Stat873 HW06

For $Y = X\beta + \epsilon$, $\epsilon \sim N(0, \sigma^2 \Sigma)$, $X \in \mathbb{R}^{n \times p}$ has full column rank. $\theta = l'\beta \in \mathbb{R}$ has BLUE $l'\widehat{\beta}$ where $\widehat{\beta}$ is the minimum norm $\mathrm{GLSE}_{\Sigma^{-1}}(\beta)$.

1. Find $\sigma^2_{l'\widehat{\beta}}$, the variance of $l'\widehat{\beta}$.

$$\begin{split} \widehat{\beta} &= \left(\Sigma^{-1/2}X\right)^+ \Sigma^{-1/2}Y = \left(X'\Sigma^{-1}X\right)^{-1}X'\Sigma^{-1}Y \sim N\left(\beta,\,\sigma^2(X'\Sigma^{-1}X)^{-1}\right).\\ l'\widehat{\beta} &\sim N\left(l'\beta,\,\,\sigma^2l'(X'\Sigma^{-1}X)^{-1}l\right).\\ \text{So the variance of } l'\widehat{\beta} \text{ is } \sigma^2_{l'\widehat{\beta}} = \sigma^2\;l'(X'\Sigma^{-1}X)^{-1}l. \end{split}$$

2. Replacing parameters in the expression of $\sigma^2_{l'\widehat{\beta}}$ by their UEs one can get the estimated the variance of $l'\widehat{\beta}$, $S^2_{l'\widehat{\beta}}$. Find $S^2_{l'\widehat{\beta}}$.

$$S_{l'\widehat{\beta}}^2 = \text{MSE } l'(X'\Sigma^{-1}X)^{-1}l.$$

3. It is known that $F(1, n-p) = [t(n-p)]^2$. Derive the relation of $F_{\alpha}(1, n-p)$ and $t_{\alpha/2}(n-p)$.

$$\begin{array}{ll} \alpha &=& P\left(F(1,\,n-p)>F_{\alpha}(1,\,n-p)\right)=P\left([t(n-p)]^2>F_{\alpha}(1,\,n-p)\right)\\ &=&2P\left(t(n-p)>\sqrt{F_{\alpha}(1,\,n-p)}\right).\\ \text{So } \frac{\alpha}{2}=P\left(t(n-p)>\sqrt{F_{\alpha}(1,\,n-p)}\right).\\ \text{Thus } \sqrt{F_{\alpha}(1,\,n-p)}=t_{\alpha/2}(n-p). \end{array}$$

4. Express the $1-\alpha$ confidence interval for $\theta=l'\beta$ derived in the lecture using the cut-off point for t(n-p) distribution and $S_{l'\widehat{\beta}}$.

 $1 - \alpha$ CI for $\theta = l'\beta$, $\theta \in l'\widehat{\beta} \pm \sqrt{F_{\alpha}(1, n - p)} \sqrt{\text{MSE } l'(X'\Sigma^{-1}X)^{-1}l}$, has been derived in the class. It can be equivalently expressed as

$$\theta \in l'\widehat{\beta} \pm t_{\alpha/2}(n-p)S_{l'\widehat{\beta}}.$$

1