L04 BLUE and BLUP

1. Best linear unbiased estimators (BLUEs)
(1) Setting

Model:

$$
Y=X \beta+\epsilon, \epsilon \sim\left(0, \sigma^{2} \Sigma\right), \text { i.e., } Y \sim\left(X \beta, \sigma^{2} I\right)
$$

Estimable $H \beta$: $\quad H=L X$ for some $L \Longleftrightarrow \operatorname{LUE}(H \beta) \neq \emptyset$.
Estimators for β : \quad With $U=\Sigma^{-1}, \operatorname{GLSE}_{\Sigma^{-1}}(\beta)=\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{-1 / 2} Y+\mathcal{N}(X)$
Minimum norm GLSE: $\widehat{\beta}=\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{-1 / 2} Y$
LUE $(H \beta)$:

$$
\operatorname{LUE}(H \beta)=H\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{-1 / 2} Y+\mathcal{N}\left(I_{q}, X\right) Y
$$

(2) Task

We need to select $\widehat{\eta} \in \operatorname{LUE}(H \beta)$ such that $r(\widehat{\eta}, H \beta) \leq r(\widetilde{\eta}, H \beta)$ for all $\widetilde{\eta} \in \operatorname{LUE}(H \beta)$. This $\hat{\eta}$ is the best linear unbiased estimator for $H \beta$ by the specified criterion and is denoted as the BLUE for $H \beta$. Note that $r(\widetilde{\eta}, H \beta)=\operatorname{Cov}(\widetilde{\eta})$.
(3) BLUE
$H \widehat{\beta}=H\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{-1 / 2} Y$ is the BLUE for $H \beta$
Proof. $\widehat{\eta}=H \widehat{\beta}=L_{0} Y \in \operatorname{LUE}(H \beta)$ where $L_{0}=H\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{-1 / 2}$.
$\widetilde{\eta}=L Y \in \operatorname{LUE}(H \beta)$ where $L=L_{0}+T$ with $T \in \mathcal{N}\left(I_{q}, X\right)$. $r(\widetilde{\eta}, H \beta)=\operatorname{Cov}(L Y)=\operatorname{Cov}\left(\left(L_{0}+T\right) Y\right)$

$$
=\operatorname{Cov}\left(L_{0} Y\right)+\operatorname{Cov}(T Y)+\operatorname{Cov}\left(L_{0} Y, T Y\right)+\operatorname{Cov}\left(T Y, L_{0} Y\right)
$$

But $\operatorname{Cov}\left(L_{0} Y, T Y\right)=\sigma^{2} L_{0} \Sigma T^{\prime}=\sigma^{2} H\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{-1 / 2} \Sigma T^{\prime}$
$=\sigma^{2} H\left(\Sigma^{-1 / 2} X\right)^{+}\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{1 / 2} T^{\prime}$
$=\sigma^{2} H\left(\Sigma^{-1 / 2} X\right)^{+}\left[\left(\Sigma^{-1 / 2} X\right)^{+}\right]^{\prime} X^{\prime} \Sigma^{-1 / 2} \Sigma^{1 / 2} T^{\prime}$
$=\sigma^{2} H\left(\Sigma^{-1 / 2} X\right)^{+}\left[\left(\Sigma^{-1 / 2} X\right)^{+}\right]^{\prime}\left(I_{q} T X\right)^{\prime}=0$
and $\operatorname{Cov}\left(T Y, L_{0} Y\right)=\left[\operatorname{Cov}\left(L_{0} Y, T Y\right)\right]^{\prime}$. So
$r(\widetilde{\eta}, H \beta)=r(\widehat{\eta}, H \beta)+\operatorname{Cov}(T Y)+0+0 \geq r(\widehat{\eta}, H \beta)$. Hence $\widehat{\eta}=H \widehat{\beta}$ is a BLUE.
Ex1: In model $Y \sim\left(X \beta, \sigma^{2} I_{n}\right)$ the estimable $H \beta$ has BLUE $H \widehat{\beta}=H X^{+} Y$. When X has full column rank, $H \widehat{\beta}=H\left(X^{\prime} X\right)^{-1} X^{\prime} Y$.
(4) \widehat{Y} and other statistics
$E(Y)=X \beta$ has BLUE $\widehat{Y}=X \widehat{\beta}=X\left(\Sigma^{-1 / 2} X\right) \Sigma^{-1 / 2} Y$.
The error vector $\epsilon=Y-X \beta$ is predicted by the residual vector

$$
\widehat{e}=Y-X \widehat{\beta}=Y-\widehat{Y}=\Sigma^{1 / 2}\left[I-\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}\right]\left(\Sigma^{-1 / 2} Y\right)
$$

The minimized $\|Y-X \beta\|_{V-1}^{2}$ is

$$
\mathrm{SSE}=\|Y-X \widehat{\beta}\|_{\Sigma^{-1}}^{2}=\left(\Sigma^{-1 / 2} Y\right)^{\prime}\left[I-\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}\right]\left(\Sigma^{-1 / 2} Y\right)
$$

(4) An UE for σ^{2}

$$
\begin{aligned}
& Y \sim\left(X \beta, \sigma^{2} \Sigma\right) \Longrightarrow \Sigma^{-1 / 2} Y \sim\left(\Sigma^{-1 / 2} X \beta, \sigma^{2} I_{n}\right) \\
& E(\mathrm{SSE})=\left(\Sigma^{-1 / 2} X \beta\right)\left[I-\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}\right]\left(\Sigma^{-1 / 2} X \beta\right) \\
&+\operatorname{tr}\left\{\left[I-\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}\right] \sigma^{2} I_{n}\right\}=0+\sigma^{2}(n-r)=\sigma^{2}(n-r)
\end{aligned}
$$

where $r=\operatorname{rank}\left(\Sigma^{-1 / 2} X\right)=\operatorname{rank}(X)$.
Let MSE $=\frac{\mathrm{SSE}}{n-r}$. Then MSE is an UE for σ^{2}.

2. BLUP for Y_{f}

(1) A special case

If Y and Y_{f} are independent, and $E\left(Y_{f}\right)=H \beta$, then

$$
L_{0} Y \text { is a BLUP for } Y_{f} \Longleftrightarrow L_{0} Y \text { is a BLUE for } H \beta
$$

Proof. $\quad L_{0} Y$ is a BLUP for $Y_{f} \Longleftrightarrow\left\{\begin{array}{l}L_{0} Y \in \operatorname{LUP}\left(Y_{f}\right) . \forall L Y \in \operatorname{LUP}\left(Y_{f}\right) \\ r\left(L_{0} Y, Y_{f}\right) \leq r\left(L Y, Y_{f}\right)\end{array}\right.$
$\Longleftrightarrow\left\{\begin{array}{l}L_{0} Y \in \operatorname{LUE}(H \beta) . \forall L Y \in \operatorname{LUE}(H \beta) \\ \operatorname{Cov}\left(L_{0} Y-Y_{f}\right) \leq \operatorname{Cov}\left(L Y-Y_{f}\right)\end{array}\right.$
$\Longleftrightarrow\left\{\begin{array}{l}L_{0} Y \in \operatorname{LUE}(H \beta) . \forall L Y \in \operatorname{LUE}(H \beta) \\ \operatorname{Cov}\left(L_{0} Y\right) \leq \operatorname{Cov}(L Y)\end{array}\right.$
$\Longleftrightarrow \quad L_{0} Y$ is a BLUE for $H \beta$.
(2) A closed form

Suppose Y and Y_{f} are independent, Y_{f} is predictable and $E\left(Y_{f}\right)=H \beta$. Then

$$
H\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{-1 / 2} Y \text { is a BLUP for } Y_{f}
$$

3. A more general setting
(1) Model

Iff-conditions for BLUE and BLUP can be derived in more genera setting

$$
\binom{Y}{Y_{f}} \sim\left(\binom{X}{H} \beta, \sigma^{2}\left(\begin{array}{cc}
\Sigma & C \\
C^{\prime} & V
\end{array}\right)\right) \text { where } \Sigma \geq 0
$$

(2) Preparation I

Suppose $\lambda_{i}, i=1, . ., n$ are the eigenvalues of $\Sigma \geq 0$, and $\lambda_{\max }=\max \left(\lambda_{1}, \ldots, \lambda_{n}\right)>0$.
Let $0<c<\frac{2}{\lambda_{\text {max }}}$. Then $c^{2} \Sigma-2 c I_{n}<0$.
Proof. By EVD $\Sigma=P \Lambda P^{\prime}, c^{2} \Sigma-2 c I=P\left(c^{2} \Lambda-2 c I\right) P^{\prime}$ is the EVD for $c^{2} \Sigma-2 c I$ with eigenvalues $c^{2} \lambda_{i}-2 c, i=1, \ldots, n$. We show that $c^{2} \lambda_{i}-2 c<0$ for all i.
If $\lambda_{i}=0$, then $c^{2} \lambda_{i}-2 c=-2 c<0$.
If $\lambda_{i}>0$, then $c^{2} \lambda_{i}-2 c \leq c^{2} \lambda_{\text {max }}-2 c=c\left(c \lambda_{\text {max }}-2\right)<c\left(\frac{2}{\lambda_{\text {max }}} \lambda_{\text {max }}-2\right)=0$.
Thus $c^{2} \Sigma-2 c<0$
(3) Preparation II
(i) $A \leq 0$ and $A \geq 0 \Longleftrightarrow A=0$
(ii) $A A^{\prime}=0 \Longleftrightarrow A=0$
(iii) $A<0$ and $T A T^{\prime} \geq 0 \Longrightarrow T=0$

Proof. (i) Only show \Rightarrow : First, $A \geq 0 \Longrightarrow A^{1 / 2}$ exists. $A \leq 0$ and $A \geq 0 \Longrightarrow x^{\prime} A x \leq 0$ and $x^{\prime} A x \geq 0$ for all $x \Longrightarrow x^{\prime} A x=0$ for all x. So $\quad 0=x^{\prime} A x=\left(A^{1 / 2} x\right)^{\prime} A^{1 / 2} x=\left\|A^{1 / 2} x\right\|^{2} \Longrightarrow A^{1 / 2} x=0$ for all x. Hence $\quad A^{1 / 2}=0 \Longrightarrow A=0$.
(ii) Only show \Rightarrow : $\quad\left\langle A^{\prime}, A^{\prime}\right\rangle=\operatorname{tr}\left(A A^{\prime}\right)=0 \Longrightarrow A^{\prime}=0 \Longrightarrow A=0$.
(iii) Only show \Rightarrow : $\quad A<0 \Longrightarrow T A T^{\prime} \leq 0$. But $T A T^{\prime} \geq 0$. So $T A T^{\prime}=0$.

$$
\text { Hence } T(-A) T^{\prime}=0 . \quad \text { But } A<0 \Longrightarrow-A>0 \Longrightarrow(-A)^{ \pm 1 / 2} \text { exist. }
$$

$$
0=T(-A) T^{\prime}=\left[T(-A)^{1 / 2}\right]\left[T(-A)^{1 / 2}\right]^{\prime} \Longrightarrow T(-A)^{1 / 2}=0 \Longrightarrow T=0
$$

L05 Fundamental theorems for BLUE and BLUP

1. Model
(1) Model

$$
\binom{Y}{Y_{f}} \sim\left(\binom{X}{H} \beta, \sigma^{2}\left(\begin{array}{cc}
\Sigma & C \\
C^{\prime} & V
\end{array}\right)\right) . \quad \text { Here } \Sigma \geq 0 . \text { So } \Sigma^{-1} \text { may not be available. }
$$

(2) Two results
(i) For $0 \neq \Sigma \geq 0$, there exists $c>0$ such that $c^{2} \Sigma-2 c I<0$.
(ii) $A<0$ and $T A T^{\prime} \geq 0 \Longrightarrow T=0$.
(3) $\operatorname{LUE}(H \beta)=\operatorname{LUP}\left(Y_{f}\right)$

If $B Y \in \operatorname{LUE}(H \beta)$, then

$$
\operatorname{LUP}\left(Y_{f}\right)=\operatorname{LUE}(H \beta)=\left\{\left[B+Z\left(I-X X^{+}\right)\right] Y, Z \in R^{q \times n}\right\} .
$$

Proof. If $B Y \in \operatorname{LUE}(H \beta)$, then $\operatorname{LUE}(H \beta)=B Y+\mathcal{N}\left(I_{q}, X\right) Y$.

$$
\text { But } \mathcal{N}\left(I_{q}, X\right)=\mathcal{R}\left(I_{q}, I_{n}-X X^{+}\right)=\left\{Z\left(I-X X^{+}\right): Z \in R^{q \times n}\right\} .
$$

$$
\text { So } \quad B Y+\mathcal{N}\left(I_{q}, X\right) Y=\left\{\left[B+Z\left(I-X X^{+}\right)\right] Y, Z \in R^{q \times n}\right\} .
$$

2. BLUE

(1) Theorem
$B Y$ is a BLUE for $H \beta \Longleftrightarrow B\left(X, \Sigma\left(I-X X^{+}\right)\right)=(H, 0)$.
Proof. Let $T=B \Sigma\left(I-X X^{+}\right)$such that

$$
B\left(X, \Sigma\left(I-X X^{+}\right)\right)=(H, 0) \Longleftrightarrow B X=H \text { and } T=0
$$

$B Y$ is a BLUE for $H \beta \Longleftrightarrow\left\{\begin{array}{l}B Y \in \mathrm{LUE}(H \beta) \\ r(B Y, H \beta) \leq r(L Y, H \beta) \text { for all } L Y \in \operatorname{LUE}(H \beta)\end{array}\right.$

$$
\begin{aligned}
& \Longleftrightarrow\left\{\begin{array}{l}
B X=H \\
\operatorname{Cov}(B Y) \leq \operatorname{Cov}\left(B Y+Z\left(I-X X^{+}\right) Y\right) \text { for all } Z \in R^{q \times n}
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
\text { (i) } B X=H \\
\text { (ii) } T Z^{\prime}+Z T^{\prime}+Z\left(I-X X^{+}\right) \Sigma\left(I-X X^{+}\right) Z^{\prime} \geq 0 \text { for all } Z
\end{array}\right.
\end{aligned}
$$

We need to show that (i) and (ii) $\Longleftrightarrow B X=H$ and $T=0$. But $B X=H$ is on the both sides. We show

$$
(\mathrm{ii}) \Longleftrightarrow T=0
$$

\Longleftarrow : Under $T=0$, the inequality in (ii) becomes

$$
Z\left(I-X X^{+}\right) \Sigma\left(I-X X^{+}\right) Z^{\prime} \geq 0 \text { for all } Z
$$

which is clearly true since $\Sigma \geq 0$.
\Longrightarrow : Select c as in 1 (2) (i) so that $c^{2} \Sigma-2 c I<0$.
The inequality in (ii) is true for all Z. Select $Z=-c T$. We have

$$
-c T T^{\prime}-c T T^{\prime}+(-c T) \Sigma(-c T)^{\prime} \geq 0
$$

i.e., $T\left(c^{2} \Sigma-2 c I\right) T^{\prime} \geq 0$. It follows from 1 (2) (ii) that $T=0$.
(2) An example

When $\Sigma>0$, for estimable $H \beta$ such that $H=L X$, let $B Y=H\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{-1 / 2} Y$.

$$
\begin{aligned}
& \text { Then } B X=H\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{-1 / 2} X=L \Sigma^{1 / 2}\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}\left(\Sigma^{-1 / 2} X\right) \\
& =L \Sigma^{1 / 2} \Sigma^{-1 / 2} X=L X=H, \\
& B \Sigma\left(I-X X^{+}\right) \\
& =H\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{-1 / 2} \Sigma\left(I-X X^{+}\right) \\
& \\
& =H\left(\Sigma^{-1 / 2} X\right)^{+}\left[\left(\Sigma^{-1 / 2} X\right)^{+}\right]^{\prime}\left(\Sigma^{-1 / 2} X\right)^{\prime} \Sigma^{-1 / 2} \Sigma\left(I-X X^{+}\right) \\
& \\
& =H\left(\Sigma^{-1 / 2} X\right)^{+}\left[\left(\Sigma^{-1 / 2} X\right)^{+}\right]^{\prime} X^{\prime}\left(I-X X^{+}\right)=0 .
\end{aligned}
$$

So $B\left(X, \Sigma\left(I-X X^{+}\right)\right)=(H, 0)$ is true. Hence $B Y$ is a BLUE for $H \beta$.

3. BLUP

(1) Theorem
$B Y$ is a BLUP for $Y_{f} \Longleftrightarrow B\left(X, \Sigma\left(I-X X^{+}\right)\right)=\left(H, C^{\prime}\left(I-X X^{+}\right)\right)$.
Proof. Let $T=\left(B \Sigma-C^{\prime}\right)\left(I-X X^{+}\right)$such that

$$
\begin{gathered}
B\left(X, \Sigma\left(I-X X^{+}\right)\right)=\left(H, C^{\prime}\left(I-X X^{+}\right)\right) \Longleftrightarrow B X=H \text { and } T=0 . \\
B Y \text { is a BLUP for } Y_{f} \Longleftrightarrow\left\{\begin{array}{l}
B Y \in \operatorname{LUP}\left(Y_{f}\right) \\
r\left(B Y, Y_{f}\right) \leq r\left(L Y, Y_{f}\right) \text { for all } L Y \in \operatorname{LUP}\left(Y_{f}\right)
\end{array}\right. \\
\Longleftrightarrow\left\{\begin{array}{l}
B X=H \\
\operatorname{Cov}\left(B Y-Y_{f}\right) \leq \operatorname{Cov}\left(B Y+Z\left(I-X X^{+}\right) Y-Y_{f}\right) \text { for all } Z \in R^{q \times n}
\end{array}\right. \\
\Longleftrightarrow\left\{\begin{array}{l}
\text { (i) } B X=H \\
\text { (ii) } T Z^{\prime}+Z T^{\prime}+Z\left(I-X X^{+}\right) \Sigma\left(I-X X^{+}\right) Z^{\prime} \geq 0 \text { for all } Z
\end{array}\right.
\end{gathered}
$$

We need to show that (i) and (ii) $\Longleftrightarrow B X=H$ and $T=0$. But $B X=H$ is on the both sides. We show that

$$
\text { (ii) } \Longleftrightarrow T=0 \text {. }
$$

\Longleftarrow : Under $T=0$, the inequality in (ii) becomes

$$
Z\left(I-X X^{+}\right) \Sigma\left(I-X X^{+}\right) Z^{\prime} \geq 0 \text { for all } Z
$$

which is clearly true since $\Sigma \geq 0$.
\Longrightarrow : Select c as in 1 (2) (i) so that $c^{2} \Sigma-2 c I<0$.
In (ii) select $Z=-c T$ so that $T\left(c^{2} \Sigma-2 c I\right) T^{\prime} \geq 0$.
By 1 (2) (ii), $T=0$.
(2) A comment
$B\left(X, \Sigma\left(I-X X^{+}\right)\right)=\left(H, C^{\prime}\left(I-X X^{+}\right)\right)$and $B\left(X, \Sigma\left(I-X X^{+}\right)\right)=(H, 0)$
are two different equations. So for Y_{f} with $E\left(Y_{f}\right)=X \beta$ estimable, BLUP for Y_{f} and BLUE for $H \beta$ may or may not be equal.
But if Y and Y_{f} are independent, then $C=0$. Thus the two equations become identical. In that case the BLUP for Y_{f} and the BLUE for $H \beta$ are equal.

