Stat873

- HW05
- 1. For $\beta \in \mathbb{R}^p$ in $Y = X\beta + \epsilon$, $\epsilon \sim (0, \sigma^2 I_n)$, with full column rank $X \in \mathbb{R}^{n \times p}$, $\hat{\beta}$ is the BLUE and $\hat{\beta}(q)$ is a principal component estimator.
 - (1) Is $\hat{\beta}(q)$ a linear biased estimator? Why?

The principal component estimator $\hat{\beta}(q)$ is a linear biased estimator for β . Let $X'X = (P_I, P_{II}) \begin{pmatrix} \Lambda_I & 0 \\ 0 & \Lambda_{II} \end{pmatrix} (P_I, P_{II})'$ be the EVD for X'X. Then $\hat{\beta}(q) = P_I \Lambda_I^{-1} P'_I X' Y$ is a linear function of Y. But $E(\hat{\beta}(q)) = P_I P'_I \beta \neq \beta$. So $\hat{\beta}(q)$ is a linear biased estimator for β .

(2) Show that $\|\widehat{\beta}(q)\|^2 \le \|\widehat{\beta}\|^2$.

$$\begin{split} \widehat{\beta} &= I_p \widehat{\beta} = (P_I P'_I + P_{II} P'_{II}) \widehat{\beta} = P_I P'_I \widehat{\beta} + P_{II} P'_{II} \widehat{\beta} \\ \text{But} & \left\langle P_I P_I \widehat{\beta}, P_{II} P'_{II} \widehat{\beta} \right\rangle = \widehat{\beta}' P_{II} P'_{II} P_I P'_I \widehat{\beta} = 0. \\ \text{So} & \|\widehat{\beta}\|^2 = \|P_I P'_I \widehat{\beta}\|^2 + \|P_{II} P'_{II} \widehat{\beta}\|^2 \ge \|P_I P'_I \widehat{\beta}\|^2. \\ \text{But} & P_I P'_I \widehat{\beta} = \widehat{\beta}(q). \quad \text{Hence} \|\widehat{\beta}\|^2 \ge \|\widehat{\beta}(q)\|^2. \end{split}$$

- 2. In order to find principal component estimator for β in $Y = X\beta + \epsilon$, $\epsilon \sim (0, \sigma^2 \Sigma)$, convert the model equivalently to $Y_* = X_*\beta + \epsilon_*, \epsilon_* \sim (0, \sigma^2 I_n)$.
 - (1) Point out the relations of Y_* and Y; X_* and X; and ϵ_* and ϵ .

$$Y_* = \Sigma^{-1/2} Y; X_* = \Sigma^{-1/2} X; \text{ and } \epsilon_* = \Sigma^{-1/2} \epsilon.$$

(2) Based on the second model, results in the lecture, and relations in (1), describe the principal component estimator for β in the first model.

By the results in the lecture, for β in the second model,

let
$$X'_*X_* = (P_I, P_{II}) \begin{pmatrix} \Lambda_I & 0\\ 0 & \Lambda_{II} \end{pmatrix} (P_I, P_{II})'$$
 be the EVD.

Then $P_I \Lambda_I^{-1} P'_I X'_* Y_*$ is the principal component estimator for β . Thus for β in the first model,

let
$$X'\Sigma^{-1}X = (P_I, P_{II}) \begin{pmatrix} \Lambda_I & 0\\ 0 & \Lambda_{II} \end{pmatrix} (P_I, P_{II})'$$
 be the EVD.

Then $\widehat{\beta}(q) = P_I \Lambda_I^{-1} P'_I X' \Sigma^{-1} Y$ is the principal component estimator for β .

3. Let $\hat{\beta}_1$ be the BLUE of β in $Y_1 = X_1\beta + \epsilon_1$, $\epsilon_1 \sim (0, \sigma^2 I_n)$; and $\hat{\beta}_2$ be the BLUE of β in $Y_2 = X_2\beta + \epsilon_2$, $\epsilon_2 \sim (0, \sigma^2 \Sigma)$. Write the mixed BLUE of β as weighted average of $\hat{\beta}_1$ and $\hat{\beta}_2$ and point out the matrix weights.

Let $W_1 = X'_1 X_1$, $W_2 = X'_2 \Sigma^{-1} X_2$ and $W = W_1 + W_2$. Then the mixed BLUE is $W^{-1}(W_1 \hat{\beta}_1 + W_2 \hat{\beta}_2)$.