, \operatorname{tr}(A \Sigma)\right)$.
With $\frac{\text { SSE }}{\sigma^{2}}=Z^{\prime} \frac{A}{\sigma^{2}} Z$ where $Z \sim N\left(\Sigma^{-1 / 2} X \beta, \sigma^{2} I\right)$ and $A=I-D D^{+}, D=\Sigma^{-1 / 2} X$,

$$
\frac{A}{\sigma^{2}} \sigma^{2} I \frac{A}{\sigma^{2}}=\frac{I-D D^{+}}{\sigma^{2}} \sigma^{2} I \frac{I-D D^{+}}{\sigma^{2}}=\frac{I-D D^{+}}{\sigma^{2}}=\frac{A}{\sigma^{2}},
$$

$$
\left(\Sigma^{-1 / 2} X \beta\right)^{\prime} \frac{A}{\sigma^{2}}\left(\Sigma^{-1 / 2} X \beta\right)=\left(\Sigma^{-1 / 2} X\right)^{\prime} \frac{I-D D^{+}}{\sigma^{2}}(D \beta)=0 \text { and }
$$

$\operatorname{tr}\left(\frac{A}{\sigma^{2}} \sigma^{2} I\right)=\operatorname{tr}\left(I-D D^{+}\right)=n-\operatorname{rank}(D)=n-r$ where $r=\operatorname{rank}(X)$.
Hence $\frac{\text { SSE }}{\sigma^{2}} \sim \chi^{2}(n-r)$.
(3) Consequences
$\operatorname{MSE} \xlongequal{\text { def }} \frac{\mathrm{SSE}}{n-r}$ is an UE for σ^{2} since $E\left(\frac{\mathrm{SSE}}{\sigma^{2}}\right)=n-r \Longrightarrow E(\mathrm{MSE})=\sigma^{2}$.
$\left(\frac{\mathrm{SSE}}{\chi_{\alpha / 2}^{2}(n-r)}, \frac{\mathrm{SSE}}{\chi_{1-\alpha / 2}^{2}(n-r)}\right)$ is a $1-\alpha \mathrm{CI}$ for σ^{2} since

$$
\begin{aligned}
& P\left(\frac{\mathrm{SSE}}{\chi_{\alpha / 2}^{2}(n-r)} \leq \sigma^{2} \leq \frac{\mathrm{SSE}}{\chi_{1-\alpha / 2}^{2}(n-r)}\right)=P\left(\frac{\chi_{1-\alpha / 2}^{2}(n-r)}{\mathrm{SSE}} \leq \frac{1}{\sigma^{2}} \leq \frac{\chi_{\alpha / 2}^{2}(n-r)}{\mathrm{SSE}}\right) \\
= & P\left(\chi_{1-\alpha / 2}^{2}(n-r) \leq \frac{\mathrm{SSE}}{\sigma^{2}} \leq \chi_{\alpha / 2}^{2}(n-r)\right)=1-\alpha .
\end{aligned}
$$

Ex1: For $Y=X \beta+\epsilon, \epsilon \sim N\left(0, \sigma^{2} I\right)$, $\mathrm{SSE}=Y^{\prime}\left(I-X X^{+}\right) Y, \mathrm{MSE}=\frac{\mathrm{SSE}}{n-p}$ and

$$
\frac{\text { SSE }}{\sigma^{2}} \sim \chi^{2}(n-p) .
$$

2. $(H \widehat{\beta}-H \beta) \frac{\left[H\left(X^{\prime} \Sigma^{-1} X\right)^{-1} H^{\prime}\right]^{-1}}{\sigma^{2}}(H \widehat{\beta}-H \beta) \sim \chi^{2}(q)$.
(1) $H \widehat{\beta}-H \beta \sim N\left(0, \sigma^{2} H\left(X^{\prime} \Sigma^{-1} X\right)^{-1} H\right)$.

In $Y=X \beta+\epsilon, \epsilon \sim N\left(0, \sigma^{2} \Sigma\right)$, X has full column rank so $\theta=H \beta$ is estimable for all
H. With full row rank $H, \theta=H \beta \in R^{q}$ has BLUE
$H \widehat{\beta}=H\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{-1 / 2} Y=H\left(X^{\prime} \Sigma^{-1} X\right)^{-1} X^{\prime} \Sigma^{-1} Y \sim N\left(H \beta, \sigma^{2} H\left(X^{\prime} \Sigma^{-1} X\right)^{-1} H\right)$.
So $H \widehat{\beta}-H \beta \sim N\left(0, \sigma^{2} H\left(X^{\prime} \Sigma^{-1} X\right)^{-1} H\right)$.
(2)
$(H \widehat{\beta}-H \beta) \frac{\left[H\left(X^{\prime} \Sigma^{-1} X\right)^{-1} H^{\prime}\right]^{-1}}{\sigma^{2}}(H \widehat{\beta}-H \beta) \sim \chi^{2}(q)$.
Write $(H \widehat{\beta}-H \beta)^{\left[\frac{\left[H\left(X^{\prime} \Sigma^{-1} X\right)^{-1} H^{\prime}\right]^{-1}}{\sigma^{2}}\right.}(H \widehat{\beta}-H \beta)$ as $Z^{\prime} A Z$ where $Z=H \widehat{\beta}-H \beta$ and
$A=\frac{\left[H\left(X^{\prime} \Sigma^{-1} X\right)^{-1} H^{\prime}\right]^{-1}}{\sigma^{2}}$. Then $Z \sim N\left(0, A^{-1}\right)$. Note that

$$
A A^{-1} A=A, 0^{\prime} A 0=0 \text { and } \operatorname{tr}\left(A A^{-1}\right)=\operatorname{tr}\left(I_{q}\right)=q .
$$

So $Z^{\prime} A Z \sim \sim \chi^{2}(q)$.
3. Confidence regions
(1) A pivotal quantity
$F=\frac{(H \beta-H \widehat{\beta})^{\prime}\left[H\left(X^{\prime} \Sigma^{-1} X\right)^{-1} H^{\prime}\right]^{-1}(H \beta-H \widehat{\beta})}{q \mathrm{MSE}} \sim F(q, n-p)$
Proof. In $Y=X \beta+\epsilon, \epsilon \sim N\left(0, \sigma^{2} \Sigma\right), X$ has full column rank.
With $\widehat{\beta}=\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{-1 / 2} Y=D \Sigma^{-1 / 2} Y$ where $D=\Sigma^{-1 / 2} X$ and
$\mathrm{SSE}=\left(\Sigma^{-1 / 2} Y\right)^{\prime}\left[I-\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}\right]\left(\Sigma^{-1 / 2} Y\right)=Y^{\prime} \Sigma^{-1 / 2}\left(I-D D^{+}\right) \Sigma^{-1 / 2} Y$,
$\widehat{\beta}$ and SSE are independent since

$$
\left(D \Sigma^{-1 / 2}\right)\left(\sigma^{2} \Sigma\right)\left[\Sigma^{-1 / 2}\left(I-D D^{+}\right) \Sigma^{-1 / 2}\right]=0 .
$$

$$
\text { Hence } \begin{aligned}
F & =\frac{(H \beta-H \widehat{\beta})^{\prime}\left[H\left(X^{\prime} \Sigma^{-1} X\right)^{-1} H^{\prime}\right]^{-1}(H \beta-H \widehat{\beta})}{q M S E} \\
& =\frac{(H \beta-H \widehat{\beta})^{\prime}\left[H\left(X^{\prime} \Sigma^{-1} X\right)^{-1} H^{\prime}\right]-1(H \beta-H \widehat{\beta}) /\left(\sigma^{2} q\right)}{\operatorname{SSE} /\left[\sigma^{2}(n-p)\right]} \sim F(q, n-p) .
\end{aligned}
$$

(2) $1-\alpha$ confidence region for $\theta=H \beta$.

Because $\quad P\left(\frac{(H \beta-H \widehat{\beta})^{\prime}\left[H\left(X^{\prime} \Sigma^{-1} X\right)^{-1} H^{\prime}\right]^{-1}(H \beta-H \widehat{\beta})}{q \mathrm{MSE}} \leq F_{\alpha}(q, n-p)\right)=1-\alpha$, the collection of all $\theta \in R^{q}$ satisfying

$$
\frac{(\theta-H \widehat{\beta})^{\prime}\left[H\left(X^{\prime} \Sigma^{-1} X\right)^{-1} H^{\prime}\right]^{-1}(\theta-H \widehat{\beta})}{q \mathrm{MSE}} \leq F_{\alpha}(q, n-p)
$$

is a $1-\alpha$ confidence region for $\theta=H \beta$.
This region can be written as $(\theta-H \widehat{\beta})^{\prime} A^{-1}(\theta-H \widehat{\beta}) \leq 1$, and hence is an ellipsoid in R^{q} with center $H \widehat{\beta}$.
Ex2: With $H=I_{p}$, the $1-\alpha$ confidence region for β is the collection of β satisfying

$$
\frac{(\beta-\widehat{\beta})^{\prime}\left(X^{\prime} \Sigma^{-1} X\right)(\beta-\widehat{\beta})}{p, \operatorname{MSE}} \leq F_{\alpha}(p, n-p)
$$

Ex3: With $H=l^{\prime}$ such that $\theta=H \beta=l^{\prime} \beta \in R$, the $1-\alpha$ confidence region for θ becomes a confidence interval.

$$
\begin{aligned}
& \frac{\left(\theta-l^{\prime} \widehat{\beta}\right)^{\prime}\left[l^{\prime}\left(X^{\prime} \Sigma^{-1} X\right)^{-1} l\right]^{-1}\left(\theta-l^{\prime} \widehat{\beta}\right)}{\operatorname{MSE}} \leq F_{\alpha}(1, n-p) \\
\Longleftrightarrow & \left(\theta-l^{\prime} \widehat{\beta}\right)^{2} \leq F_{\alpha}(1, n-p) \operatorname{MSE} l^{\prime}\left(X^{\prime} \Sigma^{-1} X\right)^{-1} l \\
\Longleftrightarrow & \theta \in l^{\prime} \widehat{\beta} \pm \sqrt{F_{\alpha}(1, n-p)} \sqrt{\operatorname{MSE} l^{\prime}\left(X^{\prime} \Sigma^{-1} X\right)^{-1} l}
\end{aligned}
$$

