L04 BLUE and BLUP

- 1. Best linear unbiased estimators (BLUEs)
 - (1) Setting Model: $Y = X\beta + \epsilon, \ \epsilon \sim (0, \ \sigma^2 \Sigma), \text{ i.e., } Y \sim (X\beta, \ \sigma^2 I)$ Estimable $H\beta$: H = LX for some $L \iff \text{LUE}(H\beta) \neq \emptyset$. Estimators for β : With $U = \Sigma^{-1}, \ \text{GLSE}_{\Sigma^{-1}}(\beta) = (\Sigma^{-1/2}X)^+ \Sigma^{-1/2}Y + \mathcal{N}(X)$ Minimum norm GLSE: $\widehat{\beta} = (\Sigma^{-1/2}X)^+ \Sigma^{-1/2}Y$ $\text{LUE}(H\beta)$: $\text{LUE}(H\beta) = H (\Sigma^{-1/2}X)^+ \Sigma^{-1/2}Y + \mathcal{N}(I_q, X)Y.$
 - (2) Task

We need to select $\widehat{\eta} \in \text{LUE}(H\beta)$ such that $r(\widehat{\eta}, H\beta) \leq r(\widetilde{\eta}, H\beta)$ for all $\widetilde{\eta} \in \text{LUE}(H\beta)$. This $\widehat{\eta}$ is the best linear unbiased estimator for $H\beta$ by the specified criterion and is denoted as the BLUE for $H\beta$. Note that $r(\widetilde{\eta}, H\beta) = \text{Cov}(\widetilde{\eta})$.

(3) BLUE

$$\begin{split} H\widehat{\beta} &= H\left(\Sigma^{-1/2}X\right)^{+}\Sigma^{-1/2}Y \text{ is the BLUE for } H\beta \\ \mathbf{Proof.} \ \widehat{\eta} &= H\widehat{\beta} = L_{0}Y \in \mathrm{LUE}(H\beta) \text{ where } L_{0} = H\left(\Sigma^{-1/2}X\right)^{+}\Sigma^{-1/2}. \\ \widetilde{\eta} &= LY \in \mathrm{LUE}(H\beta) \text{ where } L = L_{0} + T \text{ with } T \in \mathcal{N}(I_{q}, X). \\ r(\widetilde{\eta}, H\beta) &= \mathrm{Cov}(LY) = \mathrm{Cov}((L_{0} + T)Y) \\ &= \mathrm{Cov}(L_{0}Y) + \mathrm{Cov}(TY) + \mathrm{Cov}(L_{0}Y, TY) + \mathrm{Cov}(TY, L_{0}Y) \\ \mathrm{But } \mathrm{Cov}(L_{0}Y, TY) &= \sigma^{2}L_{0}\Sigma T' = \sigma^{2}H\left(\Sigma^{-1/2}X\right)^{+}\Sigma^{-1/2}\Sigma T' \\ &= \sigma^{2}H\left(\Sigma^{-1/2}X\right)^{+}\left(\Sigma^{-1/2}X\right)\left(\Sigma^{-1/2}X\right)^{+}\Sigma^{1/2}T' \\ &= \sigma^{2}H\left(\Sigma^{-1/2}X\right)^{+}\left[\left(\Sigma^{-1/2}X\right)^{+}\right]'X'\Sigma^{-1/2}\Sigma^{1/2}T' \\ &= \sigma^{2}H\left(\Sigma^{-1/2}X\right)^{+}\left[\left(\Sigma^{-1/2}X\right)^{+}\right]'(I_{q}TX)' = 0 \\ \mathrm{and } \mathrm{Cov}(TY, L_{0}Y) = [\mathrm{Cov}(L_{0}Y, TY)]'. \text{ So} \end{split}$$

 $r(\widehat{\eta}, H\beta) = r(\widehat{\eta}, H\beta) + \operatorname{Cov}(TY) + 0 + 0 \ge r(\widehat{\eta}, H\beta)$. Hence $\widehat{\eta} = H\widehat{\beta}$ is a BLUE. **Ex1:** In model $Y \sim (X\beta, \sigma^2 I_n)$ the estimable $H\beta$ has BLUE $H\widehat{\beta} = HX^+Y$. When X has full column rank, $H\widehat{\beta} = H(X'X)^{-1}X'Y$.

(4) \hat{Y} and other statistics

$$E(Y) = X\beta \text{ has BLUE } \widehat{Y} = X\widehat{\beta} = X \left(\Sigma^{-1/2}X\right)\Sigma^{-1/2}Y.$$
The error vector $\epsilon = Y - X\beta$ is predicted by the residual vector
 $\widehat{e} = Y - X\widehat{\beta} = Y - \widehat{Y} = \Sigma^{1/2} \left[I - \left(\Sigma^{-1/2}X\right)\left(\Sigma^{-1/2}X\right)^{+}\right]\left(\Sigma^{-1/2}Y\right)$
The minimized $||Y - X\beta||_{Y^{-1}}^{2}$ is
 $SSE = ||Y - X\widehat{\beta}||_{\Sigma^{-1}}^{2} = \left(\Sigma^{-1/2}Y\right)' \left[I - \left(\Sigma^{-1/2}X\right)\left(\Sigma^{-1/2}X\right)^{+}\right] \left(\Sigma^{-1/2}Y\right).$
(4) An UE for σ^{2}
 $Y \sim (X\beta, \sigma^{2}\Sigma) \Longrightarrow \Sigma^{-1/2}Y \sim \left(\Sigma^{-1/2}X\beta, \sigma^{2}I_{n}\right),$
 $E (SSE) = \left(\Sigma^{-1/2}X\beta\right) \left[I - \left(\Sigma^{-1/2}X\right)\left(\Sigma^{-1/2}X\right)^{+}\right] \left(\Sigma^{-1/2}X\beta\right)$
 $+ \operatorname{tr}\left\{\left[I - \left(\Sigma^{-1/2}X\right)\left(\Sigma^{-1/2}X\right)^{+}\right]\sigma^{2}I_{n}\right\} = 0 + \sigma^{2}(n-r) = \sigma^{2}(n-r)$
where $r = \operatorname{rank}(\Sigma^{-1/2}X) = \operatorname{rank}(X).$

where $r = \operatorname{rank}(2^{-r/2}A) = \operatorname{rank}(A)$. Let MSE = $\frac{\text{SSE}}{n-r}$. Then MSE is an UE for σ^2 . 2. BLUP for Y_f

- (1) A special case
 - If Y and Y_f are independent, and $E(Y_f) = H\beta$, then

$$\begin{array}{l} L_0Y \text{ is a BLUP for } Y_f \Longleftrightarrow L_0Y \text{ is a BLUE for } H\beta \\ \textbf{Proof.} \qquad \qquad L_0Y \text{ is a BLUP for } Y_f \Longleftrightarrow \begin{cases} L_0Y \in \text{LUP}(Y_f). \forall LY \in \text{LUP}(Y_f) \\ r(L_0Y, Y_f) \leq r(LY, Y_f) \end{cases} \end{array}$$

$$\iff \begin{cases} L_0 Y \in \text{LUE}(H\beta). \forall LY \in \text{LUE}(H\beta) \\ \text{Cov}(L_0 Y - Y_f) \leq \text{Cov}(LY - Y_f) \end{cases}$$
$$\iff \begin{cases} L_0 Y \in \text{LUE}(H\beta). \forall LY \in \text{LUE}(H\beta) \\ \text{Cov}(L_0 Y) \leq \text{Cov}(LY) \end{cases}$$

 $\iff L_0 Y \text{ is a BLUE for } H\beta.$

(2) A closed form Suppose Y and Y_f are independent, Y_f is predictable and $E(Y_f) = H\beta$. Then

$$H\left(\Sigma^{-1/2}X\right)^+ \Sigma^{-1/2}Y$$
 is a BLUP for Y_f .

- 3. A more general setting
 - (1) Model

Iff-conditions for BLUE and BLUP can be derived in more genera setting

$$\begin{pmatrix} Y \\ Y_f \end{pmatrix} \sim \left(\begin{pmatrix} X \\ H \end{pmatrix} \beta, \, \sigma^2 \begin{pmatrix} \Sigma & C \\ C' & V \end{pmatrix} \right) \text{ where } \Sigma \ge 0$$

(2) Preparation I

Suppose λ_i , i = 1, ..., n are the eigenvalues of $\Sigma \ge 0$, and $\lambda_{max} = \max(\lambda_1, ..., \lambda_n) > 0$. Let $0 < c < \frac{2}{\lambda_{max}}$. Then $c^2 \Sigma - 2cI_n < 0$.

Proof. By EVD $\Sigma = P\Lambda P'$, $c^2\Sigma - 2cI = P(c^2\Lambda - 2cI)P'$ is the EVD for $c^2\Sigma - 2cI$ with eigenvalues $c^2\lambda_i - 2c$, i = 1, ..., n. We show that $c^2\lambda_i - 2c < 0$ for all i. If $\lambda_i = 0$, then $c^2\lambda_i - 2c = -2c < 0$.

If
$$\lambda_i > 0$$
, then $c^2 \lambda_i - 2c \le c^2 \lambda_{max} - 2c = c(c\lambda_{max} - 2) < c\left(\frac{2}{\lambda_{max}}\lambda_{max} - 2\right) = 0$.
Thus $c^2 \Sigma - 2c < 0$

- (3) Preparation II
 - (i) $A \le 0$ and $A \ge 0 \iff A = 0$ (ii) $AA' = 0 \iff A = 0$
 - (iii) A < 0 and $TAT' \ge 0 \Longrightarrow T = 0$
 - **Proof.** (i) Only show \Rightarrow : First, $A \ge 0 \Longrightarrow A^{1/2}$ exists. $A \le 0$ and $A \ge 0 \Longrightarrow x'Ax \le 0$ and $x'Ax \ge 0$ for all $x \Longrightarrow x'Ax = 0$ for all x. So $0 = x'Ax = (A^{1/2}x)'A^{1/2}x = ||A^{1/2}x||^2 \Longrightarrow A^{1/2}x = 0$ for all x. Hence $A^{1/2} = 0 \Longrightarrow A = 0$.
 - (ii) Only show \Rightarrow : $\langle A', A' \rangle = \operatorname{tr}(AA') = 0 \Longrightarrow A' = 0 \Longrightarrow A = 0.$
 - (iii) Only show \Rightarrow : $A < 0 \Longrightarrow TAT' \le 0$. But $TAT' \ge 0$. So TAT' = 0. Hence T(-A)T' = 0. But $A < 0 \Longrightarrow -A > 0 \Longrightarrow (-A)^{\pm 1/2}$ exist. $0 = T(-A)T' = [T(-A)^{1/2}][T(-A)^{1/2}]' \Longrightarrow T(-A)^{1/2} = 0 \Longrightarrow T = 0$.

L05 Fundamental theorems for BLUE and BLUP

- 1. Model
 - (1) Model $\begin{pmatrix} Y \\ Y_f \end{pmatrix} \sim \left(\begin{pmatrix} X \\ H \end{pmatrix} \beta, \sigma^2 \begin{pmatrix} \Sigma & C \\ C' & V \end{pmatrix} \right).$ Here $\Sigma \ge 0$. So Σ^{-1} may not be available. (2) Two results
 - (i) For $0 \neq \Sigma \ge 0$, there exists c > 0 such that $c^2\Sigma 2cI < 0$. (ii) A < 0 and $TAT' \ge 0 \Longrightarrow T = 0$.
 - (3) $LUE(H\beta) = LUP(Y_f)$ If $BY \in LUE(H\beta)$, then

$$LUP(Y_f) = LUE(H\beta) = \{ [B + Z(I - XX^+)]Y, Z \in \mathbb{R}^{q \times n} \}.$$

Proof. If
$$BY \in \text{LUE}(H\beta)$$
, then $\text{LUE}(H\beta) = BY + \mathcal{N}(I_q, X)Y$.
But $\mathcal{N}(I_q, X) = \mathcal{R}(I_q, I_n - XX^+) = \{Z(I - XX^+) : Z \in \mathbb{R}^{q \times n}\}$.
So $BY + \mathcal{N}(I_q, X)Y = \{[B + Z(I - XX^+)]Y, Z \in \mathbb{R}^{q \times n}\}.$

2. BLUE

- (1) Theorem BY is a BLUE for $H\beta \iff B(X, \Sigma(I - XX^+)) = (H, 0).$
 - **Proof.** Let $T = B\Sigma(I XX^+)$ such that

$$B(X, \Sigma(I - XX^+)) = (H, 0) \iff BX = H \text{ and } T = 0.$$

 $BY \text{ is a BLUE for } H\beta \Longleftrightarrow \begin{cases} BY \in \text{LUE}(H\beta) \\ r(BY, H\beta) \leq r(LY, H\beta) \text{ for all } LY \in \text{LUE}(H\beta) \end{cases}$

$$\iff \begin{cases} BX = H\\ \operatorname{Cov}(BY) \le \operatorname{Cov}(BY + Z(I - XX^{+})Y) \text{ for all } Z \in R^{q \times n} \end{cases}$$
$$\iff \begin{cases} \text{(i) } BX = H\\ \text{(ii) } TZ' + ZT' + Z(I - XX^{+})\Sigma(I - XX^{+})Z' \ge 0 \text{ for all } Z \end{cases}$$

We need to show that (i) and (ii) $\iff BX = H$ and T = 0. But BX = H is on the both sides. We show

(ii)
$$\iff T = 0.$$

 \Leftarrow : Under T = 0, the inequality in (ii) becomes

$$Z(I - XX^+)\Sigma(I - XX^+)Z' \ge 0$$
 for all Z

which is clearly true since $\Sigma \geq 0$.

 \implies : Select c as in 1 (2) (i) so that $c^2\Sigma - 2cI < 0$.

The inequality in (ii) is true for all Z. Select Z = -cT. We have

$$-cTT' - cTT' + (-cT)\Sigma(-cT)' \ge 0,$$

i.e., $T(c^2\Sigma - 2cI)T' \ge 0$. It follows from 1 (2) (ii) that T = 0.

(2) An example

When
$$\Sigma > 0$$
, for estimable $H\beta$ such that $H = LX$, let $BY = H(\Sigma^{-1/2}X)^+ \Sigma^{-1/2}Y$
Then $BX = H(\Sigma^{-1/2}X)^+ \Sigma^{-1/2}X = L\Sigma^{1/2}(\Sigma^{-1/2}X)(\Sigma^{-1/2}X)^+(\Sigma^{-1/2}X)$
 $= L\Sigma^{1/2}\Sigma^{-1/2}X = LX = H$,
 $B\Sigma(I - XX^+) = H(\Sigma^{-1/2}X)^+ \Sigma^{-1/2}\Sigma(I - XX^+)$
 $= H(\Sigma^{-1/2}X)^+ [(\Sigma^{-1/2}X)^+]'(\Sigma^{-1/2}X)'\Sigma^{-1/2}\Sigma(I - XX^+)$
 $= H(\Sigma^{-1/2}X)^+ [(\Sigma^{-1/2}X)^+]'X'(I - XX^+) = 0$.
So $B(X, \Sigma(I - XX^+)) = (H, 0)$ is true. Hence BY is a BLUE for $H\beta$.

3. BLUP

(1) Theorem

BY is a BLUP for $Y_f \iff B(X, \Sigma(I - XX^+)) = (H, C'(I - XX^+)).$ **Proof.** Let $T = (B\Sigma - C')(I - XX^+)$ such that

$$B(X, \Sigma(I - XX^+)) = (H, C'(I - XX^+)) \iff BX = H \text{ and } T = 0.$$

$$BY \text{ is a BLUP for } Y_f \iff \begin{cases} BY \in \text{LUP}(Y_f) \\ r(BY, Y_f) \leq r(LY, Y_f) \text{ for all } LY \in \text{LUP}(Y_f) \end{cases}$$

$$\iff \begin{cases} BX = H\\ \operatorname{Cov}(BY - Y_f) \le \operatorname{Cov}(BY + Z(I - XX^+)Y - Y_f) \text{ for all } Z \in \mathbb{R}^{q \times n} \end{cases}$$

$$\iff \begin{cases} \text{(i) } BX = H\\ \text{(ii) } TZ' + ZT' + Z(I - XX^+)\Sigma(I - XX^+)Z' \ge 0 \text{ for all } Z \end{cases}$$

We need to show that (i) and (ii) $\iff BX = H$ and T = 0. But BX = H is on the both sides. We show that

(ii)
$$\iff T = 0.$$

 \iff : Under T = 0, the inequality in (ii) becomes

$$Z(I - XX^+)\Sigma(I - XX^+)Z' \ge 0 \text{ for all } Z$$

which is clearly true since $\Sigma \geq 0$.

$$\implies: \text{Select } c \text{ as in 1 (2) (i) so that} \qquad \qquad c^2 \Sigma - 2cI < 0.$$

In (ii) select $Z = -cT$ so that $T(c^2 \Sigma - 2cI)T' \ge 0.$
By 1 (2) (ii), $T = 0.$

(2) A comment

 $B(X, \Sigma(I - XX^+)) = (H, C'(I - XX^+))$ and $B(X, \Sigma(I - XX^+)) = (H, 0)$ are two different equations. So for Y_f with $E(Y_f) = X\beta$ estimable, BLUP for Y_f and BLUE for $H\beta$ may or may not be equal.

But if Y and Y_f are independent, then C = 0. Thus the two equations become identical. In that case the BLUP for Y_f and the BLUE for $H\beta$ are equal.