Stat873 HW04

- 1. Consider Model $Y = X\beta + \epsilon, \ \epsilon \sim N(0, \ \sigma^2 \Sigma).$
 - (1) Among all maximum likelihood estimators for β , point out the one with minimum norm.

In MLE(β) = GLSE_{Σ^{-1}}(β) = $(\Sigma^{-1/2}X)^+ \Sigma^{-1/2}Y + \mathcal{N}(X)$ $\widehat{\beta} = (\Sigma^{-1/2}X)^+ \Sigma^{-1/2}Y$ has minimum norm.

(2) Which norm was used in (1)? Why not $\|\cdot\|_{\Sigma^{-1}}$?

The norm used in (1) is Frobenius norm $||u|| = \sqrt{u'u}$. Norm $||v||_{\Sigma^{-1}} = \sqrt{v'\Sigma^{-1}v}$ is for vectors in \mathbb{R}^n . But β and its estimators are in \mathbb{R}^p . So $||\cdot||_{\Sigma^{-1}}$ can not be used.

(3) Suppose X has full column rank. Find the distribution for the estimator in (1).

$$\begin{split} \widehat{\beta} &= AY \text{ where } A = \left(\Sigma^{-1/2}X\right)^+ \Sigma^{-1/2}. \text{ So } E(\widehat{\beta}) = AX\beta = \left(\Sigma^{-1/2}X\right)^+ \left(\Sigma^{-1/2}X\right)\beta = \beta \\ \text{since } \left(\Sigma^{-1/2}X\right)^+ \text{ is a right-inverse of } \Sigma^{-1/2}X. \\ \text{Cov}(\widehat{\beta}) &= A\sigma^2 \Sigma A' = \sigma^2 \left(\Sigma^{-1/2}X\right)^+ \left[\left(\Sigma^{-1/2}X\right)'\right]^+ = \sigma^2 \left(X'\Sigma^{-1/2}\Sigma^{-1/2}X\right)^+ \\ &= \sigma^2 \left(X'\Sigma^{-1}X\right)^+ = \sigma^2 \left(X'\Sigma^{-1}X\right)^{-1}. \\ \text{Hence } \widehat{\beta} \sim N \left(\beta, \sigma^2 (X'\Sigma^{-1}X)^{-1}\right). \end{split}$$

- 2. In Model $Y = X\beta + \epsilon$, $\epsilon \sim N(0, \sigma^2 I_n)$, X has full column rank, and $X'X = P\Lambda P'$ is the EVD.
 - (1) Let $\hat{\beta}$ be the MVUE for β . Write out the expression for $\hat{\beta}$ and its distribution.

 $\widehat{\beta} = X^+ Y = (X'X)^{-1} X' Y \sim N(\beta, \sigma^2 (X'X)^{-1}).$

(2) Let $\widehat{\beta}(K) = [P(\Lambda + K)P']^{-1}X'Y$ be the ridge estimator for β . Express matrix A via P, Λ and K such that $\widehat{\beta}(K) = A\widehat{\beta}$.

$$\begin{split} \widehat{\beta}(K) &= [P(\Lambda + K)P']^{-1}X'Y = P(\Lambda + K)^{-1}P'(X'X)(X'X)^{-1}X'Y \\ &= P(\Lambda + K)^{-1}P'P\Lambda P'\widehat{\beta} = P(\Lambda + K)^{-1}\Lambda P'\widehat{\beta}. \\ \text{So } \widehat{\beta}(K) &= A\widehat{\beta} \text{ where } A = P(\Lambda + K)^{-1}\Lambda P'. \end{split}$$

(3) Find the expression for $\operatorname{Cov}(\widehat{\beta}(K))$ via σ^2 , P, Λ and K only. Hint: $\operatorname{Cov}(\widehat{\beta}(K)) = A[\operatorname{Cov}(\widehat{\beta})]A'$.

$$\begin{aligned} \operatorname{Cov}[\widehat{\beta}(K)] &= A[\operatorname{Cov}(\widehat{\beta})]A' = P(\Lambda + K)^{-1}\Lambda P'\sigma^2(X'X)^{-1}P\Lambda(\Lambda + K)^{-1}P'\\ &= \sigma^2 P(\Lambda + K)^{-1}\Lambda P'(P\Lambda^{-1}P')\Lambda(\Lambda + K)^{-1}P'\\ &= P(\Lambda + K)^{-1}\Lambda(\Lambda + K)^{-1}P'. \end{aligned}$$

(4) Based on (3) find $\operatorname{tr}[\operatorname{Cov}(\widehat{\beta}(K))]$ via σ^2 , Λ and K only.

$$\operatorname{tr}[\operatorname{Cov}(\widehat{\beta}(K))] = \operatorname{tr}[\sigma^2 P(\Lambda + K)^{-1} \Lambda(\Lambda + K)^{-1} P'] = \sigma^2 \operatorname{tr}[(\Lambda + K)^{-1} \Lambda(\Lambda + K)^{-1}]$$

= $\sigma^2 \sum_i \frac{\lambda_i}{(\lambda_i + k_i)^2}.$