L07 Model with normal distributions

1. Maximum likelihood Estimators
(1) Model

Model $Y=X \beta+\epsilon$ with $\epsilon \sim N\left(0, \sigma^{2} \Sigma\right)$ allows us to approach the estimating β and σ^{2} via maximum likelihood methods.
The likelihood funaction is the joint pdf of Y treated as a function of β and σ^{2}.

$$
\begin{aligned}
L\left(\beta, \sigma^{2}\right) & =\frac{1}{(2 \pi)^{n / 2}\left|\frac{1}{} \sigma^{2}\right|^{1 / 2}} \exp \left[\frac{-1}{2}(Y-X \beta)^{\prime}\left(\sigma^{2} \Sigma\right)^{-1}(Y-X \beta)\right] \\
& =\frac{-1}{\left(2 \pi \sigma^{2}\right)^{n / 2}|\Sigma|^{1 / 2}} \exp \left[\frac{-1}{2 \sigma^{2}}(Y-X \beta)^{\prime} \Sigma^{-1}(Y-X \beta)\right] \\
& =\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}|\Sigma|^{1 / 2}} \exp \left(\frac{1}{-2 \sigma^{2}}\|Y-X \beta\|_{\Sigma^{-1}}^{2}\right) .
\end{aligned}
$$

(2) MLE for β

Since Y was observed, it is reasonable to believe that β and σ^{2} have the values to make the pdf high at Y. Thus we call $\widehat{\beta}$ and $\widehat{\sigma}^{2}$ maximum likelihood estimators (MLEs) if $L\left(\beta, \sigma^{2}\right) \leq L\left(\widehat{\beta}, \widehat{\sigma}^{2}\right)$ for all β and σ^{2}.
Let $\operatorname{MLE}(\beta)$ be the collection of all MLEs for β. Then

$$
\operatorname{MLE}(\beta)=\operatorname{GLSE}_{V^{-1}}(\beta)=\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{-1 / 2} Y+\mathcal{N}(X)
$$

Proof. By the form of $L\left(\beta, \sigma^{2}\right)$ in (1),

$$
\begin{aligned}
L\left(\beta, \sigma^{2}\right) \leq L\left(\widehat{\beta}, \sigma^{2}\right) \text { for all } \beta \text { and } \sigma^{2} & \Longleftrightarrow\|Y-X \beta\|_{V^{-1}}^{2} \geq\|Y-X \widehat{\beta}\|_{V^{-1}}^{2} \text { for all } \beta \\
& \Longleftrightarrow \widehat{\beta} \in \operatorname{GLSE}_{V^{-1}}(\beta) .
\end{aligned}
$$

(3) MLE for σ^{2}

With $\widehat{\beta} \in \operatorname{MLE}(\beta)$, let $\operatorname{SSE}_{\Sigma^{-1}}=\|Y-X \widehat{\beta}\|_{\Sigma^{-1}}^{2}$. Then $\frac{\operatorname{SSE}_{\Sigma^{-1}}}{n}$ is MLE for σ^{2}.
Proof. $L\left(\widehat{\beta}, \sigma^{2}\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2 \sigma^{2}} \mathrm{SSE}_{\Sigma^{-1}}\right)$ is a function of σ^{2}.
By conventional first derivative test or second derivative test, one can see that this function is maximized at $\sigma^{2}=\frac{\mathrm{SSE}_{\Sigma-1}}{n}$.
Comment: $L\left(\widehat{\beta}, \widehat{\sigma}^{2}\right)=\left(\frac{n}{2 \pi e}\right)^{n / 2}|\Sigma|^{-1 / 2}\left(\mathrm{SSE}_{\Sigma^{-1}}\right)^{-n / 2}$.

2. MVUE

(1) Cramer-Rao lower bound

Suppose $Y \in R^{n}$ has pdf $f(y, \theta), \theta \in R^{k}$. With respect to $\theta \in R^{k}, \nabla \ln f(Y, \theta) \in R^{k}$ is a random vector with variance-covariance matrix $I(\theta) \in R^{k \times k}$ called the information matrix for the pdf $f(y, \theta)$.
Suppose statistic vector $T(Y) \in R^{q}$ has mean $E[T(Y)]=g(\theta) \in R^{q}$. It can be shown (in Stat771-772 or Stat870-871) that

$$
\operatorname{Cov}(T(Y)) \geq\left[\frac{\partial g(\theta)}{\partial \theta^{T}}\right][I(\theta)]^{-1}\left[\frac{\partial g(\theta)}{\partial \theta^{T}}\right]^{\prime}
$$

This lower bound for $\operatorname{Cov}(T(Y))$ is called the Cramer-Rao lower bound which is the lowest risk for all UEs for $g(\theta)$.

(2) MVUE

If $\operatorname{Cov}(T(Y))$ reaches the Cramer-Rao lower bound, then it is the best estimator among all UEs for $g(\theta)$. This best estimator is called the minimum variance-covariance unbiased estimator (MVUE).
(3) Theorem

Suppose in model $Y=X \beta+\epsilon, \epsilon \sim N\left(0, \sigma^{2} \Sigma\right)$, X has full column rank. Then all $H \beta$ are estimable, and $H\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{-1 / 2} Y$ is MVUE for $H \beta$.
Proof. For $H \in R^{q \times p}, H=\left[H\left(X^{\prime} X\right)^{-1} X^{\prime}\right] X$. So $H \beta$ is estimable with $\frac{\partial H \beta}{\partial \beta^{\prime}}=H$.
For $Y \sim N\left(X \beta, \sigma^{2} \Sigma\right), \ln f(y, \beta)=-\frac{n}{2} \ln 2 \pi \sigma^{2}-\frac{1}{2} \ln |\Sigma|-\frac{1}{2 \sigma^{2}}(Y-X \beta)^{\prime} \Sigma^{-1}(Y-X \beta)$.
$\frac{\partial \ln f(y, \beta)}{\partial \beta^{\prime}}=-\frac{1}{2 \sigma^{2}}(Y-X \beta)^{\prime} 2 \Sigma^{-1}(-X)$. So $\nabla \ln f(Y, \beta)=\frac{1}{\sigma^{2}} X^{\prime} \Sigma^{-1}(Y-X \beta)$.
Thus $I(\beta)=\frac{1}{\sigma^{2}} X^{\prime} \Sigma^{-1} X$. Hence $\operatorname{CRLB}(H \beta)=\sigma^{2} H\left(X^{\prime} \Sigma^{-1} X\right)^{-1} H^{\prime}$.
But $\operatorname{Cov}\left(H\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{-1 / 2} Y\right)=\sigma^{2} H\left(X^{\prime} \Sigma^{-1} X\right)^{+} H^{\prime}=\sigma^{2} H\left(X^{\prime} \Sigma^{-1} X\right)^{-1} H^{\prime}$ which is $\operatorname{CRLB}(H \beta)$. Hence $H\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{-1 / 2} Y$ is the MVUE for $H \beta$.
3. Sampling distributions
(1) The MVUE for $H \beta, H\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{-1 / 2} Y \sim N\left(H \beta, \sigma^{2} H\left(X^{\prime} \Sigma^{-1} X\right)^{+} H^{\prime}\right)$.

Proof. With $A=H\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{-1 / 2}$ and $Y \sim N\left(X \beta, \sigma^{2} \Sigma\right)$,

$$
A Y \sim N\left(A X \beta, \sigma^{2} A \Sigma A^{\prime}\right)=N\left(H \beta, \sigma^{2} H\left(X^{\prime} \Sigma^{-1} X\right)^{+} H^{\prime}\right)
$$

Comment: Because X has full column rank, $\left(X^{\prime} \Sigma^{-1} X\right)^{+}=\left(X^{\prime} \Sigma X\right)^{-1}$.
Ex1: The distribution of $\widehat{Y}=X\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{-1 / 2} Y$, the MVUE for $X \beta=E(Y)$, is $\widehat{Y} \sim N\left(X \beta, \sigma^{2} X\left(X^{\prime} \Sigma^{-1} X\right)^{-1} X^{\prime}\right)$.
(2) $\frac{\mathrm{SSE}}{\sigma^{2}} \sim \chi^{2}(n-r)$ where $r=\operatorname{rank}(X)$.

Proof. Note that

$$
\begin{aligned}
\mathrm{SSE} & =\|Y-\widehat{Y}\|_{\Sigma^{-1}}^{2}=\left\|\Sigma^{-1 / 2} Y-\Sigma^{-1 / 2} \widehat{Y}\right\|^{2} \\
& =\left\|\Sigma^{-1 / 2} Y-\Sigma^{-1 / 2} X\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{-1 / 2} Y\right\|^{2} \\
& =\left\|\left[I-\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}\right]\left(\Sigma^{-1 / 2} Y\right)\right\|^{2} \\
& =\left(\Sigma^{-1 / 2} Y\right)^{\prime}\left[I-\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}\right]\left(\Sigma^{-1 / 2} Y\right) .
\end{aligned}
$$

So $\frac{\text { SSE }}{\sigma^{2}}=Z^{\prime} B Z$ where $Z=\Sigma^{-1 / 2} Y \sim N\left(\Sigma^{-1 / 2} X \beta, \sigma^{2} I\right)$ and

$$
B=\frac{1}{\sigma^{2}}\left[I-\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}\right] .
$$

But $B \sigma^{2} I B=B,\left(\Sigma^{-1 / 2} X \beta\right)^{\prime} B\left(\Sigma^{-1 / 2} X \beta\right)=0$ and $\operatorname{tr}\left(B \sigma^{2} I\right)=n-r$.
The above imply that $\frac{\text { SSE }}{\sigma^{2}} \chi^{2}(n-r)$.
(3) $H\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{-1 / 2} Y$ and SSE are independent.

Proof. With $Y \sim N\left(X \beta, \sigma^{2} \Sigma\right), A=H\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{-1 / 2}$, and SSE $=\sigma^{2} Y^{\prime}\left(\Sigma^{-1 / 2} B \Sigma^{-1 / 2}\right) Y$, $A\left(\sigma^{2} \Sigma\right)\left(\Sigma^{-1 / 2} B \Sigma^{-1 / 2}\right)=0$ from which the conclusion of the independence of $A Y=H\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{-1 / 2} Y$ and SSE follows.

L08: A biased estimator: Ridge estimator

1. The problem of multicollinearity
(1) Biased estimators

When ξ is estimated by $\widehat{\xi}$, the risks $r(\widehat{\xi}, \xi)=\operatorname{Cov}(\widehat{\xi})+[E(\widehat{\xi})-\xi][E(\widehat{\xi})-\xi]^{\prime}$ and $\operatorname{MSE}(\widehat{\xi}, \xi)=\operatorname{tr}[r(\widehat{\xi}, \xi)]=\operatorname{tr}[\operatorname{Cov}(\widehat{\xi})]+\|E(\widehat{\xi})-\xi\|^{2}$.
Reducing the large $\operatorname{tr}[\operatorname{Cov}(\widehat{\xi})]$ may cause the increase in the bias and result in a biased estimator. However, if the reduction in $\operatorname{tr}[\operatorname{Cov}(\widehat{\xi})]$ is greater than the increment in the bias, then it is worthwhile to do so.
(2) BLUE of β

In Model $Y=X \beta+\epsilon, \epsilon \sim\left(0, \sigma^{2} I_{n}\right)$, if the columns of X are linearly independent, then β is estimable since $\beta=I_{p} \beta$ and $I_{p}=X^{+} X$. The BLUE for β

$$
\widehat{\beta}=X^{+} Y=\left(X^{\prime} X\right)^{-1} X^{\prime} Y \sim\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right) .
$$

Let $X^{\prime} X=P \Lambda P^{\prime}$ be the EVD. Then $r(\widehat{\beta}, \beta)=\operatorname{Cov}(\widehat{\beta})=\sigma^{2}\left(X^{\prime} X\right)^{-1}=\sigma^{2} P \Lambda^{-1} P^{\prime}$ and $\operatorname{MSE}(\widehat{\xi}, \xi)=\operatorname{tr}\left(\sigma^{2} P \Lambda^{-1} P^{\prime}\right)=\frac{\sigma^{2}}{\lambda_{1}}+\cdots+\frac{\sigma^{2}}{\lambda_{p}}$.
(3) The problem of multicollinearity in X

Note that the columns of X are linearly independent if and only if $\left|X^{\prime} X\right|=\prod_{i} \lambda_{i}>0$.
We say that there is a multicollinearity in X if the columns of X are almost linearly dependent interpreted as $\left|X^{\prime} X\right|=\prod_{i} \lambda_{i}$ is almost 0 .
So the multicollinearity will make $\operatorname{MSE}(\widehat{\beta}, \beta)=\operatorname{tr}[\operatorname{Cov}(\widehat{\beta})]=\frac{\sigma^{2}}{\lambda_{1}}+\cdots+\frac{\sigma^{2}}{\lambda_{p}}$ large. Thus while $\widehat{\beta}$ is still a BLUE, but it is not stable due to large total variances, also its risk $\operatorname{MSE}(\widehat{\beta}, \beta)$ is high.

2. Ridge estimator

(1) Ridge estimator

One naive idea on the remedy for the problem caused by the smaller $\lambda_{i}, i=1, . ., p$, in

$$
\widehat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y=\left(P \Lambda P^{\prime}\right)^{-1} X^{\prime} Y
$$

is to replace λ_{i} by $\lambda_{i}+k_{i}$ where $k_{i}>0$, i.e., to replace Λ by $\Lambda+K$ where $K=\operatorname{diag}\left(k_{1}, . ., k_{p}\right)$ to have

$$
\widehat{\beta}(K)=\left[P(\Lambda+K) P^{\prime}\right]^{-1} X^{\prime} Y=P(\Lambda+K)^{-1} P^{\prime} X^{\prime} Y
$$

called a ridge estimator for β. The ridge estimator is still a linear estimator for β.
(2) $\operatorname{tr}[\operatorname{Cov}(\widehat{\beta}(K))]=\sigma^{2} \sum_{i} \frac{\lambda_{i}}{\left(\lambda_{i}+k_{i}\right)^{2}}$

Proof. With $\widehat{\beta}(K)=P(\Lambda+K)^{-1} P^{\prime} X^{\prime} Y$ and $Y \sim\left(X \beta, \sigma^{2} I_{n}\right)$,

$$
\begin{aligned}
\operatorname{Cov}[\widehat{\beta}(K)] & =\left[P(\Lambda+K)^{-1} P^{\prime} X^{\prime}\right] \sigma^{2} I\left[P(\Lambda+K)^{-1} P^{\prime} X^{\prime}\right]^{\prime} \\
& =\sigma^{2} P(\Lambda+K)^{-1} P^{\prime} X^{\prime} X P(\Lambda+K)^{-1} P^{\prime} \\
& =\sigma^{2} P(\Lambda+K)^{-1} \Lambda(\Lambda+K)^{-1} P^{\prime}
\end{aligned} \quad \begin{aligned}
\text { So } \operatorname{tr}[\operatorname{Cov}(\widehat{\beta}(K))]=\sigma^{2} \operatorname{tr}\left[(\Lambda+K)^{-1} \Lambda(\Lambda+K)^{-1}\right]=\sigma^{2} \sum_{i} \frac{\lambda_{i}}{\left(\lambda_{i}+k_{i}\right)^{2}}
\end{aligned}
$$

Ex1: $\operatorname{tr}[\operatorname{Cov}(\widehat{\beta}(K))]=\sigma^{2} \sum_{i} \frac{\lambda_{i}}{\left(\lambda_{i}+k_{i}\right)^{2}} \leq \sigma^{2} \sum_{i} \frac{1}{\lambda_{i}}=\operatorname{tr}(\operatorname{Cov}(\widehat{\beta}))$.
(3) $\|\widehat{\beta}(K)-\beta\|^{2}=\sum_{i} \frac{k_{i}^{2}}{\left(\lambda_{i}+k_{i}^{2}\right)^{2}}\left[\left(P^{\prime} \beta\right)_{i}\right]^{2}$

Proof. First, $\beta-E[\widehat{\beta}(K)]=\beta-P(\Lambda+K)^{-1} P^{\prime} X^{\prime} X \beta=\beta-P(\Lambda+K)^{-1} \Lambda P^{\prime} \beta$

$$
=P\left[I-(\Lambda+K)^{-1} \Lambda\right] P^{\prime} \beta
$$

But $(\Lambda+k)^{-1}=\Lambda^{-1}-\Lambda^{-1}\left(\Lambda^{-1}+K^{-1}\right)^{-1} \Lambda^{-1}$ since

$$
\begin{aligned}
& (\Lambda+K)\left[\Lambda^{-1}-\Lambda^{-1}\left(\Lambda^{-1}+K^{-1}\right)^{-1} \Lambda^{-1}\right] \\
= & I-\left(\Lambda^{-1}+K^{-1}\right)^{-1} \Lambda^{-1}+K \Lambda^{-1}-K \Lambda^{-1}\left(\Lambda^{-1}+K^{-1}\right)^{-1} \Lambda^{-1} \\
= & I+K\left[-K^{-1}\left(\Lambda^{-1}+K^{-1}\right)^{-1}+I-\Lambda^{-1}\left(\Lambda^{-1}+K^{-1}\right)^{-1}\right] \Lambda^{-1} \\
= & I+K\left[I-\left(K^{-1}+\Lambda^{-1}\right)\left(\Lambda^{-1}+K^{-1}\right)^{-1}\right] \Lambda^{-1}=I .
\end{aligned}
$$

$$
\text { So } \begin{aligned}
\|\beta-E[\widehat{\beta}(K)]\|^{2} & =\left\|P\left[I-(\Lambda+K)^{-1} \Lambda\right] P^{\prime} \beta\right\|^{2} \\
& =\left\|P\left\{I-\left[\Lambda^{-1}-\Lambda^{-1}\left(\Lambda^{-1}+K^{-1}\right)^{-1} \Lambda^{-1}\right] \Lambda\right\} P^{\prime} \beta\right\|^{2} \\
& =\left\|\left[\Lambda^{-1}\left(\Lambda^{-1}+K^{-1}\right)^{-1}\right] P^{\prime} \beta\right\|^{2} \\
& =\sum_{i}\left[\frac{1 / \lambda_{i}}{\left(1 / \lambda_{i}\right)+\left(1 / k_{i}\right)}\left(P^{\prime} \beta\right)_{i}\right]^{2}=\sum_{i} \frac{k_{i}^{2}}{\left(\lambda_{i}+k_{i}\right)^{2}}\left[\left(P^{\prime} \beta\right)_{i}\right]^{2} .
\end{aligned}
$$

Ex2: $\|E(\widehat{\beta}(K))-\beta\|^{2} \geq 0=\|E(\widehat{\beta})-\beta\|^{2}$.
3. Making ridge estimator better than BLUE
(1) $\operatorname{MSE}(\widehat{\beta}(K), \beta)$

$$
\begin{aligned}
\operatorname{MSE}(\widehat{\beta}(K), \beta) & =\operatorname{tr}[\operatorname{Cov}(\widehat{\beta}(K))]+\|E(\widehat{\beta}(K))-\beta\|^{2} \\
& =\sum_{i} \frac{\sigma^{2} \lambda_{i}}{\left(\lambda_{i}+k_{i}\right)^{2}}+\sum_{i} \frac{k_{i}^{2}}{\left(\lambda_{i}+k_{i}\right)^{2}}\left[\left(P^{\prime} \beta\right)_{i}\right]^{2}=\sum_{i} \frac{k_{i}^{2}\left[\left(P^{\prime} \beta\right)_{i}\right]^{2}+\lambda_{i} \sigma^{2}}{\left(\lambda_{i}+k_{i}\right)^{2}} \\
& =\sum_{i} f_{i}\left(k_{i}\right) \quad \text { where } f_{i}\left(k_{i}\right)=\frac{k_{i}^{2}\left[\left(P^{\prime}(\beta)\right)_{i}\right]^{2}+\lambda_{i} \sigma^{2}}{\left(\lambda_{i}+k_{i}\right)^{2}} .
\end{aligned}
$$

(2) Minimizing $\operatorname{MSE}(\widehat{\beta}(K), \beta)$
$f^{\prime}\left(k_{i}\right)=\cdots=\frac{2 k_{i} \lambda_{i}\left[\left(P^{\prime} \beta\right)_{i}\right]^{2}-2 \lambda \sigma^{2}}{\left(\lambda_{i}+k_{i}\right)^{3}}=\frac{2 \lambda_{i}\left[\left(P^{\prime} \beta\right)_{i}\right]^{2}}{\left(\lambda_{i}+k_{i}\right)^{3}}\left[k_{i}-\frac{\sigma^{2}}{\left[\left(P^{\prime} \beta\right)_{i}\right]^{2}}\right]$. By the first derivative test, $f\left(k_{i}\right)$ is minimized at $k_{i}=\frac{\sigma^{2}}{\left[\left(P^{\prime} \beta\right)_{i}\right]^{2}}, i=1, \ldots, p$, So is $\operatorname{MSE}(\widehat{\beta}(K), \beta)$.
(3) Ridge estimator could be better than the BLUE

$$
\begin{aligned}
\operatorname{MSE}(\widehat{\beta}(K), \beta)_{k_{i}=\frac{\sigma^{2}}{\left[\left(P^{\prime} \beta\right)\right]^{2}}} & =\sum_{i=1}^{p} \frac{\frac{\sigma^{4}}{\left[\left(P^{\prime} \beta\right)\right]^{2}}+\lambda_{i} \sigma^{2}}{\left[\lambda_{i}+\frac{\sigma^{2}}{\left[\left(P^{\prime} \beta\right)\right]^{2}}\right]^{2}}=\sum_{i=1}^{p} \frac{\sigma^{2}\left[\lambda_{i}+\frac{\sigma^{2}}{\left[\left(P^{\prime} \beta\right)\right]^{2}}\right]}{\left[\lambda_{i}+\frac{\left.\sigma^{2}\right]}{\left[\left(P^{\prime} \beta\right)\right]^{2}}\right]^{2}} \\
& =\sum_{i=1}^{p} \frac{\sigma^{2}}{\lambda_{i}+\frac{\sigma^{2}}{\left[\left(P^{\prime} \beta\right)_{i}\right]^{2}}} \leq \sum_{i=1}^{p} \frac{\sigma^{2}}{\lambda_{i}}=\operatorname{MSE}(\widehat{\beta})
\end{aligned}
$$

Comment: $k_{i}=\frac{\sigma^{2}}{\left[\left(P^{\prime} \beta\right)_{i}\right]^{2}}$ is a theoretical value since it depends on unknown parameter σ^{2} and β. In practice one can estimate σ^{2} and β, and use the estimated value of k_{i}.

