1. For $\beta \in R^{p}$ in $Y=X \beta+\epsilon, \epsilon \sim\left(0, \sigma^{2} I_{n}\right)$, with full column rank $X \in R^{n \times p}, \widehat{\beta}$ is the BLUE and $\widehat{\beta}(q)$ is a principal component estimator.
(1) Is $\widehat{\beta}(q)$ a linear biased estimator? Why?

The principal component estimator $\widehat{\beta}(q)$ is a linear biased estimator for β.
Let $X^{\prime} X=\left(P_{I}, P_{I I}\right)\left(\begin{array}{cc}\Lambda_{I} & 0 \\ 0 & \Lambda_{I I}\end{array}\right)\left(P_{I}, P_{I I}\right)^{\prime} \quad$ be the EVD for $X^{\prime} X$.
Then $\quad \widehat{\beta}(q)=P_{I} \Lambda_{I}^{-1} P_{I}^{\prime} X^{\prime} Y \quad$ is a linear function of Y.
But $\quad E(\widehat{\beta}(q))=P_{I} P_{I}^{\prime} \beta \neq \beta$.
So $\quad \widehat{\beta}(q)$ is a linear biased estimator for β.
(2) Show that $\|\widehat{\beta}(q)\|^{2} \leq\|\widehat{\beta}\|^{2}$.

$$
\begin{array}{ll}
\widehat{\beta}=I_{p} \widehat{\beta}= & \left(P_{I} P_{I}^{\prime}+P_{I I} P_{I I}^{\prime}\right) \widehat{\beta}=P_{I} P_{I}^{\prime} \widehat{\beta}+P_{I I} P_{I I}^{\prime} \widehat{\beta} \\
\text { But } & \left\langle P_{I} P_{I} \widehat{\beta}, P_{I I} P_{I I}^{\prime} \widehat{\beta}\right\rangle=\widehat{\beta}^{\prime} P_{I I} P_{I I}^{\prime} P_{I} P_{I}^{\prime} \widehat{\beta}=0 . \\
\text { So } & \|\widehat{\beta}\|^{2}=\left\|P_{I} P_{I}^{\prime} \widehat{\beta}\right\|^{2}+\left\|P_{I I} P_{I I}^{\prime} \widehat{\beta}\right\|^{2} \geq\left\|P_{I} P_{I}^{\prime} \widehat{\beta}\right\|^{2} . \\
\text { But } & P_{I} P_{I}^{\prime} \widehat{\beta}=\widehat{\beta}(q) . \\
\text { Hence }\|\widehat{\beta}\|^{2} \geq\|\widehat{\beta}(q)\|^{2} .
\end{array}
$$

2. In order to find principal component estimator for β in $Y=X \beta+\epsilon, \epsilon \sim\left(0, \sigma^{2} \Sigma\right)$, convert the model equivalently to $Y_{*}=X_{*} \beta+\epsilon_{*}, \epsilon_{*} \sim\left(0, \sigma^{2} I_{n}\right)$.
(1) Point out the relations of Y_{*} and $Y ; X_{*}$ and X; and ϵ_{*} and ϵ.

$$
Y_{*}=\Sigma^{-1 / 2} Y ; X_{*}=\Sigma^{-1 / 2} X ; \text { and } \epsilon_{*}=\Sigma^{-1 / 2} \epsilon
$$

(2) Based on the second model, results in the lecture, and relations in (1), describe the principal component estimator for β in the first model.

By the results in the lecture, for β in the second model,
let

$$
X_{*}^{\prime} X_{*}=\left(P_{I}, P_{I I}\right)\left(\begin{array}{cc}
\Lambda_{I} & 0 \\
0 & \Lambda_{I I}
\end{array}\right)\left(P_{I}, P_{I I}\right)^{\prime} \text { be the EVD. }
$$

Then $\quad P_{I} \Lambda_{I}^{-1} P_{I}^{\prime} X_{*}^{\prime} Y_{*}$ is the principal component estimator for β.
Thus for β in the first model,
let

$$
X^{\prime} \Sigma^{-1} X=\left(P_{I}, P_{I I}\right)\left(\begin{array}{cc}
\Lambda_{I} & 0 \\
0 & \Lambda_{I I}
\end{array}\right)\left(P_{I}, P_{I I}\right)^{\prime} \text { be the EVD. }
$$

Then $\quad \widehat{\beta}(q)=P_{I} \Lambda_{I}^{-1} P_{I}^{\prime} X^{\prime} \Sigma^{-1} Y$ is the principal component estimator for β.
3. Let $\widehat{\beta}_{1}$ be the BLUE of β in $Y_{1}=X_{1} \beta+\epsilon_{1}, \epsilon_{1} \sim\left(0, \sigma^{2} I_{n}\right)$; and $\widehat{\beta}_{2}$ be the BLUE of β in $Y_{2}=X_{2} \beta+\epsilon_{2}, \epsilon_{2} \sim\left(0, \sigma^{2} \Sigma\right)$. Write the mixed BLUE of β as weighted average of $\widehat{\beta}_{1}$ and $\widehat{\beta}_{2}$ and point out the matrix weights.

Let $W_{1}=X_{1}^{\prime} X_{1}, W_{2}=X_{2}^{\prime} \Sigma^{-1} X_{2}$ and $W=W_{1}+W_{2}$.
Then the mixed BLUE is $W^{-1}\left(W_{1} \widehat{\beta}_{1}+W_{2} \widehat{\beta}_{2}\right)$.

