L02: Linear unbiased estimators

- 1. Estimability of parameters
 - (1) Linear unbiased estimators and estimable parameters
 - $\widehat{\eta}$ is a linear unbiased estimator (LUE) for η if
 - (i) $\hat{\eta}$ is a linear function of data vector Y, i.e., $\hat{\eta} = LY$ for some L.
 - (ii) $\hat{\eta}$ is an unbiased estimator for η , i.e., $E(\hat{\eta}) \equiv \eta$.

Parameter vector η is estimable if it has a linear unbiased estimator For parameter η , let LUE(η) be the collection of all its LUEs. Then

 η is estimable $\iff \text{LUE}(\eta) \neq \emptyset$.

Comments: For linear model $Y = X\beta + \epsilon$ with $E(\epsilon) = 0$, the parameters of interests are linear functions of β , $H\beta$. Among them we are interested in the estimable ones. For estimable parameters we will try to find their linear unbiased estimators.

Ex1: For the liner model, Y is a LUE for $X\beta$. So $X\beta$ is estimable, and $Y \in LUE(X\beta)$.

(2) Estimable $H\beta$

For linear model $Y = X\beta + \epsilon$ with $E(\epsilon) = 0$, $H\beta$ is estimable if and only if it is a linear function of $X\beta$, i.e.,

 $H\beta$ is estimable $\iff H = LX$ for some L

Proof. $H\beta$ is estimable $\iff \exists LY$ such that $E(LY) \equiv H\beta$ $\iff \exists LY$ such that $LX\beta = X\beta$ for all β $\iff \exists L$ such that LX = H.

- (3) $LUE(H\beta)$ $LUE(H\beta) = \{LY : H = LX\}.$ **Proof.** $\hat{\eta} \in LUE(H\beta) \iff \hat{\eta} = LY$ and $E(LY) \equiv H\beta \iff \hat{\eta} = LY$ and LX = H $\iff \hat{\eta} \in \{LY : LX = H\}.$
- 2. Relation of estimability and GLSE
 - (1) Sufficient and necessary conditions For linear model Y = Xβ + ε with E(ε) = 0, the followings are equivalent.
 (i) Hβ is estimable (ii) HN(X) = {0} (iii) H[GLSE_U(β)] = H(U^{1/2}X)⁺U^{1/2}Y. **Proof.** (i)⇔ (ii)
 ⇒: If Hβ is estimable, then H = LX for some L. So HN(X) = LXN(X) = {0}.
 ⇐: If HN(X) = {0}, then N(X) ⊂ N(H). So N[⊥](H) ⊂ N[⊥](X). Thus R(H') ⊂ R(X'). Hence H' = X'L' for some L, i.e., H = LX for some L. Therefore Hβ is estimable.
 (ii)⇔(iii)
 Note that GLSE_U(β) = (U^{1/2}X)⁺U^{1/2} + N(X). So, H[GLSE_U(β)] = H(U^{1/2}X)⁺U^{1/2}Y + HN(X). (ii)⇔(iii) follows. **Comments:** Here β̂ = (U^{1/2}X)⁺U^{1/2}Y is the minimum norm GLSE. When showing the equivalency, U could be any qualified matrices. Thus (iii) could be H[OLSE(β)] = HX⁺Y.

(2) Let $\widehat{\beta} = (U^{1/2}X)^+ U^{1/2}Y$, the minimum norm GLSE. If $H\beta$ is estimable, then $H\widehat{\beta} \in \text{LUE}(H\beta)$. **Proof.** $H\widehat{\beta} = H(U^{1/2}X)^+ U^{1/2}Y$ is a linear function of Y. When $H\beta$ is estimable, H = LX for some L. So

$$E(H\widehat{\beta}) = LX (U^{1/2}X)^+ U^{1/2}X\beta = LU^{-1/2} (U^{1/2}X) (U^{1/2}X)^+ (U^{-1/2}X)\beta$$

= $LU^{-1/2} (U^{1/2}X)\beta = LX\beta = H\beta.$

Thus
$$H\widehat{\beta} \in \text{LUE}(H\beta)$$
.
Ex2: $\left\{ H\left(U^{1/2}X\right)^+ U^{1/2}Y : U > 0 \right\} \subset \text{LUE}(H\beta)$.

3. LUE $(H\beta)$

(1) Expression I For estimable $H\beta \in \mathbb{R}^q$, if $L_0Y \in \text{LUE}(H\beta)$, then

$$LUE(H\beta) = L_0Y + \mathcal{N}(I_q, X)Y$$

Proof. $L_0Y \in \text{LUE}(H\beta) \iff L_0X = H.$

$$LY \in \text{LUE}(H\beta) \iff LX = H = L_0 X \iff I_q (L - L_0) X = 0$$

$$\iff L - L_0 \in \mathcal{N}(I_q, X) \iff L \in L_0 + \mathcal{N}(I_q, X)$$

$$\iff LY \in L_0 Y + \mathcal{N}(I_q, X) Y.$$

Comment: $AXB = 0 \iff X \in \mathcal{N}(A, B).$

(2) Expression II For estimable $H\beta \in \mathbb{R}^q$,

LUE
$$(H\beta) = H\left(U^{1/2}X\right)^+ U^{1/2}Y + \mathcal{N}(I_q, X)Y.$$

Proof. By Ex2, $L_0Y = H(U^{1/2}X)^+ U^{1/2}Y \in \text{LUE}(H\beta)$. Conclusion then follows from (1).

Comment: In this expression, $U \in \mathbb{R}^{n \times n}$ could be any qualified matrices.

Ex3: With U = I, LUE $(H\beta) = HX^+Y + \mathcal{N}(I_q, X)Y = [HX^+ + \mathcal{N}(I_q, X)]Y$.

- (3) Comments
 - (i) In LUE $(H\beta) = (L_0 + \mathcal{N}(I_q, X))Y$, $\mathcal{M} = L_0 + \mathcal{N}(I_q, X)$ is an affine set in $\mathbb{R}^{q \times n}$ just like $OLSE(\beta) = X^+Y + \mathcal{N}(X)$ and $GLSE_U(\beta) = (U^{1/2}X)^+ U^{1/2}Y + \mathcal{N}(X)$ are affine sets in \mathbb{R}^p .
 - (ii) The role of L_0 in the expression of $\mathcal{M} = L_0 + \mathcal{N}(I_q, X)$ can be replaced by any $L_1 \in \mathcal{M}$, i.e., $L_1 \in \mathcal{M} \Longrightarrow L_1 + \mathcal{N}(I_q, X) = L_2 + \mathcal{N}(I_q, X)$.
 - (iii) It is possible to find L_3 such that $\mathcal{M} = L_3 + \mathcal{N}(I_q, X)$ and $L_3 \perp \mathcal{N}(I_q, X)$. This L_3 is the minimum norm matrix in \mathcal{M} . However to do it one must specify the inner product in $\mathbb{R}^{q \times n}$.
 - (iv) With respect to the Frobenius inner product in $\mathbb{R}^{q \times n}$, in Ex3

$$\mathcal{M} = HX^+ + \mathcal{N}(I_q, X) \text{ and } HX^+ \perp \mathcal{N}(I_q, X).$$

L03 Linear unbiased predictors

- 1. Concepts of linear unbiased predictors
 - (1) Predictor Linear model on data $Y \in \mathbb{R}^n$: $Y = X\beta + \epsilon$ where $E(\epsilon) = 0$ Future response $Y_f \in \mathbb{R}^q$: $Y_f = H\beta + \epsilon_f$ where $E(\epsilon_f) = 0$ Y and Y_f share the same β . Both X and H are known. Y_f needs to be predicted by \hat{Y}_f , a vector valued function of Y. In such a case \hat{Y}_f is called a predictor for Y_f .
 - (2) Linear unbiased predictor
 - \widehat{Y}_f is a linear predictor (LUP) for Y_f if (i) \widehat{Y}_f is a linear predictor, i.e., $\widehat{Y}_f = LY$ for some L.
 - (ii) \widehat{Y}_f is an unbiased predictor, i.e., $E\left(\widehat{Y}_f Y_f\right) \equiv 0$.
 - (3) Predictability

 Y_f may or may not have a LUP. We say that Y_f is predictable if it does have a LUP. Let $LUP(Y_f)$ be the collection of all LUP for Y_f . Then

 Y_f is predictable $\iff \text{LUP}(Y_f) \neq \emptyset$

- 2. Predictability and the collection of all LUPs
 - (1) Relations With $E(Y_f) = H\beta$, (i) $LUP(Y_f) = LUE(H\beta)$. (ii) Y_f is predictable $\iff E\beta$ is estimable **Proof.** (i) $LY \in LUP(Y_f) \iff E(LY - Y_f) \equiv 0 \iff E(LY) \equiv H\beta$ $\iff LY \in LUE(H\beta)$ (ii) Y_f is predictable $\iff \exists LY$ such that $LY \in LU(Y_f)$ $\iff \exists LY$ such that $LY \in LUE(H\beta)$
 - (2) Sufficient and necessary conditions for predictability Under $E(Y_f) = H\beta$,

 $Y_f \text{ is predictable} \iff \text{LUP}(Y_f) \neq \emptyset \iff \text{LUE}(H\beta) \neq \emptyset \iff H\beta \text{ is estimable} \iff H = LX \text{ for some } L \iff H\mathcal{N}(X) = \{0\} \iff H [\text{GLES}_U(\beta)] = H (U^{1/2}X)^+ U^{1/2}Y.$

 $\iff H\beta$ is estimable

(3) $\operatorname{LUP}(Y_f)$.

Suppose $L_0Y \in \text{LUP}(Y_f) = \text{LUE}(H\beta)$. Then

$$LUP(Y_f) = LUE(H\beta) = L_0Y + \mathcal{N}(I_q, X)Y$$

= $H(U^{1/2}X)^+ U^{1/2}Y + \mathcal{N}(I_q, X)Y.$

- 3. Matrix valued risk functions
 - (1) Matrix valued risk function

When using statistic $\hat{u} \in R^q$ to estimate v (v is a parameter vector), or to predict v (v is a random vector), the loss can be measured by $(\hat{u} - v)(\hat{u} - v)' \in R^{q \times q}$ with risk

$$r(\widehat{u}, v) = E[(\widehat{u} - v)(\widehat{u} - v)'] \in \mathbb{R}^{q \times q}.$$

The risk matrix $r(\hat{u}, v)$ is a non-negative definite matrix, denoted by $r(\hat{u}, v) \ge 0$.

(2) Usage

 \widehat{u} and \widetilde{u} are two estimators/predictors for v.

 \widehat{u} dominates $\widetilde{u} \stackrel{def}{\iff} r(\widehat{u}, v) \leq r(\widetilde{u}, v)$ at all parameter points.

Here $A \leq B$ means $A - B \leq 0$, i.e., A - B is a non-positive definite matrix, or equivalently $B - A \geq 0$, i.e., B - A is a non-negative definite matrix.

In a class of estimators/predictors, \hat{u} is inadmissable if it is dominated by another estimator/predictor. Otherwise it is admissable.

In a class of estimators/predictor, \hat{u} is the best estimator/predictor if it dominates all other estimators/predictors.

(3) Bias and risk

When estimating/predicting v by $\hat{u}, b = E(\hat{u} - v) \in \mathbb{R}^q$ is the bias.

$$r(\hat{u}, v) = E[(\hat{u} - v)(\hat{u} - v)'] = E\{[(\hat{u} - v - b) + b][(\hat{u} - v - b) + b]'\} \\ = Cov(\hat{u} - v) + bb'.$$

 \hat{u} is unbiased estimator/predictor if its bias b = 0. For unbiased estimator \hat{u} ,

$$r(\widehat{u}, v) = \operatorname{Cov}(\widehat{u} - v) = \operatorname{Cov}(\widehat{u}).$$

For unbiased predictor \hat{u} ,

$$r(\widehat{u}, v) = \operatorname{Cov}(\widehat{u} - v)$$

Ex1: Suppose $\hat{u} \in R^q$ dominates $\tilde{u} \in R^q$ when estimating/predicting $v \in R^q$. Most likely, one would use $A\hat{u}$ and $A\tilde{u}$ to estimate/predict Av.

$$\begin{aligned} r(\widehat{u}, v) &\leq r(\widetilde{u}, v) \Longleftrightarrow E[(\widehat{u} - v)(\widehat{u} - v)'] \leq E[(\widetilde{u} - v)(\widetilde{u} - v)'] \\ \implies & A E[(\widehat{u} - v)(\widehat{u} - v)']A' \leq A E[(\widetilde{u} - v)(\widetilde{u} - v)']A' \\ \iff & E[(A\widehat{u} - Av)(A\widehat{u} - Av)'] \leq E[(A\widetilde{u} - Av)(A\widetilde{u} - Av)'] \\ \iff & r(A\widehat{u}, Av) \leq r(A\widetilde{u}, Av). \end{aligned}$$

- **Ex2:** If $\hat{\eta}$ is the best estimator for η in a class where all estimators are unbiased, then $r(\hat{\eta}, \eta) \leq r(\tilde{\eta}, \eta)$ for all $\tilde{\eta}$ in the class, which is equivalent to $\text{Cov}(\hat{\eta}) \leq \text{Cov}(\tilde{\eta})$ for all $\tilde{\eta}$ in the class. So $\hat{\eta}$ is the uniformly (over all parameter points) minimum variance-covariance matrix estimator in the class.
- **Ex3:** If \widehat{Y}_f is the best predictor for Y_f in a class where all predictors are unbiased, then $r(\widehat{Y}_f, Y_f) \leq r(\widetilde{Y}_f, Y_f)$ for all \widetilde{Y}_f in the class, which is equivalent to $\operatorname{Cov}(\widehat{Y}_f Y_f) \leq \operatorname{Cov}(\widetilde{Y}_f) Y_f).$