L07 Model with normal distributions

- 1. Maximum likelihood Estimators
 - (1) Model

Model $Y = X\beta + \epsilon$ with $\epsilon \sim N(0, \sigma^2 \Sigma)$ allows us to approach the estimating β and σ^2 via maximum likelihood methods.

The likelihood function is the joint pdf of Y treated as a function of β and σ^2 .

$$L(\beta, \sigma^{2}) = \frac{1}{(2\pi)^{n/2} |\sigma^{2}\Sigma|^{1/2}} \exp\left[\frac{-1}{2}(Y - X\beta)'(\sigma^{2}\Sigma)^{-1}(Y - X\beta)\right]$$

$$= \frac{1}{(2\pi\sigma^{2})^{n/2} |\Sigma|^{1/2}} \exp\left[\frac{-1}{2\sigma^{2}}(Y - X\beta)'\Sigma^{-1}(Y - X\beta)\right]$$

$$= \frac{1}{(2\pi\sigma^{2})^{n/2} |\Sigma|^{1/2}} \exp\left(\frac{1}{-2\sigma^{2}} ||Y - X\beta||_{\Sigma^{-1}}^{2}\right).$$

(2) MLE for β

Since Y was observed, it is reasonable to believe that β and σ^2 have the values to make the pdf high at Y. Thus we call $\hat{\beta}$ and $\hat{\sigma}^2$ maximum likelihood estimators (MLEs) if $L(\beta, \sigma^2) \leq L(\hat{\beta}, \hat{\sigma}^2)$ for all β and σ^2 .

Let $MLE(\beta)$ be the collection of all MLEs for β . Then

$$\mathrm{MLE}(\beta) = \mathrm{GLSE}_{V^{-1}}(\beta) = \left(\Sigma^{-1/2}X\right)^+ \Sigma^{-1/2}Y + \mathcal{N}(X).$$

Proof. By the form of $L(\beta, \sigma^2)$ in (1),

$$L(\beta, \sigma^2) \le L(\widehat{\beta}, \sigma^2) \text{ for all } \beta \text{ and } \sigma^2 \iff \|Y - X\beta\|_{V^{-1}}^2 \ge \|Y - X\widehat{\beta}\|_{V^{-1}}^2 \text{ for all } \beta \iff \widehat{\beta} \in \mathrm{GLSE}_{V^{-1}}(\beta).$$

(3) MLE for σ^2

With $\widehat{\beta} \in \text{MLE}(\beta)$, let $\text{SSE}_{\Sigma^{-1}} = \|Y - X\widehat{\beta}\|_{\Sigma^{-1}}^2$. Then $\frac{\text{SSE}_{\Sigma^{-1}}}{n}$ is MLE for σ^2 . **Proof.** $L(\widehat{\beta}, \sigma^2) = \frac{1}{1 + 1} \exp\left(-\frac{1}{2}\text{SSE}_{\Sigma^{-1}}\right)$ is a function of σ^2 .

Proof. $L(\hat{\beta}, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{n/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2\sigma^2} \text{SSE}_{\Sigma^{-1}}\right)$ is a function of σ^2 . By conventional first derivative test or second derivative test, one can see that this function is maximized at $\sigma^2 = \frac{\text{SSE}_{\Sigma^{-1}}}{1}$.

function is maximized at $\sigma^2 = \frac{\text{SSE}_{\Sigma^{-1}}}{n}$. Comment: $L(\hat{\beta}, \hat{\sigma}^2) = \left(\frac{n}{2\pi e}\right)^{n/2} |\Sigma|^{-1/2} (\text{SSE}_{\Sigma^{-1}})^{-n/2}$.

2. MVUE

(1) Cramer-Rao lower bound

Suppose $Y \in \mathbb{R}^n$ has pdf $f(y, \theta), \theta \in \mathbb{R}^k$. With respect to $\theta \in \mathbb{R}^k, \nabla \ln f(Y, \theta) \in \mathbb{R}^k$ is a random vector with variance-covariance matrix $I(\theta) \in \mathbb{R}^{k \times k}$ called the information matrix for the pdf $f(y, \theta)$.

Suppose statistic vector $T(Y) \in \mathbb{R}^q$ has mean $E[T(Y)] = g(\theta) \in \mathbb{R}^q$. It can be shown (in Stat771-772 or Stat870-871) that

$$\operatorname{Cov}(T(Y)) \ge \left[\frac{\partial g(\theta)}{\partial \theta^T}\right] [I(\theta)]^{-1} \left[\frac{\partial g(\theta)}{\partial \theta^T}\right]'.$$

This lower bound for Cov(T(Y)) is called the Cramer-Rao lower bound which is the lowest risk for all UEs for $g(\theta)$.

(2) MVUE

If Cov(T(Y)) reaches the Cramer-Rao lower bound, then it is the best estimator among all UEs for $g(\theta)$. This best estimator is called the minimum variance-covariance unbiased estimator (MVUE).

(3) Theorem

Suppose in model $Y = X\beta + \epsilon$, $\epsilon \sim N(0, \sigma^2 \Sigma)$, X has full column rank. Then all $H\beta$ are estimable, and $H(\Sigma^{-1/2}X)^+ \Sigma^{-1/2}Y$ is MVUE for $H\beta$.

Proof. For $H \in \mathbb{R}^{q \times p}$, $H = [H(X'X)^{-1}X']X$. So $H\beta$ is estimable with $\frac{\partial H\beta}{\partial \beta'} = H$. For $Y \sim N(X\beta, \sigma^2 \Sigma)$, $\ln f(y, \beta) = -\frac{n}{2}\ln 2\pi\sigma^2 - \frac{1}{2}\ln |\Sigma| - \frac{1}{2\sigma^2}(Y - X\beta)'\Sigma^{-1}(Y - X\beta)$. $\frac{\partial \ln f(y,\beta)}{\partial \beta'} = -\frac{1}{2\sigma^2}(Y - X\beta)'2\Sigma^{-1}(-X)$. So $\nabla \ln f(Y, \beta) = \frac{1}{\sigma^2}X'\Sigma^{-1}(Y - X\beta)$. Thus $I(\beta) = \frac{1}{\sigma^2}X'\Sigma^{-1}X$. Hence $\operatorname{CRLB}(H\beta) = \sigma^2 H(X'\Sigma^{-1}X)^{-1}H'$. But $\operatorname{Cov}(H(\Sigma^{-1/2}X)^+\Sigma^{-1/2}Y) = \sigma^2 H(X'\Sigma^{-1}X)^+H' = \sigma^2 H(X'\Sigma^{-1}X)^{-1}H'$ which is $\operatorname{CRLB}(H\beta)$. Hence $H(\Sigma^{-1/2}X)^+\Sigma^{-1/2}Y$ is the MVUE for $H\beta$.

3. Sampling distributions

(1) The MVUE for
$$H\beta$$
, $H\left(\Sigma^{-1/2}X\right)^+ \Sigma^{-1/2}Y \sim N\left(H\beta, \sigma^2 H(X'\Sigma^{-1}X)^+ H'\right)$.
Proof. With $A = H\left(\Sigma^{-1/2}X\right)^+ \Sigma^{-1/2}$ and $Y \sim N(X\beta, \sigma^2\Sigma)$,
 $AY \sim N\left(AX\beta, \sigma^2 A\Sigma A'\right) = N\left(H\beta, \sigma^2 H(X'\Sigma^{-1}X)^+ H'\right)$.

Comment: Because X has full column rank, $(X'\Sigma^{-1}X)^+ = (X'\Sigma X)^{-1}$. **Ex1:** The distribution of $\widehat{Y} = X (\Sigma^{-1/2}X)^+ \Sigma^{-1/2}Y$, the MVUE for $X\beta = E(Y)$, is $\widehat{Y} \sim N (X\beta, \sigma^2 X (X'\Sigma^{-1}X)^{-1}X')$.

 $I \sim N(X\beta, 0 X(X \Delta X) X).$

(2) $\frac{\text{SSE}}{\sigma^2} \sim \chi^2(n-r)$ where r = rank(X).

Proof. Note that

SSE =
$$||Y - \widehat{Y}||_{\Sigma^{-1}}^2 = ||\Sigma^{-1/2}Y - \Sigma^{-1/2}\widehat{Y}||^2$$

= $||\Sigma^{-1/2}Y - \Sigma^{-1/2}X(\Sigma^{-1/2}X)^+ \Sigma^{-1/2}Y||^2$
= $||\left[I - (\Sigma^{-1/2}X)(\Sigma^{-1/2}X)^+\right](\Sigma^{-1/2}Y)||^2$
= $(\Sigma^{-1/2}Y)'\left[I - (\Sigma^{-1/2}X)(\Sigma^{-1/2}X)^+\right](\Sigma^{-1/2}Y).$

So $\underline{\text{SSE}}_{\sigma^2} = Z'BZ$ where $Z = \Sigma^{-1/2}Y \sim N\left(\Sigma^{-1/2}X\beta, \sigma^2 I\right)$ and

$$B = \frac{1}{\sigma^2} \left[I - \left(\Sigma^{-1/2} X \right) \left(\Sigma^{-1/2} X \right)^+ \right].$$

But $B\sigma^2 IB = B$, $(\Sigma^{-1/2} X\beta)' B(\Sigma^{-1/2} X\beta) = 0$ and $\operatorname{tr}(B\sigma^2 I) = n - r$. The above imply that $\frac{\operatorname{SSE}}{\sigma^2} \chi^2(n-r)$.

- (3) $H(\Sigma^{-1/2}X)^+ \Sigma^{-1/2}Y$ and SSE are independent.
 - **Proof.** With $Y \sim N(X\beta, \sigma^2 \Sigma)$, $A = H(\Sigma^{-1/2}X)^+ \Sigma^{-1/2}$, and $SSE = \sigma^2 Y'(\Sigma^{-1/2}B\Sigma^{-1/2})Y$, $A(\sigma^2 \Sigma)(\Sigma^{-1/2}B\Sigma^{-1/2}) = 0$ from which the conclusion of the independence of $AY = H(\Sigma^{-1/2}X)^+ \Sigma^{-1/2}Y$ and SSE follows.

L08: A biased estimator: Ridge estimator

- 1. The problem of multicollinearity
 - (1) Biased estimators

When ξ is estimated by $\hat{\xi}$, the risks $r(\hat{\xi}, \xi) = \operatorname{Cov}(\hat{\xi}) + [E(\hat{\xi}) - \xi][E(\hat{\xi}) - \xi]'$ and $\operatorname{MSE}(\hat{\xi}, \xi) = \operatorname{tr}[r(\hat{\xi}, \xi)] = \operatorname{tr}[\operatorname{Cov}(\hat{\xi})] + ||E(\hat{\xi}) - \xi||^2$.

Reducing the large tr[Cov(ξ)] may cause the increase in the bias and result in a biased estimator. However, if the reduction in tr[Cov($\hat{\xi}$)] is greater than the increment in the bias, then it is worthwhile to do so.

(2) BLUE of β

In Model $Y = X\beta + \epsilon$, $\epsilon \sim (0, \sigma^2 I_n)$, if the columns of X are linearly independent, then β is estimable since $\beta = I_p\beta$ and $I_p = X^+X$. The BLUE for β

$$\widehat{\beta} = X^+ Y = (X'X)^{-1} X' Y \sim \left(\beta, \, \sigma^2 (X'X)^{-1}\right).$$

Let $X'X = P\Lambda P'$ be the EVD. Then $r(\hat{\beta}, \beta) = \operatorname{Cov}(\hat{\beta}) = \sigma^2 (X'X)^{-1} = \sigma^2 P\Lambda^{-1}P'$ and $\operatorname{MSE}(\hat{\xi}, \xi) = \operatorname{tr} \left(\sigma^2 P\Lambda^{-1}P'\right) = \frac{\sigma^2}{\lambda_1} + \dots + \frac{\sigma^2}{\lambda_p}.$

(3) The problem of multicollinearity in X

Note that the columns of X are linearly independent if and only if $|X'X| = \prod_i \lambda_i > 0$. We say that there is a multicollinearity in X if the columns of X are almost linearly dependent interpreted as $|X'X| = \prod_i \lambda_i$ is almost 0.

So the multicollinearity will make $MSE(\hat{\beta}, \beta) = tr[Cov(\hat{\beta})] = \frac{\sigma^2}{\lambda_1} + \dots + \frac{\sigma^2}{\lambda_p}$ large. Thus while $\hat{\beta}$ is still a BLUE, but it is not stable due to large total variances, also its risk $MSE(\hat{\beta}, \beta)$ is high.

- 2. Ridge estimator
 - (1) Ridge estimator

One naive idea on the remedy for the problem caused by the smaller λ_i , i = 1, ..., p, in

$$\widehat{\beta} = (X'X)^{-1}X'Y = (P\Lambda P')^{-1}X'Y$$

is to replace λ_i by $\lambda_i + k_i$ where $k_i > 0$, i.e., to replace Λ by $\Lambda + K$ where $K = \text{diag}(k_1, ..., k_p)$ to have

$$\widehat{\beta}(K) = [P(\Lambda + K)P']^{-1}X'Y = P(\Lambda + K)^{-1}P'X'Y$$

called a ridge estimator for β . The ridge estimator is still a linear estimator for β .

(2) tr
$$\left[\operatorname{Cov}\left(\widehat{\beta}(K)\right)\right] = \sigma^2 \sum_i \frac{\lambda_i}{(\lambda_i + k_i)^2}$$

Proof. With $\widehat{\beta}(K) = P(\Lambda + K)^{-1} P' X' Y$ and $Y \sim (X\beta, \sigma^2 I_n)$,

$$\begin{aligned} \operatorname{Cov}\left[\widehat{\beta}(K)\right] &= \left[P(\Lambda+K)^{-1}P'X'\right]\sigma^{2}I[P(\Lambda+K)^{-1}P'X']'\\ &= \sigma^{2}P(\Lambda+K)^{-1}P'X'XP(\Lambda+K)^{-1}P'\\ &= \sigma^{2}P(\Lambda+K)^{-1}\Lambda(\Lambda+K)^{-1}P'\end{aligned}$$

So tr $\left[\operatorname{Cov}\left(\widehat{\beta}(K)\right)\right] = \sigma^{2}\operatorname{tr}\left[(\Lambda+K)^{-1}\Lambda(\Lambda+K)^{-1}\right] = \sigma^{2}\sum_{i}\frac{\lambda_{i}}{(\lambda_{i}+k_{i})^{2}}\end{aligned}$

$$\begin{aligned} \mathbf{Ex1:} \ \mathrm{tr} \left[\mathrm{Cov} \left(\widehat{\beta}(K) \right) \right] &= \sigma^2 \sum_i \frac{\lambda_i}{(\lambda_i + k_i)^2} \le \sigma^2 \sum_i \frac{1}{\lambda_i} = \mathrm{tr} \left(\mathrm{Cov}(\widehat{\beta} \right) \right). \\ (3) \ \|\widehat{\beta}(K) - \beta\|^2 &= \sum_i \frac{k_i^2}{(\lambda_i + k_i^2)^2} \left[(P'\beta)_i \right]^2 \\ \mathbf{Proof.} \ \mathrm{First}, \ \beta - E[\widehat{\beta}(K)] &= \beta - P(\Lambda + K)^{-1}P'X'X\beta = \beta - P(\Lambda + K)^{-1}\Lambda P'\beta \\ &= P[I - (\Lambda + K)^{-1}\Lambda]P'\beta. \\ \mathrm{But} \ (\Lambda + k)^{-1} &= \Lambda^{-1} - \Lambda^{-1}(\Lambda^{-1} + K^{-1})^{-1}\Lambda^{-1} \\ &= I - (\Lambda^{-1} + K^{-1})^{-1}\Lambda^{-1} + K\Lambda^{-1} - K\Lambda^{-1}(\Lambda^{-1} + K^{-1})^{-1}\Lambda^{-1} \\ &= I + K[-K^{-1}(\Lambda^{-1} + K^{-1})^{-1} + I - \Lambda^{-1}(\Lambda^{-1} + K^{-1})^{-1}]\Lambda^{-1} \\ &= I + K[I - (K^{-1} + \Lambda^{-1})(\Lambda^{-1} + K^{-1})^{-1}]\Lambda^{-1} = I. \end{aligned}$$
So $\|\beta - E[\widehat{\beta}(K)]\|^2 = \|P[I - (\Lambda + K)^{-1}\Lambda]P'\beta\|^2 \\ &= \|P\{I - [\Lambda^{-1} - \Lambda^{-1}(\Lambda^{-1} + K^{-1})^{-1}\Lambda^{-1}]\Lambda\}P'\beta\|^2 \\ &= \|[\Lambda^{-1}(\Lambda^{-1} + K^{-1})^{-1}]P'\beta\|^2 \\ &= \sum_i \left[\frac{1/\lambda_i}{(1/\lambda_i) + (1/k_i)}(P'\beta)_i \right]^2 = \sum_i \frac{k_i^2}{(\lambda_i + k_i)^2} \left[(P'\beta)_i \right]^2. \end{aligned}$
Ex2: $\|E(\widehat{\beta}(K)) - \beta\|^2 \ge 0 = \|E(\widehat{\beta}) - \beta\|^2. \end{aligned}$

3. Making ridge estimator better than BLUE

(1) MSE(
$$\beta(K), \beta$$
)
MSE($\hat{\beta}(K), \beta$) = tr $\left[\text{Cov}\left(\hat{\beta}(K) \right) \right] + \|E(\hat{\beta}(K)) - \beta\|^2$
= $\sum_i \frac{\sigma^2 \lambda_i}{(\lambda_i + k_i)^2} + \sum_i \frac{k_i^2}{(\lambda_i + k_i)^2} \left[(P'\beta)_i \right]^2 = \sum_i \frac{k_i^2 [(P'\beta)_i]^2 + \lambda_i \sigma^2}{(\lambda_i + k_i)^2}$
= $\sum_i f_i(k_i)$ where $f_i(k_i) = \frac{k_i^2 [(P'\beta)_i]^2 + \lambda_i \sigma^2}{(\lambda_i + k_i)^2}$.

(2) Minimizing $MSE(\hat{\beta}(K), \beta)$

 $f'(k_i) = \dots = \frac{2k_i\lambda_i[(P'\beta)_i]^2 - 2\lambda\sigma^2}{(\lambda_i + k_i)^3} = \frac{2\lambda_i[(P'\beta)_i]^2}{(\lambda_i + k_i)^3} \left[k_i - \frac{\sigma^2}{[(P'\beta)_i]^2}\right].$ By the first derivative test, $f(k_i)$ is minimized at $k_i = \frac{\sigma^2}{[(P'\beta)_i]^2}, i = 1, ..., p$, So is $\text{MSE}(\widehat{\beta}(K), \beta).$

(3) Ridge estimator could be better than the BLUE

$$\operatorname{MSE}(\widehat{\beta}(K), \beta)_{k_{i} = \frac{\sigma^{2}}{[(P'\beta)_{i}]^{2}}} = \sum_{i=1}^{p} \frac{\frac{\sigma^{4}}{[(P'\beta)_{i}]^{2}} + \lambda_{i}\sigma^{2}}{\left[\lambda_{i} + \frac{\sigma^{2}}{[(P'\beta)_{i}]^{2}}\right]^{2}} = \sum_{i=1}^{p} \frac{\sigma^{2} \left[\lambda_{i} + \frac{\sigma^{2}}{[(P'\beta)_{i}]^{2}}\right]^{2}}{\left[\lambda_{i} + \frac{\sigma^{2}}{[(P'\beta)_{i}]^{2}}\right]^{2}}$$
$$= \sum_{i=1}^{p} \frac{\sigma^{2}}{\lambda_{i} + \frac{\sigma^{2}}{[(P'\beta)_{i}]^{2}}} \leq \sum_{i=1}^{p} \frac{\sigma^{2}}{\lambda_{i}} = \operatorname{MSE}(\widehat{\beta})$$

Comment: $k_i = \frac{\sigma^2}{[(P'\beta)_i]^2}$ is a theoretical value since it depends on unknown parameter σ^2 and β . In practice one can estimate σ^2 and β , and use the estimated value of k_i .