L09 A biased estimator: Principal component estimator

1. Model, problem and remedy
(1) Model

In Model $Y=X \beta+\epsilon, \epsilon \sim\left(0, \sigma^{2} I_{n}\right), X$ has full column rank. Hence β is estimable and the BLUE of β is

$$
\widehat{\beta}=X^{+} Y=\left(X^{\prime} X\right)^{-1} X^{\prime} Y \sim\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)
$$

with

$$
\begin{aligned}
& \operatorname{MSEM}(\widehat{\beta}, \beta)=\operatorname{Cov}(\widehat{\beta})=\sigma^{2}\left(X^{\prime} X\right)^{-1} \text { and } \\
& \operatorname{MSE}(\widehat{\beta}, \beta)=\operatorname{tr}[\operatorname{MSEM}(\widehat{\beta}, \beta)]=\sigma^{2} \operatorname{tr}\left[\left(X^{\prime} X\right)^{-1}\right]
\end{aligned}
$$

(2) Problem

Let $\lambda_{1} \geq \cdots \geq \lambda_{p}>0$ be the eigenvalues of $X^{\prime} X$. Then

$$
\operatorname{MSE}(\widehat{\beta}, \beta)=\sigma^{2}\left(\frac{1}{\lambda_{1}}+\cdots+\frac{1}{\lambda_{p}}\right) .
$$

If there is multicollinearity in X, then $\left|X^{\prime} X\right|=\lambda_{1} \cdots \lambda_{p}$ is small. Consequently $\operatorname{MSE}(\widehat{\beta}, \beta)$ becomes large. Hence the estimator is not stable and the risk is high.
(3) A remedy

In $\operatorname{MSE}(\widehat{\beta}, \beta)=\frac{\sigma^{2}}{\lambda_{1}}+\cdots+\frac{\sigma^{2}}{\lambda_{p}}, \frac{\sigma^{2}}{\lambda_{1}} \leq \cdots \leq \frac{\sigma^{2}}{\lambda_{p}}$, if we keep the firs q terms and drop the rest, the $\operatorname{MSE}(\widehat{\beta}, \beta)$ is reduced. The resulted estimator is called a principal component estimator since $\frac{\sigma^{2}}{\lambda_{1}}, \ldots ., \frac{\sigma^{2}}{\lambda_{q}}$ kept in the estimator are the variances of the first q principal components of $\widehat{\beta}$.
2. Expression, parameters and risk
(1) Expression

By EVD

$$
\begin{aligned}
& X^{\prime} X=P \Lambda P^{\prime}=\left(P_{I}, P_{I I}\right)\left(\begin{array}{cc}
\Lambda_{I} & 0 \\
0 & \Lambda_{I I}
\end{array}\right)\left(P_{I}, P_{I I}\right)^{\prime}=P_{I} \Lambda_{I} P_{I}^{\prime}+P_{I I} \Lambda_{I I} P_{I I}^{\prime} \text { and } \\
& \left(X^{\prime} X\right)^{-1}=P \Lambda^{-1} P^{\prime}=\left(P_{I}, P_{I I}\right)\left(\begin{array}{cc}
\Lambda_{I}^{-1} & 0 \\
0 & \Lambda_{I I}^{-1}
\end{array}\right)\left(P_{I}, P_{I I}\right)^{\prime}=P_{I} \Lambda_{I}^{-1} P_{I}^{\prime}+P_{I I} \Lambda_{I I}^{-1} P_{I I}^{\prime} .
\end{aligned}
$$

So $\quad \widehat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y=\left(P_{I} \Lambda_{I}^{-1} P_{I}^{\prime}+P_{I I} \Lambda_{I I}^{-1} P_{I I}^{\prime}\right) X^{\prime} Y$.
Drop $P_{I I} \Lambda_{I I}^{-1} P_{I I}^{\prime}$ associated with $\lambda_{q+1}, \ldots, \lambda_{p}$. We have principal component estimator

$$
\widehat{\beta}(q)=P_{I} \Lambda_{I}^{-1} P_{I}^{\prime} X^{\prime} Y .
$$

(2) Parameters

With $\widehat{\beta}(q)=P_{I} \Lambda_{I}^{-1} P_{I}^{\prime} X^{\prime} Y$ and $Y \sim\left(X \beta, \sigma^{2} I_{n}\right)$,
$E[\widehat{\beta}(q)]=P_{I} \Lambda_{I}^{-1} P_{I}^{\prime} X^{\prime} X \beta=P_{I} \Lambda_{I}^{-1} P_{I}^{\prime}\left(P_{I} \Lambda_{I} P_{I}^{\prime}+P_{I I} \Lambda_{I I} P_{I I}^{\prime}\right) \beta=P_{I} P_{I}^{\prime} \beta$ and
$\operatorname{Cov}(\widehat{\beta}(q))=\left(P_{I} \Lambda_{I}^{-1} P_{I}^{\prime} X^{\prime}\right) \sigma^{2} I_{n}\left(P_{I} \Lambda_{I}^{-1} P_{I}^{\prime} X^{\prime}\right)^{\prime}$

$$
=\sigma^{2}\left(P_{I} \Lambda_{I}^{-1} P_{I}^{\prime}\right)\left(P_{I} \Lambda_{I} P_{I}^{\prime}+P_{I I} \Lambda_{I I} P_{I I}^{\prime}\right)\left(P_{I} \Lambda_{I}^{-1} P_{I}^{\prime}\right)=\sigma^{2} P_{I} \Lambda_{I}^{-1} P_{I} .
$$

So

$$
\widehat{\beta}(q) \sim\left(P_{I} P_{I}^{\prime} \beta, \sigma^{2} P_{I} \Lambda_{I}^{-1} P_{I}\right) .
$$

(3) Risks

With $\widehat{\beta}(q) \sim\left(P_{I} P_{I}^{\prime} \beta, \sigma^{2} P_{I} \Lambda_{I}^{-1} P_{I}^{\prime}\right), \beta-E\left(\widehat{\beta}(q)=\left(I-P_{I} P_{I}^{\prime}\right) \beta=P_{I I} P_{I I}^{\prime} \beta\right.$. So

$$
r(\widehat{\beta}(q), \beta)=\operatorname{MSEM}(\widehat{\beta}, \beta)=\sigma^{2} P_{I} \Lambda_{I}^{-1} P_{I}^{\prime}+\left(P_{I I} P_{I I}^{\prime}\right) \beta \beta^{\prime}\left(P_{I I} P_{I I}^{\prime}\right)
$$

Ex: The parameters and risk of the principal component estimator have been derived based on Y. They can also be derived based on the BLUE $\widehat{\beta}$.
$\widehat{\beta}(q)=P_{I} \Lambda_{I}^{-1} P_{I}^{\prime} X^{\prime} Y=P_{I} \Lambda_{I}^{-1} P_{I}^{\prime}\left(X^{\prime} X\right)\left(X^{\prime} X\right)^{-1} X^{\prime} Y=P_{I} P_{I}^{\prime} \widehat{\beta}$.
With $\widehat{\beta} \sim\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)$,

$$
\widehat{\beta}(q) \sim\left(P_{I} P_{I}^{\prime} \beta, \sigma^{2} P_{I} P_{I}^{\prime}\left(X^{\prime} X\right)^{-1} P_{I} P_{I}^{\prime}\right)=\left(P_{I} P_{I}^{\prime} \beta, \sigma^{2} P_{I} \Lambda_{I}^{-1} P_{I}^{\prime}\right) .
$$

So $\quad r(\widehat{\beta}(q), \beta)=\operatorname{MSEM}(\widehat{\beta}, \beta)=\sigma^{2} P_{I} \Lambda_{I}^{-1} P_{I}^{\prime}+\left(P_{I I} P_{I I}^{\prime}\right) \beta \beta^{\prime}\left(P_{I I} P_{I I}^{\prime}\right)$.
3. Making $\widehat{\beta}(q)$ better than BLUE
(1) Sufficient and necessary condition for $\widehat{\beta}(q)$ to be better than BLUE
$\widehat{\beta}(q)$ dominates $\widehat{\beta} \Longleftrightarrow P_{I I}^{\prime} \beta \beta^{\prime} P_{I I} \leq \sigma^{2} \Lambda_{I I}^{-1}$
Proof. The PC estimator $\widehat{\beta}(q)$ is better than the $\operatorname{BLUE} \widehat{\beta}$ by the risk $\operatorname{MSEM}(\cdot, \cdot)$

$$
\begin{aligned}
& \Longleftrightarrow \operatorname{MSEM}(\widehat{\beta}(q), \beta) \leq \operatorname{MSEM}(\widehat{\beta}, \beta) \\
& \Longleftrightarrow \sigma^{2} P_{I} \Lambda_{I}^{-1} P_{I}^{\prime}+P_{I I}^{\prime} P_{I I}^{\prime} \beta \beta^{\prime} P_{I I} P_{I I}^{\prime} \leq \sigma^{2}\left(P_{I} \Lambda_{I}^{-1} P_{I}^{\prime}+P_{I I} \Lambda_{I I}^{-1} P_{I I}^{\prime}\right) \\
& \Longleftrightarrow P_{I I} P_{I I}^{\prime} \beta \beta^{\prime} P_{I I} P_{I I}^{\prime} \leq \sigma^{2} P_{I I} \Lambda_{I I}^{-1} P_{I I}^{\prime} \\
& \Longleftrightarrow P_{I I}^{\prime} \beta \beta^{\prime} P_{I I} \leq \sigma^{2} \Lambda_{I I}^{-1} \quad \text { since } A \leq B \Longrightarrow C A C^{\prime} \leq C B C^{\prime}
\end{aligned}
$$

(2) A sufficient condition for $\widehat{\beta}(q)$ to be better than $\widehat{\beta}$.
$P_{I I}^{\prime} \beta \beta^{\prime} P_{I I} \leq \frac{\sigma^{2}}{\lambda_{q+1}} I \Longrightarrow \widehat{\beta}(q)$ dominates $\widehat{\beta}$
Proof. Note that $\frac{\sigma^{2}}{\lambda_{q+1}} I \leq \operatorname{diag}\left(\frac{\sigma^{2}}{\lambda_{q+1}}, \ldots, \frac{\sigma^{2}}{\lambda_{p}}\right)=\sigma^{2} \Lambda_{I I}^{-1}$.
So $P_{I I}^{\prime} \beta \beta^{\prime} P_{I I} \leq \frac{\sigma^{2}}{\lambda_{q+1}} I \Longrightarrow P_{I I}^{\prime} \beta \beta^{\prime} P_{I I} \leq \sigma^{2} \Lambda_{I I}^{-1} \Longrightarrow \widehat{\beta}(q)$ dominates $\widehat{\beta}$.
(3) Selecting q such that $\widehat{\beta}(q)$ is better that $\widehat{\beta}$.

Select q such that $0<\lambda_{q+1} \leq \frac{\sigma^{2}}{\left\|P_{I I}^{\prime} \beta\right\|^{2}}$. Then $\widehat{\beta}(q)$ dominates $\widehat{\beta}$.
Proof. $0<\lambda_{q+1} \leq \frac{\sigma^{2}}{\left\|P_{I I}^{\prime} \beta\right\|^{2}} \Longrightarrow 0<\left\|P_{I I}^{\prime} \beta\right\|^{2} \leq \frac{\sigma^{2}}{\lambda_{q+1}} \Longrightarrow\left(\begin{array}{cc}\left\|P_{I I}^{\prime} \beta\right\|^{2} & 0 \\ 0 & 0\end{array}\right) \leq \frac{\sigma^{2}}{\lambda_{q+1}} I_{p-q}$.
But $P_{I I}^{\prime} \beta \beta^{\prime} P_{I I} \geq 0$ with rank 1, and $\left\|P_{I I}^{\prime} \beta\right\|^{2}$ is a positive eigenvalue since

$$
\left(P_{I I}^{\prime} \beta \beta^{\prime} P_{I I}\right)\left(P_{I I}^{\prime} \beta\right)=\left(P_{I I}^{\prime} \beta\right)\left(\beta^{\prime} P_{I I} P_{I I}^{\prime} \beta\right)=\left\|P_{I I}^{\prime} \beta\right\|^{2}\left(P_{I I}^{\prime} \beta\right) .
$$

Thus by EVD $\quad P_{I I}^{\prime} \beta \beta^{\prime} P_{I I}=Q\left(\begin{array}{cc}\left\|P_{I I}^{\prime} \beta\right\|^{2} & 0 \\ 0 & 0\end{array}\right) Q^{\prime} \in R^{(p-q) \times(p-q)}$.
$\operatorname{But}\left(\begin{array}{cc}\left\|P_{I I}^{\prime} \beta\right\|^{2} & 0 \\ 0 & 0\end{array}\right) \leq \frac{\sigma^{2}}{\lambda_{q+1}} I_{p-q} \Longrightarrow Q\left(\begin{array}{cc}\left\|P_{I I}^{\prime} \beta\right\|^{2} & 0 \\ 0 & 0\end{array}\right) Q^{\prime} \leq Q \frac{\sigma^{2}}{\lambda_{q+1}} I_{p-q} Q^{\prime}=\frac{\sigma^{2}}{\lambda_{q+1}} I_{p-q}$.
Therefore $P_{I I}^{\prime} \beta \beta^{\prime} P_{I I}=Q\left(\begin{array}{cc}\left\|Q_{I I}^{\prime} \beta\right\|^{2} & 0 \\ 0 & 0\end{array}\right) Q^{\prime} \leq \frac{\sigma^{2}}{\lambda_{q+1}} I_{p-q}$
By (2), the domination holds.
Comments: The cut-off point for $\lambda_{q+1}, \frac{\sigma^{2}}{\left\|P_{I I}^{\prime}\right\|^{2}}$, depends on σ^{2} and β, and hence can only estimated.

L10: A mixed estimator: Mixed BLUE

1. Two models with one set of parameters
(1) Two models with one set of parameters

Consider two models with two sets of data but one set of parameters

$$
\begin{aligned}
& Y_{1}=X_{1} \beta+\epsilon_{1}, \epsilon_{1} \sim\left(0, \sigma^{2} \Sigma_{1}\right) \\
& Y_{2}=X_{2} \beta+\epsilon_{2}, \epsilon_{2} \sim\left(0, \sigma^{2} \Sigma_{2}\right) .
\end{aligned}
$$

(2) Two BLUEs for β

Assume that $X_{1} \in R^{n_{1} \times p}$ and $X_{2} \in R^{n_{2} \times p}$ are both of full column ranks.
Then β has BLUEs from two models. Based on model 1,

$$
\begin{aligned}
\widehat{\beta}_{1} & =\left(\Sigma_{1}^{-1 / 2} X_{1}\right)^{+} \Sigma_{1}^{-1 / 2} Y_{1} \\
& =\left[\left(\Sigma_{1}^{-1 / 2} X_{1}\right)^{\prime}\left(\Sigma^{-1 / 2} X_{1}\right)\right]^{-1}\left(\Sigma^{-1 / 2} X_{1}\right)^{\prime} \Sigma^{-1 / 2} Y_{1} \\
& =\left(X_{1}^{\prime} \Sigma_{1}^{-1} X_{1}\right)^{-1} X_{1}^{\prime} \Sigma_{1}^{-1} Y_{1} .
\end{aligned}
$$

Similarly based on Model 2, $\quad \widehat{\beta}_{2}=\left(X_{2}^{\prime} \Sigma_{2}^{-1} X_{2}\right)^{-1} X_{2}^{\prime} \Sigma_{2}^{-1} Y_{2}$.
(3) Parameters and risks of the BLUEs

$$
\begin{aligned}
& \qquad \begin{aligned}
\widehat{\beta}_{1} & =\left(X_{1}^{\prime} \Sigma_{1}^{-1} X_{1}\right)^{-1} X_{1}^{\prime} \Sigma_{1}^{-1} Y_{1} \\
& \sim\left(\beta,\left(X_{1}^{\prime} \Sigma_{1}^{-1} X_{1}\right)^{-1} X_{1}^{\prime} \Sigma_{1}^{-1}\left(\sigma^{2} \Sigma_{1}\right) \Sigma_{1}^{-1} X_{1}\left(X_{1}^{\prime} \Sigma_{1}^{-1} X_{1}\right)^{-1}\right) \\
& =\left(0, \sigma^{2}\left(X_{1}^{\prime} \Sigma_{1}^{-1} X_{1}\right)^{-1}\right) . \\
\text { Similarly, } \widehat{\beta}_{2} & \sim\left(0, \sigma^{2}\left(X_{2}^{\prime} \Sigma_{2}^{-1} X_{2}\right)^{-1}\right) \\
\text { Therefore } & \quad \operatorname{MSEM}\left(\widehat{\beta}_{1}, \beta\right)=\sigma^{2}\left(X_{1}^{\prime} \Sigma_{1}^{-1} X_{1}\right)^{-1} \\
\text { and } & \operatorname{MSEM}\left(\widehat{\beta}_{2}, \beta\right)=\sigma^{2}\left(X_{2}^{\prime} \Sigma_{2}^{-1} X_{2}\right)^{-1} .
\end{aligned}
\end{aligned}
$$

2. Combined model and mixed estimator
(1) Combined model

Under the assumption of the independence of Y_{1} and Y_{2}, combining the two models, one has

$$
\binom{Y_{1}}{Y_{2}}=\binom{X_{1}}{X_{2}} \beta+\binom{\epsilon_{1}}{\epsilon_{2}},\binom{\epsilon_{1}}{\epsilon_{2}} \sim\left(\binom{0}{0}, \sigma^{2}\left(\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2}
\end{array}\right)\right) .
$$

β in this combined model has BLUE, $\widehat{\beta}_{m}$, called the mixed BLUE for β.

$$
\begin{aligned}
\widehat{\beta}_{m} & =\left[\binom{X_{1}}{X_{2}}^{\prime}\left(\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2}
\end{array}\right)^{-1}\binom{X_{1}}{X_{2}}\right]^{-1}\binom{X_{1}}{X_{2}}^{\prime}\left(\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2}
\end{array}\right)^{-1}\binom{Y_{1}}{Y_{2}} \\
& =\left(X_{1}^{\prime} \Sigma_{1}^{-1} X_{1}+X_{2}^{\prime} \Sigma_{2}^{-1} X_{2}\right)^{-1}\left(X_{1}^{\prime} \Sigma_{1}^{-1} Y_{1}+X_{2}^{\prime} \Sigma_{2}^{-1} Y_{2}\right) \\
& =\left(X_{1}^{\prime} \Sigma_{1}^{-1} X_{1}+X_{2}^{\prime} \Sigma_{2}^{-1} X_{2}\right)^{-1}\left(\left(X_{1}^{\prime} \Sigma_{1}^{-1} X_{1}\right) \widehat{\beta}_{1}+\left(X_{2}^{\prime} \Sigma_{2}^{-1} X_{2}\right) \widehat{\beta}_{2}\right)
\end{aligned}
$$

(2) Weighted average of vectors or matrices with matrix-weights

Suppose $W_{1}>0$ and $W_{2}>0$ are $p \times p$ matrices. Then $W=W_{1}+W_{2}$ and W^{-1} are $p \times p$ positive definite matrices. Also, $W^{-1} W_{1}+W^{-1} W_{1}=I_{p}$.
For $V_{1} \in R^{p \times t}$ and $V_{2} \in R^{p \times t}$,

$$
W^{-1} W_{1} V_{1}+W^{-1} W_{2} V_{2}=W^{-1}\left(W_{1} V_{1}+W_{2} V_{2}\right)
$$

is called the weighted average of V_{1} and V_{2} with matrix-weights W_{1} and W_{2}.
(3) Mixed BLUE

Let $W_{1}=X_{1} \Sigma_{1}^{-1} X_{1}, W_{2}=X_{2} \Sigma_{2}^{-1} X_{2}$ and $W=W_{1}+W_{2}$. By the formula in (1) and definition in (2),

$$
\widehat{\beta}=W^{-1} W_{1} \widehat{\beta}_{1}+W^{-1} W_{2} \widehat{\beta}_{2}=W^{-1}\left(W_{1} \widehat{\beta}_{1}+W_{2} \widehat{\beta}_{2}\right)
$$

So the mixed BLUE is the weighted average of BLUE $\widehat{\beta}_{1}$ from Model 1, and BLUE $\widehat{\beta}_{2}$ from Model 2.
3. Improved estimator
(1) Parameters of mixed BLUE

With W_{1}, W_{2} and W in (3) of 2 , by (3) of 1 ,

$$
\widehat{\beta}_{1} \sim\left(\beta, \sigma^{2} W_{1}^{-1}\right) \text { and } \widehat{\beta}_{2} \sim\left(\beta, \sigma^{2} W_{2}^{-1}\right) .
$$

Now $E\left(\widehat{\beta}_{m}\right)=E\left[W^{-1}\left(W_{1} \widehat{\beta}_{1}+W_{2} \widehat{\beta}_{2}\right)\right]=W^{-1}\left(W_{1} \beta+W_{2} \beta\right)=\beta$ and

$$
\begin{aligned}
\operatorname{Cov}\left(\widehat{\beta}_{m}\right) & =\operatorname{Cov}\left[W^{-1}\left(W_{1} \widehat{\beta}_{1}+W_{2} \widehat{\beta}_{2}\right)\right]=W^{-1} \operatorname{Cov}\left(W_{1} \widehat{\beta}_{1}+W_{2} \widehat{\beta}_{2}\right) W^{-1} \\
& =W^{-1}\left(W_{1} \sigma^{2} W_{1}^{-1} W_{1}+W_{2} \sigma^{2} W_{2}^{-1} W_{2}\right) W^{-1} \\
& =\sigma^{2} W^{-1}\left(W_{1}+W_{2}\right) W^{-1}=\sigma^{2} W^{-1} .
\end{aligned}
$$

So $\widehat{\beta}_{m} \sim\left(\beta, \sigma^{2} W^{-1}\right)$.
(2) Risks

For model 1, $\quad \operatorname{MSEM}\left(\widehat{\beta}_{1}, \beta\right)=\sigma^{2} W_{1}^{-1}$
For model 2, $\quad \operatorname{MSEM}\left(\widehat{\beta}_{2}, \beta\right)=\sigma^{2} W_{2}^{-1}$
For the combined model $\quad \operatorname{MSEM}\left(\widehat{\beta}_{m}, \beta\right)=\sigma^{2} W^{-1}$
(3) Improved BLUE

Note that $W^{-1}=\left(W_{1}+W_{2}\right)^{-1}=W_{1}^{-1}-W_{1}^{-1}\left(W_{1}^{-1}+W_{2}^{-1}\right)^{-1} W_{1}^{-1}$ since

$$
\left(W_{1}+W_{2}\right)\left[W_{1}^{-1}-W_{1}^{-1}\left(W_{1}^{-1}+W_{2}^{-1}\right)^{-1} W_{1}^{-1}\right]=I .
$$

Hence $\quad \sigma^{2} W^{-1}=\sigma^{2} W_{1}^{-1}-\sigma^{2} W_{1}^{-1}\left(W_{1}^{-1}+W_{2}^{-1}\right)^{-1} W_{1}^{-1}$, i.e.,

$$
\operatorname{MSEM}\left(\widehat{\beta}_{m}\right)=\operatorname{MSEM}\left(\widehat{\beta}_{1}\right)-\sigma^{2} W_{1}^{-1}\left(W_{1}^{-1}+W_{2}^{-1}\right)^{-1} W_{1}^{-1} .
$$

But $\sigma^{2} W_{1}^{-1}\left(W_{1}^{-1}+W_{2}^{-1}\right)^{-1} W_{1}^{-1} \geq 0$. Hence $\operatorname{MSEM}\left(\widehat{\beta}_{m}, \beta\right) \leq \operatorname{MSEM}\left(\widehat{\beta}_{1}, \beta\right)$.
Similarly $\operatorname{MSEM}\left(\widehat{\beta}_{m}, \beta\right) \leq \operatorname{MSEM}\left(\widehat{\beta}_{2}, \beta\right)$ can be derived from

$$
W^{-1}=\left(W_{1}+W_{2}\right)^{-1}=W_{2}^{-1}-W_{2}^{-1}\left(W_{1}^{-1}+W_{2}^{-1}\right)^{-1} W_{2}^{-1} .
$$

Comments: Suppose β was estimated by a BLUE. Now with new data, one can get another BLUE. But it is better to combined them to get a mixed BLUE which dominates the BLUEs from the two models.

