1. Consider $Y \sim N\left(X \beta, \sigma^{2} I_{n}\right)$ where $X \in R^{n \times p}$ and $1_{n} \in \mathcal{R}(X)$.
(1) Show that $S S M=Y^{\prime}\left(X X^{+}-1_{n} 1_{n}^{+}\right) Y$ is an SS.
$1_{n} \in \mathcal{R}(X) \Longrightarrow 1_{n}=X h$ for some h. So $X X^{+} 1_{n} 1_{n}^{+}=1_{n} 1_{n}^{+}=1_{n} 1_{n}^{+} X X^{+}$.
It follows that $X X^{+}-11^{+}$is symmetric and idempotent.
Thus $X X^{+}-11^{+}=\left(X X^{+}-11^{+}\right)\left(X X^{+}-11^{+}\right)^{+}$.
Hence $S S M=Y^{\prime}\left(X X^{+}-11^{+}\right) Y$ is an SS .
(2) Show that $S S M$ is part of $\mathrm{SSTO}=Y^{\prime}\left(I-11^{+}\right) Y$.

By $X X^{+} 11^{+}=11^{+}=11^{+} X X^{+}$,
$\left(I-11^{+}\right)\left(X X^{+}-11^{+}\right)=X X^{+}-11^{+}-11^{+}+11^{+}=X X^{+}-11^{+}$.
Thus $S S M=Y^{\prime}\left(X X^{+}-11^{+}\right) Y$ is part of $S S T O=Y^{\prime}\left(I-11^{+}\right) Y$.
(3) Find an SS such that $S S T O=S S M+S S$.

Let SS be $Y^{\prime}\left(I-X X^{+}\right) Y$.
Because $I-X X^{+}=\left(I-X X^{+}\right)\left(I-X X^{+}\right)^{+}, Y^{\prime}\left(I-X X^{+}\right) Y$ is an SS .
Clearly SSTO $=Y^{\prime}\left(I-11^{+}\right) Y=Y^{\prime}\left(X X^{+}-11^{+}\right) Y+Y^{\prime}\left(I-X X^{+}\right) Y=S S M+S S$.
2. For model $y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\epsilon$ consider a test on $H_{0}:\left(\begin{array}{cccc}-0.5 & 10 & 0 & -20 \\ 0 & 0 & 1 & 0\end{array}\right) \beta=0$. Write your report with $\mathrm{y}, \mathrm{x} 1, \mathrm{x} 2$, x 3 in file "ex.txt".

```
data a;
    infile 'D:\ex.txt";
    input y x1 x2 x3;
proc reg;
    model y=x1 x2 x3/noprint;
    test -0.5*intercept+10*x1-20*x3=0, x2=0;
    run;
```

$H_{0}:\left(\begin{array}{cccc}-0.5 & 10 & 0 & -20 \\ 0 & 0 & 1 & 0\end{array}\right) \beta=0$ vs $H_{a}:\left(\begin{array}{cccc}-0.5 & 10 & 0 & -20 \\ 0 & 0 & 1 & 0\end{array}\right) \beta \neq 0$
Test statistic: $F=\frac{M S D}{M S E}$
p-value: $P\left(F(2, n-4)>F_{o b}\right)$
$F_{o b}=\frac{0.25978}{12.54508}=0.02$
p-value: $P(F(2,32)>0.02)=0.9795$.
Fail to reject H_{0}.

