Stat873 HW03

- 1. For $A' = A \in \mathbb{R}^{n \times n}$ and $B' = B \in \mathbb{R}^{n \times n}$ prove the following two statements
 - (1) If $A \ge 0$, then $TAT' \ge 0$ for all $T \in \mathbb{R}^{m \times n}$. Hint: Give the definition for $A \ge 0$ first.

Note that $A \ge 0 \Leftrightarrow x'Ax \ge 0$ for all $x \in \mathbb{R}^n$. For all $x \in \mathbb{R}^m$, with $y = T'x \in \mathbb{R}^n$, by $A \ge 0$, $x'TAT'x = y'Ay \ge 0$. By the definition, $TAT' \ge 0$.

(2) If $A \ge B$, then $TAT' \ge TBT'$ for all $T \in \mathbb{R}^{m \times n}$. Hint: Give the definition of $A \ge B$ first.

Note that $A \ge B \iff A - B \ge 0$, i.e., $x'(A - B)x \ge 0$ for all $x \in \mathbb{R}^n$. For $x \in \mathbb{R}^m$, with $y = T'x \in \mathbb{R}^n$, by $A \ge B$, $x'T(A - B)T'x = y'(A - B)y \ge 0$. Thus $T(A - B)T' = TAT' - TBT' \ge 0$. Hence $TAT' \ge TBT'$.

- 2. Prove the following statements
 - (1) If $\hat{\eta}$ is a LUE for η , then $A\hat{\eta}$ is a LUE for $A\eta$.

If $\hat{\eta}$ is a LUE for η , then $\hat{\eta} = LY$ for some L is a linear function of Y, and $E(\hat{\eta}) \equiv \eta$. So $A\hat{\eta} = ALY$ is a linear function of Y, and $E(ALY) = AE(LY) = A\eta$. Hence $A\hat{\eta}$ is a LUE for $A\eta$.

(2) If $\hat{\eta}$ is a BLUE for η and B is non-singular, then $B\hat{\eta}$ is a BLUE for $B\eta$.

 $\widehat{\eta}$ is a BLUE for $\eta \Longrightarrow \widehat{\eta}$ is a LUE for η . By (1) in 2, $B\widehat{\eta} \in \text{LUE}(B\eta).$

Suppose $\hat{\xi} \in \text{LUE}(B\eta)$, we need to show

$$r(B\widehat{\eta}, B\eta) = \operatorname{Cov}(B\widehat{\eta}) \le \operatorname{Cov}(\widehat{\xi}) = r(\widehat{\xi}, B\eta).$$

 $\widehat{\xi} \in \text{LUE}(B\eta).$ By (1) in 2, $B^{-1}\widehat{\xi} \in \text{LUE}(B^{-1}B\eta) = \text{LUE}(\eta).$ But $\widehat{\eta}$ is the BLUE for η . So

$$\begin{split} & \operatorname{Cov}(\widehat{\eta}) \leq \operatorname{Cov}(B^{-1}\widehat{\xi}).\\ & \text{By (2) of 1,} \quad B\left[\operatorname{Cov}(\widehat{\eta})\right]B' \leq B\left[\operatorname{Cov}(B^{-1}\widehat{\xi})\right]B', \, \text{i.e.,}\\ & \operatorname{Cov}(B\widehat{\eta}) \leq \operatorname{Cov}(\widehat{\xi}). \end{split}$$