L01 Generalized least square estimators

1. Metric system in R^{n}
(1) $\langle x, y\rangle_{U}$

With positive definite matrix $U \in R^{n \times n}$, for $x, y \in R^{n},\langle x, y\rangle_{U}=y^{\prime} U x$ is an inner product since
(i) $\langle x, x\rangle_{U} \geq 0$ and $\langle x, x\rangle_{U}=0 \Longleftrightarrow x=0$
(ii) $\langle x, y\rangle_{U}=\langle y, x\rangle_{U}$
(iii) $\langle\alpha x+\beta y, z\rangle_{U}=\alpha\langle x, z\rangle_{U}+\beta\langle y, z\rangle_{U}$.

The norm induced is $\|x\|_{U}=\sqrt{\langle x, x\rangle_{U}}=\sqrt{x^{\prime} U x}$.
(2) A special case

When $U=I_{n},\langle x, y\rangle_{I}=\langle x, y\rangle=y^{\prime} x$ is the Frobenius inner product with norm $\|x\|_{I}=\sqrt{x^{\prime} x}=\|\cdot\|$.
(3) Relation
$\langle x, y\rangle_{U}=y^{\prime} U x=\left(U^{1 / 2} y\right)^{\prime}\left(U^{1 / 2} x\right)=\left\langle U^{1 / 2} x, U^{1 / 2} y\right\rangle$.
$\|x\|_{U}^{2}=x^{\prime} U x=\left(U^{1 / 2} x\right)^{\prime}\left(U^{1 / 2} x\right)=\left\|U^{1 / 2} x\right\|^{2}$
2. Generalized least square estimators
(1) Model

Consider model $Y=X \beta+\epsilon$ with $E(\epsilon)=0 \in R^{n}$.
Models with $\epsilon \sim\left(0, \sigma^{2} V\right)$ or $\epsilon \sim N\left(0, \sigma^{2} V\right)$ are examples for $E(\epsilon)=0$.
(2) Generalized least square estimators
$Y=X \beta+\epsilon \Longrightarrow \epsilon=Y-X \beta \Longrightarrow\|\epsilon\|_{U}^{2}=\|Y-X \beta\|_{U}^{2}$.
If $\|Y-X \beta\|_{U}^{2}$ is minimized by $\widehat{\beta}$, then $\widehat{\beta}$ is called a generalized least square estimator for β with respect to the norm $\|\cdot\|_{U}$.
The collection of all such estimators is denoted by $\operatorname{GLSE}_{U}(\beta)$.
Clearly, $\operatorname{GLSE}_{I}(\beta)=\operatorname{OLSE}(\beta)$.
(3) $\operatorname{GLSE}_{U}(\beta)$

Theorem: $\operatorname{GLSE}_{U}(\beta)=\left(U^{1 / 2} X\right)^{+} U^{1 / 2} Y+\mathcal{N}(X)$.
Proof. $\quad \widehat{\beta} \in \operatorname{GLSE}_{U}(\beta) \Longleftrightarrow\|Y-X \widehat{\beta}\|_{U}^{2} \leq\|Y-X \beta\|_{U}^{2}$ for all β
$\Longleftrightarrow\left\|U^{1 / 2} Y-U^{1 / 2} X \widehat{\beta}\right\|^{2} \leq\left\|U^{1 / 2} Y-U^{1 / 2} X \beta\right\|^{2}$ for all β.
$\Longleftrightarrow U^{1 / 2} X \widehat{\beta}=\pi\left(U^{1 / 2} Y \mid \mathcal{R}\left(U^{1 / 2} X\right)\right)=U^{1 / 2} X\left(U^{1 / 2} X\right)^{+} U^{1 / 2} Y$
$\Longleftrightarrow U^{1 / 2} X\left[\widehat{\beta}-\left(U^{1 / 2} X\right)^{+} U^{1 / 2} Y\right]=0$
$\Longleftrightarrow X\left[\widehat{\beta}-\left(U^{1 / 2} X\right)^{+} U^{1 / 2} Y\right]=0$
$\Longleftrightarrow \widehat{\beta}-\left(U^{1 / 2} X\right)^{+} U^{1 / 2} Y \in \mathcal{N}(X)$
$\Longleftrightarrow \widehat{\beta} \in\left(U^{1 / 2} X\right)^{+} U^{1 / 2} Y+\mathcal{N}(X)$.
Ex1: $\operatorname{OLSE}(\beta)=\operatorname{GLSE}_{I}(\beta)=X^{+} Y+\mathcal{N}(X)$.

3. Minimum norm GLSE

(1) The role of $\widehat{\beta}=\left(U^{1 / 2} X\right)^{+} U^{1 / 2} Y$ in the expression for $\operatorname{GLSE}_{U}(\beta)$ can be replaced by any vector in $\operatorname{GLSE}_{U}(\beta)$, i.e.,

$$
\text { If } \widetilde{\beta} \in \operatorname{GLSE}_{U}(\beta) \text {, then } \operatorname{GLSE}_{U}(\beta)=\widetilde{\beta}+\mathcal{N}(X) \text {. }
$$

Proof. If $\widetilde{\beta} \in \operatorname{GLSE}_{U}(\beta)=\widehat{\beta}+\mathcal{N}(X)$, then $\widetilde{\beta}-\widehat{\beta} \in \mathcal{N}(X)$.
For $\operatorname{GLSE}_{U}(\beta)=\widetilde{\beta}+\mathcal{N}(X)$, we only show \subset.
If $\widehat{\eta} \in \operatorname{OLSE}_{U}(\beta)=\widehat{\beta}+\mathcal{N}(\underset{\sim}{X})$, then $\widehat{\eta}=\widehat{\beta}+u$ where $u \in \mathcal{N}(X)$.
So $\widehat{\eta}=\widetilde{\beta}+[u-(\widetilde{\beta}-\widehat{\beta})] \in \widetilde{\beta}+\mathcal{N}(X)$ since $u-(\widetilde{\beta}-\widehat{\beta}) \in \mathcal{N}(X)$.
Hence $\operatorname{GLSE}_{U}(\beta) \subset \widetilde{\beta}+\mathcal{N}(X)$. Similarly one can show \supset.
Ex2: In $\operatorname{OLSE}(\beta)=X^{+} Y+\mathcal{N}(X), X^{+} Y$ can be replaced by any $\widetilde{\beta}$ in $\operatorname{OLSE}(\beta)$.
(2) $\widehat{\beta}=\left(U^{1 / 2} X\right)^{+} U^{1 / 2} Y \perp \mathcal{N}(X)$

Proof. $\widehat{\beta} \perp \mathcal{N}(X)$ means $\widehat{\beta} \perp u$ for all $u \in \mathcal{N}(X)$.
Note that $\widehat{\beta} \in R^{p}, \mathcal{N}(X) \subset R^{p}$, and in R^{p} no special inner product was defined.
Hence Frobennius inner product is implied. For $u \in \mathcal{N}(X)$,

$$
\begin{aligned}
\langle\widehat{\beta}, u\rangle & =u^{\prime} \widehat{\beta}=u^{\prime}\left(U^{1 / 2} X\right)^{+} U^{1 / 2} Y=u^{\prime} X^{+} X\left(U^{1 / 2} X\right)^{+} U^{1 / 2} Y \\
& =u^{\prime} X^{\prime}\left(X^{+}\right)^{\prime}\left(U^{1 / 2} X\right)^{+} U^{1 / 2} Y=(X u)^{\prime}\left(X^{+}\right)^{\prime}\left(U^{1 / 2} X\right)^{+} U^{1 / 2} Y=0 .
\end{aligned}
$$

Comment: $(A B)^{+}=B^{+} B(A B)^{+},(A B)^{+}=(A B)^{+} A A^{+},(A B)^{+}=B^{+} B(A B)^{+} A A^{+}$.
Ex3: In $\operatorname{OLSE}(\beta)=X^{+} Y+\mathcal{N}(X), X^{+} Y \perp \mathcal{N}(X)$.
(3) Minimum norm GLSE

Among all vectors in $\operatorname{GLSE}_{U}(\beta), \widehat{\beta}=\left(U^{1 / 2} X\right)^{+} U^{1 / 2} Y$ has minimum norm, i.e.,

$$
\|\widehat{\beta}\|^{2} \leq\|\widetilde{\beta}\|^{2} \text { for all } \widetilde{\beta} \in \operatorname{GLSE}_{\underset{\sim}{(}}(\beta)
$$

Proof. If $\widetilde{\beta} \in \operatorname{GLSE}_{U}(\beta)=\widehat{\beta}+\mathcal{N}(X)$, then $\widetilde{\beta}=\widehat{\beta}+u$ where $u \in \mathcal{N}(X)$.
By Pythagorean theorem

$$
\|\widetilde{\beta}\|^{2}=\|\widehat{\beta}+u\|^{2}=\|\widehat{\beta}\|^{2}+\|u\|^{2} \geq\|\widehat{\beta}\|^{2}
$$

Comments: $\operatorname{GLSE}_{U}(\beta)=\widehat{\beta}+\mathcal{N}(X)$ contain a unique estimator if and only if $\mathcal{N}(X)=\{0\}$. In that case the unique estimator is $\widehat{\beta}$.
Ex4: $X^{+} Y$ is the minimum norm OLSE for β. If $\operatorname{OLSE}(\beta)$ has a unique estimator, then this estimator is $X^{+} Y$.

4. For HW01

(1) Affine set

For x, y in a LS $V, \alpha x+(1-\alpha) y$ is called an affine combination of x and y.
If \mathcal{A} is a set in V and it is closed under affine combinations, then it is called an affine set.
(2) Subspace

A set S in LS V is a subspace if it is closed under linear combinations.
(3) Projection
V is a space where inner product $\langle\cdot, \cdot\rangle$ is defined. For $x \in V$ and subspace $S \subset V$, the projection of x onto $S, \pi(x \mid S)$, is defined by

$$
\widehat{x}=\pi(x \mid S) \stackrel{\text { def }}{\Longleftrightarrow} \widehat{x} \in S \text { and }\|x-\widehat{x}\|^{2} \leq\|x-y\|^{2} \text { for all } y \in S
$$

with sufficient and necessary conditons

$$
\widehat{x}=\pi(x \mid S) \Longleftrightarrow \widehat{x} \in S \text { and }\langle x-\widehat{x}, y\rangle=0 \text { for all } y \in S
$$

