
L07 Model with normal distributions

1. Maximum likelihood Estimators

(1) Model
Model Y = Xβ + ϵ with ϵ ∼ N(0, σ2Σ) allows us to approach the estimating β and σ2

via maximum likelihood methods.
The likelihood funaction is the joint pdf of Y treated as a function of β and σ2.

L(β, σ2) = 1
(2π)n/2|σ2Σ|1/2 exp

[−1
2 (Y −Xβ)′(σ2Σ)−1(Y −Xβ)

]
= 1

(2πσ2)n/2|Σ|1/2 exp
[ −1
2σ2 (Y −Xβ)′Σ−1(Y −Xβ)

]
= 1

(2πσ2)n/2|Σ|1/2 exp
(

1
−2σ2 ∥Y −Xβ∥2Σ−1

)
.

(2) MLE for β
Since Y was observed, it is reasonable to believe that β and σ2 have the values to make
the pdf high at Y . Thus we call β̂ and σ̂2 maximum likelihood estimators (MLEs) if
L(β, σ2) ≤ L(β̂, σ̂2) for all β and σ2.
Let MLE(β) be the collection of all MLEs for β. Then

MLE(β) = GLSEV −1(β) =
(
Σ−1/2X

)+
Σ−1/2Y +N (X).

Proof. By the form of L(β, σ2) in (1),

L(β, σ2) ≤ L(β̂, σ2) for all β and σ2 ⇐⇒ ∥Y −Xβ∥2V −1 ≥ ∥Y −Xβ̂∥2V −1 for all β

⇐⇒ β̂ ∈ GLSEV −1(β).

(3) MLE for σ2

With β̂ ∈ MLE(β), let SSEΣ−1 = ∥Y −Xβ̂∥2Σ−1 . Then
SSEΣ−1

n is MLE for σ2.

Proof. L(β̂, σ2) = 1
(2πσ2)n/2|Σ|1/2 exp

(
− 1

2σ2SSEΣ−1

)
is a function of σ2.

By conventional first derivative test or second derivative test, one can see that this

function is maximized at σ2 =
SSEΣ−1

n .

Comment: L(β̂, σ̂2) =
(

n
2πe

)n/2 |Σ|−1/2 (SSEΣ−1)−n/2.

2. MVUE

(1) Cramer-Rao lower bound
Suppose Y ∈ Rn has pdf f(y, θ), θ ∈ Rk. With respect to θ ∈ Rk, ∇ ln f(Y, θ) ∈ Rk

is a random vector with variance-covariance matrix I(θ) ∈ Rk×k called the information
matrix for the pdf f(y, θ).
Suppose statistic vector T (Y ) ∈ Rq has mean E[T (Y )] = g(θ) ∈ Rq. It can be shown
(in Stat771-772 or Stat870-871) that

Cov(T (Y )) ≥
[
∂ g(θ)

∂ θT

]
[I(θ)]−1

[
∂ g(θ)

∂ θT

]′
.

This lower bound for Cov(T (Y )) is called the Cramer-Rao lower bound which is the
lowest risk for all UEs for g(θ).

1



(2) MVUE
If Cov(T (Y )) reaches the Cramer-Rao lower bound, then it is the best estimator among
all UEs for g(θ). This best estimator is called the minimum variance-covariance unbiased
estimator (MVUE).

(3) Theorem
Suppose in model Y = Xβ + ϵ, ϵ ∼ N(0, σ2Σ), X has full column rank. Then

all Hβ are estimable, and H
(
Σ−1/2X

)+
Σ−1/2Y is MVUE for Hβ.

Proof. For H ∈ Rq×p, H = [H(X ′X)−1X ′]X. So Hβ is estimable with ∂ Hβ
∂ β′ = H.

For Y ∼ N(Xβ, σ2Σ), ln f(y, β) = −n
2 ln 2πσ2 − 1

2 ln |Σ| −
1

2σ2 (Y −Xβ)′Σ−1(Y −Xβ).
∂ ln f(y,β)

∂ β′ = − 1
2σ2 (Y −Xβ)′2Σ−1(−X). So ∇ ln f(Y, β) = 1

σ2X
′Σ−1(Y −Xβ).

Thus I(β) = 1
σ2X

′Σ−1X. Hence CRLB(Hβ) = σ2H(X ′Σ−1X)−1H ′.

But Cov(H
(
Σ−1/2X

)+
Σ−1/2Y ) = σ2H(X ′Σ−1X)+H ′ = σ2H(X ′Σ−1X)−1H ′

which is CRLB(Hβ). Hence H
(
Σ−1/2X

)+
Σ−1/2Y is the MVUE for Hβ.

3. Sampling distributions

(1) The MVUE for Hβ, H
(
Σ−1/2X

)+
Σ−1/2Y ∼ N

(
Hβ, σ2H(X ′Σ−1X)+H ′) .

Proof. With A = H
(
Σ−1/2X

)+
Σ−1/2 and Y ∼ N(Xβ, σ2Σ),

AY ∼ N
(
AXβ, σ2AΣA′) = N

(
Hβ, σ2H(X ′Σ−1X)+H ′) .

Comment: Because X has full column rank, (X ′Σ−1X)+ = (X ′ΣX)−1.

Ex1: The distribution of Ŷ = X
(
Σ−1/2X

)+
Σ−1/2Y , the MVUE for Xβ = E(Y ), is

Ŷ ∼ N
(
Xβ, σ2X(X ′Σ−1X)−1X ′).

(2) SSE
σ2 ∼ χ2(n− r) where r = rank(X).

Proof. Note that

SSE = ∥Y − Ŷ ∥2Σ−1 = ∥Σ−1/2Y − Σ−1/2Ŷ ∥2

= ∥Σ−1/2Y − Σ−1/2X
(
Σ−1/2X

)+
Σ−1/2Y ∥2

= ∥
[
I −

(
Σ−1/2X

) (
Σ−1/2X

)+] (
Σ−1/2Y

)
∥2

=
(
Σ−1/2Y

)′ [
I −

(
Σ−1/2X

) (
Σ−1/2X

)+] (
Σ−1/2Y

)
.

So SSE
σ2 = Z ′BZ where Z = Σ−1/2Y ∼ N

(
Σ−1/2Xβ, σ2I

)
and

B =
1

σ2

[
I −

(
Σ−1/2X

)(
Σ−1/2X

)+
]
.

But Bσ2IB = B,
(
Σ−1/2Xβ

)′
B
(
Σ−1/2Xβ

)
= 0 and tr(Bσ2I) = n− r.

The above imply that SSE
σ2 χ2(n− r).

(3) H
(
Σ−1/2X

)+
Σ−1/2Y and SSE are independent.

Proof. With Y ∼ N(Xβ, σ2Σ), A = H
(
Σ−1/2X

)+
Σ−1/2, and SSE = σ2Y ′ (Σ−1/2BΣ−1/2

)
Y ,

A
(
σ2Σ

) (
Σ−1/2BΣ−1/2

)
= 0 from which the conclusion of the independence of

AY = H
(
Σ−1/2X

)+
Σ−1/2Y and SSE follows.
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L08: A biased estimator: Ridge estimator

1. The problem of multicollinearity

(1) Biased estimators
When ξ is estimated by ξ̂, the risks r(ξ̂, ξ) = Cov(ξ̂ ) + [E(ξ̂ ) − ξ][E(ξ̂ ) − ξ]′ and
MSE(ξ̂, ξ) = tr[r(ξ̂, ξ)] = tr[Cov(ξ̂ )] + ∥E(ξ̂ )− ξ∥2.
Reducing the large tr[Cov(ξ̂ )] may cause the increase in the bias and result in a biased
estimator. However, if the reduction in tr[Cov(ξ̂ )] is greater than the increment in the
bias, then it is worthwhile to do so.

(2) BLUE of β
In Model Y = Xβ + ϵ, ϵ ∼ (0, σ2In), if the columns of X are linearly independent, then
β is estimable since β = Ipβ and Ip = X+X. The BLUE for β

β̂ = X+Y = (X ′X)−1X ′Y ∼
(
β, σ2(X ′X)−1

)
.

Let X ′X = PΛP ′ be the EVD. Then r(β̂, β) = Cov(β̂) = σ2(X ′X)−1 = σ2PΛ−1P ′ and

MSE(ξ̂, ξ) = tr
(
σ2PΛ−1P ′) = σ2

λ1
+ · · ·+ σ2

λp
.

(3) The problem of multicollinearity in X
Note that the columns of X are linearly independent if and only if |X ′X| =

∏
i λi > 0.

We say that there is a multicollinearity in X if the columns of X are almost linearly
dependent interpreted as |X ′X| =

∏
i λi is almost 0.

So the multicollinearity will make MSE(β̂, β) = tr[Cov(β̂ )] = σ2

λ1
+ · · ·+ σ2

λp
large. Thus

while β̂ is still a BLUE, but it is not stable due to large total variances, also its risk
MSE(β̂, β) is high.

2. Ridge estimator

(1) Ridge estimator
One naive idea on the remedy for the problem caused by the smaller λi, i = 1, .., p, in

β̂ = (X ′X)−1X ′Y = (PΛP ′)−1X ′Y

is to replace λi by λi + ki where ki > 0, i.e., to replace Λ by Λ + K where
K = diag(k1, .., kp) to have

β̂(K) = [P (Λ +K)P ′]−1X ′Y = P (Λ +K)−1P ′X ′Y

called a ridge estimator for β. The ridge estimator is still a linear estimator for β.

(2) tr
[
Cov

(
β̂(K)

)]
= σ2

∑
i

λi
(λi+ki)2

Proof. With β̂(K) = P (Λ +K)−1P ′X ′Y and Y ∼ (Xβ, σ2In),

Cov
[
β̂(K)

]
= [P (Λ +K)−1P ′X ′]σ2I[P (Λ +K)−1P ′X ′]′

= σ2P (Λ +K)−1P ′X ′XP (Λ +K)−1P ′

= σ2P (Λ +K)−1Λ(Λ +K)−1P ′

So tr
[
Cov

(
β̂(K)

)]
= σ2tr

[
(Λ +K)−1Λ(Λ +K)−1

]
= σ2

∑
i

λi
(λi+ki)2
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Ex1: tr
[
Cov

(
β̂(K)

)]
= σ2

∑
i

λi
(λi+ki)2

≤ σ2
∑

i
1
λi

= tr
(
Cov(β̂ )

)
.

(3) ∥β̂(K)− β∥2 =
∑

i
k2i

(λi+k2i )
2 [(P

′β)i]
2

Proof. First, β − E[β̂(K)] = β − P (Λ +K)−1P ′X ′Xβ = β − P (Λ +K)−1ΛP ′β
= P [I − (Λ +K)−1Λ]P ′β.

But (Λ + k)−1 = Λ−1 − Λ−1(Λ−1 +K−1)−1Λ−1 since

(Λ +K)[Λ−1 − Λ−1(Λ−1 +K−1)−1Λ−1]
= I − (Λ−1 +K−1)−1Λ−1 +KΛ−1 −KΛ−1(Λ−1 +K−1)−1Λ−1

= I +K[−K−1(Λ−1 +K−1)−1 + I − Λ−1(Λ−1 +K−1)−1]Λ−1

= I +K[I − (K−1 + Λ−1)(Λ−1 +K−1)−1]Λ−1 = I.

So ∥β − E[β̂(K)]∥2 = ∥P [I − (Λ +K)−1Λ]P ′β∥2
= ∥P{I − [Λ−1 − Λ−1(Λ−1 +K−1)−1Λ−1]Λ}P ′β∥2
= ∥[Λ−1(Λ−1 +K−1)−1]P ′β∥2

=
∑

i

[
1/λi

(1/λi)+(1/ki)
(P ′β)i

]2
=

∑
i

k2i
(λi+ki)2

[(P ′β)i]
2 .

Ex2: ∥E(β̂(K))− β∥2 ≥ 0 = ∥E(β̂ )− β∥2.

3. Making ridge estimator better than BLUE

(1) MSE(β̂(K), β)

MSE(β̂(K), β) = tr
[
Cov

(
β̂(K)

)]
+ ∥E(β̂(K))− β∥2

=
∑

i
σ2λi

(λi+ki)2
+
∑

i
k2i

(λi+ki)2
[(P ′β)i]

2 =
∑

i
k2i [(P

′β)i]2+λiσ
2

(λi+ki)2

=
∑

i fi(ki) where fi(ki) =
k2i [(P

′β)i]2+λiσ
2

(λi+ki)2
.

(2) Minimizing MSE(β̂(K), β)

f ′(ki) = · · · = 2kiλi[(P
′β)i]2−2λσ2

(λi+ki)3
= 2λi[(P

′β)i]2

(λi+ki)3

[
ki − σ2

[(P ′β)i]2

]
. By the first derivative test,

f(ki) is minimized at ki =
σ2

[(P ′β)i]2
, i = 1, ..., p, So is MSE(β̂(K), β).

(3) Ridge estimator could be better than the BLUE

MSE(β̂(K), β)
ki=

σ2

[(P ′β)i]2
=

∑p
i=1

σ4

[(P ′β)i]2
+λiσ

2[
λi+

σ2

[(P ′β)i]2

]2 =
∑p

i=1

σ2

[
λi+

σ2

[(P ′β)i]2

]
[
λi+

σ2

[(P ′β)i]2

]2

=
∑p

i=1
σ2

λi+
σ2

[(P ′β)i]2
≤

∑p
i=1

σ2

λi
= MSE(β̂)

Comment: ki =
σ2

[(P ′β)i]2
is a theoretical value since it depends on unknown parameter

σ2 and β. In practice one can estimate σ2 and β, and use the estimated value of ki.
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