
L01 Generalized least square estimators

1. Metric system in Rn

(1) ⟨x, y⟩U
With positive definite matrix U ∈ Rn×n, for x, y ∈ Rn, ⟨x, y⟩U = y′Ux is an inner
product since

(i) ⟨x, x⟩U ≥ 0 and ⟨x, x⟩U = 0 ⇐⇒ x = 0
(ii) ⟨x, y⟩U = ⟨y, x⟩U
(iii) ⟨αx+ βy, z⟩U = α⟨x, z⟩U + β⟨y, z⟩U .

The norm induced is ∥x∥U =
√
⟨x, x⟩U =

√
x′Ux.

(2) A special case
When U = In, ⟨x, y⟩I = ⟨x, y⟩ = y′x is the Frobenius inner product with norm
∥x∥I =

√
x′x = ∥ · ∥.

(3) Relation

⟨x, y⟩U = y′Ux =
(
U1/2y

)′ (
U1/2x

)
=

〈
U1/2x, U1/2y

〉
.

∥x∥2U = x′Ux =
(
U1/2x

)′ (
U1/2x

)
=

∥∥U1/2x
∥∥2

2. Generalized least square estimators

(1) Model
Consider model Y = Xβ + ϵ with E(ϵ) = 0 ∈ Rn.
Models with ϵ ∼ (0, σ2V ) or ϵ ∼ N(0, σ2V ) are examples for E(ϵ) = 0.

(2) Generalized least square estimators
Y = Xβ + ϵ =⇒ ϵ = Y −Xβ =⇒ ∥ϵ∥2U = ∥Y −Xβ∥2U .
If ∥Y −Xβ∥2U is minimized by β̂, then β̂ is called a generalized least square estimator
for β with respect to the norm ∥ · ∥U .
The collection of all such estimators is denoted by GLSEU (β).
Clearly, GLSEI(β) = OLSE(β).

(3) GLSEU (β)

Theorem: GLSEU (β) =
(
U1/2X

)+
U1/2Y +N (X).

Proof. β̂ ∈ GLSEU (β) ⇐⇒ ∥Y −Xβ̂∥2U ≤ ∥Y −Xβ∥2U for all β

⇐⇒ ∥U1/2Y − U1/2Xβ̂∥2 ≤ ∥U1/2Y − U1/2Xβ∥2 for all β.

⇐⇒ U1/2Xβ̂ = π(U1/2Y |R(U1/2X)) = U1/2X
(
U1/2X

)+
U1/2Y

⇐⇒ U1/2X
[
β̂ −

(
U1/2X

)+
U1/2Y

]
= 0

⇐⇒ X
[
β̂ −

(
U1/2X

)+
U1/2Y

]
= 0

⇐⇒ β̂ −
(
U1/2X

)+
U1/2Y ∈ N (X)

⇐⇒ β̂ ∈
(
U1/2X

)+
U1/2Y +N (X).

Ex1: OLSE(β) = GLSEI(β) = X+Y +N (X).
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3. Minimum norm GLSE

(1) The role of β̂ =
(
U1/2X

)+
U1/2Y in the expression for GLSEU (β)

can be replaced by any vector in GLSEU (β), i.e.,
If β̃ ∈ GLSEU (β), then GLSEU (β) = β̃ +N (X).

Proof. If β̃ ∈ GLSEU (β) = β̂ +N (X), then β̃ − β̂ ∈ N (X).
For GLSEU (β) = β̃ +N (X), we only show ⊂.
If η̂ ∈ OLSEU (β) = β̂ +N (X), then η̂ = β̂ + u where u ∈ N (X).
So η̂ = β̃ + [u− (β̃ − β̂)] ∈ β̃ +N (X) since u− (β̃ − β̂) ∈ N (X).
Hence GLSEU (β) ⊂ β̃ +N (X). Similarly one can show ⊃.

Ex2: In OLSE(β) = X+Y +N (X), X+Y can be replaced by any β̃ in OLSE(β).

(2) β̂ =
(
U1/2X

)+
U1/2Y ⊥ N (X)

Proof. β̂ ⊥ N (X) means β̂ ⊥ u for all u ∈ N (X).
Note that β̂ ∈ Rp, N (X) ⊂ Rp, and in Rp no special inner product was defined.
Hence Frobennius inner product is implied. For u ∈ N (X),

⟨β̂, u⟩ = u′β̂ = u′
(
U1/2X

)+
U1/2Y = u′X+X

(
U1/2X

)+
U1/2Y

= u′X ′ (X+)
′ (
U1/2X

)+
U1/2Y = (Xu)′ (X+)

′ (
U1/2X

)+
U1/2Y = 0.

Comment: (AB)+ = B+B(AB)+, (AB)+ = (AB)+AA+, (AB)+ = B+B(AB)+AA+.

Ex3: In OLSE(β) = X+Y +N (X), X+Y ⊥ N (X).

(3) Minimum norm GLSE

Among all vectors in GLSEU (β), β̂ =
(
U1/2X

)+
U1/2Y has minimum norm, i.e.,

∥β̂∥2 ≤ ∥β̃∥2 for all β̃ ∈ GLSEU (β).

Proof. If β̃ ∈ GLSEU (β) = β̂ +N (X), then β̃ = β̂ + u where u ∈ N (X).
By Pythagorean theorem

∥β̃∥2 = ∥β̂ + u∥2 = ∥β̂∥2 + ∥u∥2 ≥ ∥β̂∥2.
Comments: GLSEU (β) = β̂ + N (X) contain a unique estimator if and only if

N (X) = {0}. In that case the unique estimator is β̂.

Ex4: X+Y is the minimum norm OLSE for β. If OLSE(β) has a unique estimator, then
this estimator is X+Y .

4. For HW01

(1) Affine set
For x, y in a LS V , αx+ (1− α)y is called an affine combination of x and y.
If A is a set in V and it is closed under affine combinations, then it is called an affine
set.

(2) Subspace
A set S in LS V is a subspace if it is closed under linear combinations.

(3) Projection
V is a space where inner product ⟨·, ·⟩ is defined. For x ∈ V and subspace S ⊂ V , the
projection of x onto S, π(x|S), is defined by

x̂ = π(x|S) def⇐⇒ x̂ ∈ S and ∥x− x̂∥2 ≤ ∥x− y∥2 for all y ∈ S

with sufficient and necessary conditons

x̂ = π(x|S) ⇐⇒ x̂ ∈ S and ⟨x− x̂, y⟩ = 0 for all y ∈ S.
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