1. With $E\left(Y_{f}\right)=H \beta \in R^{q}, \operatorname{LUP}\left(Y_{f}\right)=\operatorname{LUE}(H \beta)=\left[H\left(U^{1 / 2} X\right)^{+} U^{1 / 2}+\mathcal{N}\left(I_{q}, X\right)\right] Y$. Here $\mathcal{A}=H\left(U^{1 / 2} X\right)^{+} U^{1 / 2}+\mathcal{N}\left(I_{q}, X\right)$ is an affine set in $R^{q \times n}$.
(1) Show that $H\left(U^{1 / 2} X\right)^{+} U^{1 / 2} X X^{+} \in \mathcal{A}$.

Comment: Consequently $\mathcal{A}=H\left(U^{1 / 2} X\right)^{+} U^{1 / 2} X X^{+}+\mathcal{N}\left(I_{q}, X\right)$.
Write $\quad H\left(U^{1 / 2} X\right)^{+} U^{1 / 2} X X^{+}=H\left(U^{1 / 2} X\right)^{+} U^{1 / 2}+Z$
where $\quad Z=H\left(U^{1 / 2} X\right)^{+} U^{1 / 2}\left(X X^{+}-I\right)$.
From $\quad I_{q} Z X=I_{q} H\left(U^{1 / 2} X\right)^{+} U^{1 / 2}(X-X)=0, \quad Z \in \mathcal{N}\left(I_{q}, X\right)$.
Hence $\quad H\left(U^{1 / 2} X\right)^{+} U^{1 / 2} X X^{+} \in H\left(U^{1 / 2} X\right)^{+} U^{1 / 2}+\mathcal{N}\left(I_{q}, X\right)=\mathcal{A}$
(2) Show that $H\left(U^{1 / 2} X\right)^{+} U^{1 / 2} X X^{+} \perp \mathcal{N}\left(I_{q}, X\right)$.

Comment: Consequently, in $\mathcal{A}, H\left(U^{1 / 2} X\right)^{+} U^{1 / 2} X X^{+}$has minimum norm.

For $Z \in \mathcal{N}\left(I_{q}, X\right)$,

$$
\begin{aligned}
\left\langle H\left(U^{1 / 2} X\right)^{+} U^{/ 2} X X^{+}, Z\right\rangle & =\operatorname{tr}\left(Z^{\prime} H\left(U^{1 / 2} X\right)^{+} U^{1 / 2} X X^{+}\right) \\
& =\operatorname{tr}\left(H\left(U^{1 / 2} X\right)^{+} U^{1 / 2} X X^{+} Z^{\prime}\right)
\end{aligned}
$$

But $\quad X X^{+} Z^{\prime}=\left(X^{+}\right)^{\prime} X^{\prime} Z^{\prime}=\left(X^{+}\right)^{\prime}\left(I_{q} Z X\right)^{\prime}=0$.
So $\quad\left\langle H\left(U^{1 / 2} X\right)^{+} U^{1 / 2} X X^{+}, Z\right\rangle=0$ for all $Z \in \mathcal{N}\left(I_{q}, X\right)$.
Hence $H\left(U^{1 / 2} X\right)^{+} U^{1 / 2} X X^{+} \perp \mathcal{N}\left(I_{q}, X\right)$.
2. $\operatorname{MSE}(\widehat{u}, v)=E\|\widehat{u}-v\|^{2}=E\left[(\widehat{u}-v)^{\prime}(\widehat{u}-v)\right]$ is a real-valued risk when v is predicted/estimated by $\widehat{u} \in R^{q}$. The matrix-valued risk in the lecture is denoted as $\operatorname{MSEM}(\widehat{u}, v)$.
(1) Suppose $q=1$. Show that $\operatorname{MSEM}(\widehat{u}, v)=\operatorname{MSE}(\widehat{u}, v)$.

$$
\text { When } \begin{aligned}
q=1, \operatorname{MSEM}(\widehat{u}, v) & =E\left[(\widehat{u}-v)(\widehat{u}-v)^{\prime}\right]=E[(\widehat{u}-v)(\widehat{u}-v)] \\
& =E\left[(\widehat{u}-v)^{\prime}(\widehat{u}-v)\right]=\operatorname{MSE}(\widehat{u}, v) .
\end{aligned}
$$

(2) Show that $\operatorname{MSE}(\widehat{u}, v)=\operatorname{tr}[\operatorname{MSEM}(\widehat{u}, v)]$.

Hint: $E[\operatorname{tr}(X)]=\operatorname{tr}[E(X)]$.

$$
\begin{aligned}
\operatorname{MSE}(\widehat{u}, v) & =E\left[(\widehat{u}-v)^{\prime}(\widehat{u}-v)\right]=E\left\{\operatorname{tr}\left[(\widehat{u}-v)^{\prime}(\widehat{u}-v)\right]\right\}=E\left\{\operatorname{tr}\left[(\widehat{u}-v)(\widehat{u}-v)^{\prime}\right]\right\} \\
& =\operatorname{tr}\left\{E\left[(\widehat{u}-v)(\widehat{u}-v)^{\prime}\right]\right\}=\operatorname{tr}[\operatorname{MSEM}(\widehat{u}, v)] .
\end{aligned}
$$

(3) Show that if \widehat{u} dominates \widetilde{u} bu $\operatorname{MSEM}(\cdot, \cdot)$, then \widehat{u} dominates \widetilde{u} by $\operatorname{MSE}(\cdot, \cdot)$.

Hint: $A \leq 0 \Longrightarrow \operatorname{tr}(A) \leq 0$, and $A \geq 0 \Longrightarrow \operatorname{tr}(A) \geq 0$.

$$
\begin{aligned}
\widehat{u} \text { dominates } \widetilde{u} \text { by MSEM } & \Longrightarrow \operatorname{MSEM}(\widetilde{u}, v)-\operatorname{MSEM}(\widehat{u}, v) \geq 0 \\
& \Longrightarrow \operatorname{tr}[\operatorname{MSEM}(\widetilde{u}, v)-\operatorname{MSEM}(\widehat{u}, v)] \geq 0 \\
& \Longrightarrow \operatorname{MSE}(\widetilde{u}, v)-\operatorname{MSE}(\widehat{u}, v) \geq 0 . \\
& \Longrightarrow \widehat{u} \text { dominates } \widetilde{u} \text { by } \operatorname{MSE} .
\end{aligned}
$$

