
L02: Linear unbiased estimators

1. Estimability of parameters

(1) Linear unbiased estimators and estimable parameters
η̂ is a linear unbiased estimator (LUE) for η if

(i) η̂ is a linear function of data vector Y , i.e., η̂ = LY for some L.
(ii) η̂ is an unbiased estimator for η, i.e., E(η̂) ≡ η.

Parameter vector η is estimable if it has a linear unbiased estimator For parameter η,
let LUE(η) be the collection of all its LUEs. Then

η is estimable ⇐⇒ LUE(η) ̸= ∅.

Comments: For linear model Y = Xβ + ϵ with E(ϵ) = 0, the parameters of interests
are linear functions of β, Hβ. Among them we are interested in the estimable ones.
For estimable parameters we will try to find their linear unbiased estimators.

Ex1: For the liner model, Y is a LUE for Xβ. So Xβ is estimable, and Y ∈ LUE(Xβ).

(2) Estimable Hβ
For linear model Y = Xβ + ϵ with E(ϵ) = 0, Hβ is estimable if and only if it is a linear
function of Xβ, i.e.,

Hβ is estimable ⇐⇒ H = LX for some L

Proof. Hβ is estimable ⇐⇒ ∃LY such that E(LY ) ≡ Hβ
⇐⇒ ∃LY such that LXβ = Xβ for all β
⇐⇒ ∃L such that LX = H.

(3) LUE(Hβ)
LUE(Hβ) = {LY : H = LX}.
Proof. η̂ ∈ LUE(Hβ) ⇐⇒ η̂ = LY and E(LY ) ≡ Hβ ⇐⇒ η̂ = LY and LX = H

⇐⇒ η̂ ∈ {LY : LX = H}.

2. Relation of estimability and GLSE

(1) Sufficient and necessary conditions
For linear model Y = Xβ + ϵ with E(ϵ) = 0, the followings are equivalent.

(i) Hβ is estimable (ii) HN (X) = {0} (iii) H[GLSEU (β)] = H
(
U1/2X

)+
U1/2Y .

Proof. (i)⇐⇒ (ii)

⇒: If Hβ is estimable, then H = LX for some L. So HN (X) = LXN (X) = {0}.
⇐: If HN (X) = {0}, then N (X) ⊂ N (H). So N⊥(H) ⊂ N⊥(X).

Thus R(H ′) ⊂ R(X ′). Hence H ′ = X ′L′ for some L, i.e., H = LX for some L.
Therefore Hβ is estimable.

(ii)⇐⇒(iii)

Note that GLSEU (β) =
(
U1/2X

)+
U1/2 +N (X).

So, H[GLSEU (β)] = H
(
U1/2X

)+
U1/2Y +HN (X). (ii)⇐⇒(iii) follows.

Comments: Here β̂ =
(
U1/2X

)+
U1/2Y is the minimum norm GLSE.

When showing the equivalency, U could be any qualified matrices.
Thus (iii) could be H[OLSE(β)] = HX+Y .
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(2) Let β̂ =
(
U1/2X

)+
U1/2Y , the minimum norm GLSE.

If Hβ is estimable, then Hβ̂ ∈ LUE(Hβ).

Proof. Hβ̂ = H
(
U1/2X

)+
U1/2Y is a linear function of Y .

When Hβ is estimable, H = LX for some L. So

E(Hβ̂ ) = LX
(
U1/2X

)+
U1/2Xβ = LU−1/2

(
U1/2X

) (
U1/2X

)+ (
U−1/2X

)
β

= LU−1/2
(
U1/2X

)
β = LXβ = Hβ.

Thus Hβ̂ ∈ LUE(Hβ).

Ex2:
{
H

(
U1/2X

)+
U1/2Y : U > 0

}
⊂ LUE(Hβ).

3. LUE(Hβ)

(1) Expression I
For estimable Hβ ∈ Rq, if L0Y ∈ LUE(Hβ), then

LUE(Hβ) = L0Y +N (Iq, X)Y

Proof. L0Y ∈ LUE(Hβ) ⇐⇒ L0X = H.

LY ∈ LUE(Hβ) ⇐⇒ LX = H = L0X ⇐⇒ Iq(L− L0)X = 0
⇐⇒ L− L0 ∈ N (Iq, X) ⇐⇒ L ∈ L0 +N (Iq, X)
⇐⇒ LY ∈ L0Y +N (Iq, X)Y.

Comment: AXB = 0 ⇐⇒ X ∈ N (A, B).

(2) Expression II
For estimable Hβ ∈ Rq,

LUE(Hβ) = H
(
U1/2X

)+
U1/2Y +N (Iq, X)Y.

Proof. By Ex2, L0Y = H
(
U1/2X

)+
U1/2Y ∈ LUE(Hβ).

Conclusion then follows from (1).

Comment: In this expression, U ∈ Rn×n could be any qualified matrices.

Ex3: With U = I, LUE(Hβ) = HX+Y +N (Iq, X)Y = [HX+ +N (Iq, X)]Y .

(3) Comments

(i) In LUE(Hβ) = (L0 + N (Iq, X))Y , M = L0 + N (Iq, X) is an affine set in Rq×n

just like OLSE(β) = X+Y +N (X) and GLSEU (β) =
(
U1/2X

)+
U1/2Y +N (X) are

affine sets in Rp.

(ii) The role of L0 in the expression of M = L0 + N (Iq, X) can be replaced by any
L1 ∈ M, i.e., L1 ∈ M =⇒ L1 +N (Iq, X) = L2 +N (Iq, X).

(iii) It is possible to find L3 such that M = L3 + N (Iq, X) and L3 ⊥ N (Iq, X). This
L3 is the minimum norm matrix in M. However to do it one must specify the inner
product in Rq×n.

(iv) With respect to the Frobenius inner product in Rq×n, in Ex3

M = HX+ +N (Iq, X) and HX+ ⊥ N (Iq, X).
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L03 Linear unbiased predictors

1. Concepts of linear unbiased predictors

(1) Predictor
Linear model on data Y ∈ Rn: Y = Xβ + ϵ where E(ϵ) = 0
Future response Yf ∈ Rq: Yf = Hβ + ϵf where E(ϵf ) = 0

Y and Yf share the same β. Both X and H are known. Yf needs to be predicted by Ŷf ,

a vector valued function of Y . In such a case Ŷf is called a predictor for Yf .

(2) Linear unbiased predictor
Ŷf is a linear predictor (LUP) for Yf if

(i) Ŷf is a linear predictor, i.e., Ŷf = LY for some L.

(ii) Ŷf is an unbiased predictor, i.e., E
(
Ŷf − Yf

)
≡ 0.

(3) Predictability
Yf may or may not have a LUP. We say that Yf is predictable if it does have a LUP.
Let LUP(Yf ) be the collection of all LUP for Yf . Then

Yf is predictable ⇐⇒ LUP(Yf ) ̸= ∅

2. Predictability and the collection of all LUPs

(1) Relations
With E(Yf ) = Hβ,

(i) LUP(Yf ) = LUE(Hβ).

(ii) Yf is predictable ⇐⇒ Eβ is estimable

Proof. (i) LY ∈ LUP(Yf ) ⇐⇒ E(LY − Yf ) ≡ 0 ⇐⇒ E(LY ) ≡ Hβ
⇐⇒ LY ∈ LUE(Hβ)

(ii) Yf is predictable ⇐⇒ ∃LY such that LY ∈ LU(Yf )
⇐⇒ ∃LY such that LY ∈ LUE(Hβ)
⇐⇒ Hβ is estimable

(2) Sufficient and necessary conditions for predictability
Under E(Yf ) = Hβ,

Yf is predictable ⇐⇒ LUP(Yf ) ̸= ∅ ⇐⇒ LUE(Hβ) ̸= ∅ ⇐⇒ Hβ is estimable
⇐⇒ H = LX for some L ⇐⇒ HN (X) = {0}
⇐⇒ H [GLESU (β)] = H

(
U1/2X

)+
U1/2Y.

(3) LUP(Yf ).
Suppose L0Y ∈ LUP(Yf ) = LUE(Hβ). Then

LUP(Yf ) = LUE(Hβ) = L0Y +N (Iq, X)Y

= H
(
U1/2X

)+
U1/2Y +N (Iq, X)Y.
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3. Matrix valued risk functions

(1) Matrix valued risk function
When using statistic û ∈ Rq to estimate v (v is a parameter vector), or to predict v (v
is a random vector), the loss can be measured by (û− v)(û− v)′ ∈ Rq×q with risk

r(û, v) = E[(û− v)(û− v)′] ∈ Rq×q.

The risk matrix r(û, v) is a non-negative definite matrix, denoted by r(û, v) ≥ 0.

(2) Usage
û and ũ are two estimators/predictors for v.

û dominates ũ
def⇐⇒ r(û, v) ≤ r(ũ, v) at all parameter points.

Here A ≤ B means A − B ≤ 0, i.e., A − B is a non-positive definite matrix, or equiva-
lently B −A ≥ 0, i.e., B −A is a non-negative definite matrix.

In a class of estimators/predictors, û is inadmissable if it is dominated by another esti-
mator/predictor. Otherwise it is admissable.

In a class of estimators/predictor, û is the best estimator/predictor if it dominates all
other estimators/predictors.

(3) Bias and risk
When estimating/predicting v by û, b = E(û− v) ∈ Rq is the bias.

r(û, v) = E[(û− v)(û− v)′] = E{[(û− v − b) + b][(û− v − b) + b]′}
= Cov(û− v) + bb′.

û is unbiased estimator/predictor if its bias b = 0. For unbiased estimator û,

r(û, v) = Cov(û− v) = Cov(û).

For unbiased predictor û,
r(û, v) = Cov(û− v).

Ex1: Suppose û ∈ Rq dominates ũ ∈ Rq when estimating/predicting v ∈ Rq.
Most likely, one would use Aû and Aũ to estimate/predict Av.

r(û, v) ≤ r(ũ, v) ⇐⇒ E[(û− v)(û− v)′] ≤ E[(ũ− v)(ũ− v)′]
=⇒ AE[(û− v)(û− v)′]A′ ≤ AE[(ũ− v)(ũ− v)′]A′

⇐⇒ E[(Aû−Av)(Aû−Av)′] ≤ E[(Aũ−Av)(Aũ−Av)′]
⇐⇒ r(Aû, Av) ≤ r(Aũ, Av).

Ex2: If η̂ is the best estimator for η in a class where all estimators are unbiased, then
r(η̂, η) ≤ r(η̃, η) for all η̃ in the class, which is equivalent to Cov(η̂) ≤ Cov(η̃)
for all η̃ in the class. So η̂ is the uniformly (over all parameter points) minimum
variance-covariance matrix estimator in the class.

Ex3: If Ŷf is the best predictor for Yf in a class where all predictors are unbiased, then

r(Ŷf , Yf ) ≤ r(Ỹf , Yf ) for all Ỹf in the class, which is equivalent to

Cov(Ŷf − Yf ) ≤ Cov(Ỹf )− Yf ).
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