L01 Generalized least square estimators

- 1. Metric system in \mathbb{R}^n
 - (1) $\langle x, y \rangle_U$

With positive definite matrix $U \in \mathbb{R}^{n \times n}$, for $x, y \in \mathbb{R}^n$, $\langle x, y \rangle_U = y'Ux$ is an inner product since

- (i) $\langle x, x \rangle_U \geq 0$ and $\langle x, x \rangle_U = 0 \iff x = 0$
- (ii) $\langle x, y \rangle_U = \langle y, x \rangle_U$

(iii) $\langle \alpha x + \beta y, z \rangle_U = \alpha \langle x, z \rangle_U + \beta \langle y, z \rangle_U.$ The norm induced is $||x||_U = \sqrt{\langle x, x \rangle_U} = \sqrt{x'Ux}.$

(2) A special case

When $U = I_n$, $\langle x, y \rangle_I = \langle x, y \rangle = y'x$ is the Frobenius inner product with norm $||x||_I = \sqrt{x'x} = ||\cdot||.$

- (3) Relation $\langle x, y \rangle_U = y'Ux = (U^{1/2}y)'(U^{1/2}x) = \langle U^{1/2}x, U^{1/2}y \rangle.$ $\|x\|_{U}^{2} = x'Ux = (U^{1/2}x)'(U^{1/2}x) = \|U^{1/2}x\|^{2}$
- 2. Generalized least square estimators
 - (1) Model Consider model $Y = X\beta + \epsilon$ with $E(\epsilon) = 0 \in \mathbb{R}^n$. Models with $\epsilon \sim (0, \sigma^2 V)$ or $\epsilon \sim N(0, \sigma^2 V)$ are examples for $E(\epsilon) = 0$.
 - (2) Generalized least square estimators $Y = X\beta + \epsilon \Longrightarrow \epsilon = Y - X\beta \Longrightarrow \|\epsilon\|_U^2 = \|Y - X\beta\|_U^2.$ If $||Y - X\beta||_U^2$ is minimized by $\hat{\beta}$, then $\hat{\beta}$ is called a generalized least square estimator for β with respect to the norm $\|\cdot\|_U$. The collection of all such estimators is denoted by $\text{GLSE}_U(\beta)$. Clearly, $\text{GLSE}_I(\beta) = \text{OLSE}(\beta)$.
 - (3) $\text{GLSE}_U(\beta)$

Theorem: GLSE_U(β) = $(U^{1/2}X)^+ U^{1/2}Y + \mathcal{N}(X)$.

$$\begin{aligned} \mathbf{Proof.} \qquad & \widehat{\beta} \in \mathrm{GLSE}_U(\beta) \Longleftrightarrow \|Y - X\widehat{\beta}\|_U^2 \leq \|Y - X\beta\|_U^2 \text{ for all } \beta \\ \Leftrightarrow \quad \|U^{1/2}Y - U^{1/2}X\widehat{\beta}\|^2 \leq \|U^{1/2}Y - U^{1/2}X\beta\|^2 \text{ for all } \beta. \\ \Leftrightarrow \quad & U^{1/2}X\widehat{\beta} = \pi(U^{1/2}Y|\mathcal{R}(U^{1/2}X)) = U^{1/2}X\left(U^{1/2}X\right)^+ U^{1/2}Y \\ \Leftrightarrow \quad & U^{1/2}X\left[\widehat{\beta} - \left(U^{1/2}X\right)^+ U^{1/2}Y\right] = 0 \\ \Leftrightarrow \quad & X\left[\widehat{\beta} - \left(U^{1/2}X\right)^+ U^{1/2}Y\right] = 0 \\ \Leftrightarrow \quad & \widehat{\beta} - \left(U^{1/2}X\right)^+ U^{1/2}Y \in \mathcal{N}(X) \\ \Leftrightarrow \quad & \widehat{\beta} \in \left(U^{1/2}X\right)^+ U^{1/2}Y + \mathcal{N}(X). \end{aligned}$$

Ex1: OLSE(β) = GLSE_{*I*}(β) = $X^+Y + \mathcal{N}(X)$.

- 3. Minimum norm GLSE
 - (1) The role of $\hat{\beta} = (U^{1/2}X)^+ U^{1/2}Y$ in the expression for $\text{GLSE}_U(\beta)$ can be replaced by any vector in $\text{GLSE}_U(\beta)$, i.e.,

If $\beta \in \operatorname{GLSE}_U(\beta)$, then $\operatorname{GLSE}_U(\beta) = \beta + \mathcal{N}(X)$. **Proof.** If $\beta \in \operatorname{GLSE}_U(\beta) = \beta + \mathcal{N}(X)$, then $\beta - \beta \in \mathcal{N}(X)$. For $\operatorname{GLSE}_U(\beta) = \beta + \mathcal{N}(X)$, we only show \subset . If $\hat{\eta} \in \operatorname{OLSE}_U(\beta) = \hat{\beta} + \mathcal{N}(X)$, then $\hat{\eta} = \hat{\beta} + u$ where $u \in \mathcal{N}(X)$. So $\hat{\eta} = \beta + [u - (\beta - \beta)] \in \beta + \mathcal{N}(X)$ since $u - (\beta - \beta) \in \mathcal{N}(X)$. Hence $\operatorname{GLSE}_U(\beta) \subset \beta + \mathcal{N}(X)$. Similarly one can show \supset .

Ex2: In $OLSE(\beta) = X^+Y + \mathcal{N}(X)$, X^+Y can be replaced by any $\tilde{\beta}$ in $OLSE(\beta)$.

(2)
$$\hat{\beta} = (U^{1/2}X)^+ U^{1/2}Y \perp \mathcal{N}(X)$$

Proof. $\widehat{\beta} \perp \mathcal{N}(X)$ means $\widehat{\beta} \perp u$ for all $u \in \mathcal{N}(X)$. Note that $\widehat{\beta} \in \mathbb{R}^p$, $\mathcal{N}(X) \subset \mathbb{R}^p$, and in \mathbb{R}^p no special inner product was defined. Hence Frobennius inner product is implied. For $u \in \mathcal{N}(X)$,

$$\langle \hat{\beta}, u \rangle = u' \hat{\beta} = u' \left(U^{1/2} X \right)^+ U^{1/2} Y = u' X^+ X \left(U^{1/2} X \right)^+ U^{1/2} Y = u' X' \left(X^+ \right)' \left(U^{1/2} X \right)^+ U^{1/2} Y = \left(X u \right)' \left(X^+ \right)' \left(U^{1/2} X \right)^+ U^{1/2} Y = 0.$$

Comment: $(AB)^+ = B^+B(AB)^+$, $(AB)^+ = (AB)^+AA^+$, $(AB)^+ = B^+B(AB)^+AA^+$. **Ex3:** In OLSE $(\beta) = X^+Y + \mathcal{N}(X)$, $X^+Y \perp \mathcal{N}(X)$.

(3) Minimum norm GLSE

Among all vectors in $\operatorname{GLSE}_U(\beta)$, $\widehat{\beta} = (U^{1/2}X)^+ U^{1/2}Y$ has minimum norm, i.e., $\|\widehat{\beta}\|^2 \le \|\widetilde{\beta}\|^2$ for all $\widetilde{\beta} \in \operatorname{GLSE}_U(\beta)$.

Proof. If $\widetilde{\beta} \in \text{GLSE}_U(\beta) = \widehat{\beta} + \mathcal{N}(X)$, then $\widetilde{\beta} = \widehat{\beta} + u$ where $u \in \mathcal{N}(X)$.

By Pythagorean theorem

$$\|\widehat{\beta}\|^{2} = \|\widehat{\beta} + u\|^{2} = \|\widehat{\beta}\|^{2} + \|u\|^{2} \ge \|\widehat{\beta}\|^{2}.$$

Comments: $\text{GLSE}_U(\beta) = \widehat{\beta} + \mathcal{N}(X)$ contain a unique estimator if and only if $\mathcal{N}(X) = \{0\}$. In that case the unique estimator is $\widehat{\beta}$.

Ex4: X^+Y is the minimum norm OLSE for β . If OLSE(β) has a unique estimator, then this estimator is X^+Y .

4. For HW01

(1) Affine set

For x, y in a LS $V, \alpha x + (1 - \alpha)y$ is called an affine combination of x and y. If \mathcal{A} is a set in V and it is closed under affine combinations, then it is called an affine set.

(2) Subspace

A set S in LS V is a subspace if it is closed under linear combinations.

(3) Projection

V is a space where inner product $\langle \cdot, \cdot \rangle$ is defined. For $x \in V$ and subspace $S \subset V$, the projection of x onto S, $\pi(x|S)$, is defined by

$$\widehat{x} = \pi(x|S) \stackrel{def}{\iff} \widehat{x} \in S \text{ and } ||x - \widehat{x}||^2 \le ||x - y||^2 \text{ for all } y \in S$$

with sufficient and necessary conditons

$$\widehat{x} = \pi(x|S) \iff \widehat{x} \in S \text{ and } \langle x - \widehat{x}, y \rangle = 0 \text{ for all } y \in S.$$