1. Suppose $Y \sim N\left(X \beta, \sigma^{2} \Sigma\right)$ where $X=\left(X_{I}, X_{I I}\right) \in R^{n \times p}$ with $\operatorname{rank}(X)=r$ and $X_{I} \in R^{n \times p_{1}}$ with $\operatorname{rank}\left(X_{I}\right)=r_{1}$.
(1) Show that $\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}\left(\Sigma^{-1 / 2} X_{I}\right)\left(\Sigma^{-1 / 2} X_{I}\right)^{+}=\left(\Sigma^{-1 / 2} X_{I}\right)\left(\Sigma^{-1 / 2} X_{I}\right)^{+}$

Note that $X_{I}=\left(X_{I}, X_{I I}\right)\binom{I}{0}=X H$ where $H=\binom{I}{0}$. So

$$
\begin{aligned}
& \left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}\left(\Sigma^{-1 / 2} X_{I}\right)\left(\Sigma^{-1 / 2} X_{I}\right)^{+} \\
= & \left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}\left(\Sigma^{-1 / 2} X H\right)\left(\Sigma^{-1 / 2} X_{I}\right)^{+}=\left(\Sigma^{-1 / 2} X H\right)\left(\Sigma^{-1 / 2} X_{I}\right)^{+} \\
= & \left(\Sigma^{-1 / 2} X_{I}\right)\left(\Sigma^{-1 / 2} X_{I}\right)^{+} .
\end{aligned}
$$

(2) Show that $\left(\Sigma^{-1 / 2} X_{I}\right)\left(\Sigma^{-1 / 2} X_{I}\right)^{+}\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}=\left(\Sigma^{-1 / 2} X_{I}\right)\left(\Sigma^{-1 / 2} X_{I}\right)^{+}$
$\operatorname{By}(1),\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}\left(\Sigma^{-1 / 2} X_{I}\right)\left(\Sigma^{-1 / 2} X_{I}\right)^{+}=\left(\Sigma^{-1 / 2} X_{I}\right)\left(\Sigma^{-1 / 2} X_{I}\right)^{+}$.
So $\left[\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}\left(\Sigma^{-1 / 2} X_{I}\right)\left(\Sigma^{-1 / 2} X_{I}\right)^{+}\right]^{\prime}=\left[\left(\Sigma^{-1 / 2} X_{I}\right)\left(\Sigma^{-1 / 2} X_{I}\right)^{+}\right]^{\prime}$.
Thus $\left(\Sigma^{-1 / 2} X_{I}\right)\left(\Sigma^{-1 / 2} X_{I}\right)^{+}\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}=\left(\Sigma^{-1 / 2} X_{I}\right)\left(\Sigma^{-1 / 2} X_{I}\right)^{+}$.
(3) Let $A=\frac{\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}-\left(\Sigma^{-1 / 2} X_{I}\right)\left(\Sigma^{-1 / 2} X_{I}\right)^{+}}{\sigma^{2}}$.

Find the distribution for $Z^{2}=\left[\Sigma^{-1 / 2}(Y-X \beta)\right]^{\prime} A\left[\Sigma^{-1 / 2}(Y-X \beta)\right]$.
$Y \sin N\left(X \beta, \sigma^{2} \Sigma\right)$ implies that $\Sigma^{-1 / 2}(Y-X \beta) \sim N\left(0, \sigma^{2} I_{n}\right)$.
But by (1) and (2) $A\left(\sigma^{2} I_{n}\right) A=A=A^{\prime}$. So Z^{2} has a χ^{2}-distribution.
With $0^{\prime} A 0=0$ and $\operatorname{tr}\left(A \sigma^{2} I_{n}\right)=\operatorname{rank}(X)-\operatorname{rank}\left(X_{I}\right)=r-r_{1}, Z^{2} \sim \chi^{2}\left(r-r_{1}\right)$.
2. File mydata.dat in HW07 contains variable y and character variable Sid that identifies 4 levels of a factor in one-way ANOVA. Find ANOVA table for this ANOVA model.
Keep 4 digits after decimal point.

Source	DF	SS	MS	F	Pr $>F$
Model	3	2782.2394	927.4131	80.83	<0.0001
Error	18	206.5333	11.4741		
C.Total	21	2988.7727			

3. File T6-10.dat in HW08 contains variables y, x_{1}, x_{2} and a character variable type.

Find ANOVA table for regression $y=\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon$. Keep 4 digits after decimal point.

Source	DF	SS	MS	F	Pr $>F$
Model	2	6951.4245	3475.7122	118.39	<0.0001
Error	57	1673.4713	29.3592		
U.Total	59	8624.8958			

