Stat873

HW01

1. \mathcal{A} is an affine set in linear space V. Then $0 \in \mathcal{A} \iff \mathcal{A}$ is a subspace. Show \Rightarrow only.

Hint: For $x, y \in \mathcal{A}$, one needs to show $\alpha x + \beta y \in \mathcal{A}$ for all scalars α and β . Discuss three cases: (i) $\alpha + \beta \neq 0$, (ii) $\alpha + \beta = 0$ and $\alpha = 0$, (iii) $\alpha + \beta = 0$, but $\alpha \neq 0$.

For $x, y \in \mathcal{A}$ we need to show $\alpha x + \beta y \in \mathcal{A}$ for all scalars α and β . First we claim that \mathcal{A} is closed under scalar multiplications since $x \in \mathcal{A} \Longrightarrow \alpha x = \alpha x + (1 - \alpha)0 \in \mathcal{A}.$

- (i) $\alpha + \beta \neq 0$ Affine combination $z = \frac{\alpha}{\alpha + \beta}x + \frac{\beta}{\alpha + \beta}y \in \mathcal{A}$. By scalar multiplication, $\alpha x + \beta y = (\alpha + \beta)z \in \mathcal{A}$.
- (ii) $\alpha + \beta = 0$ and $\alpha = 0$ Under $\alpha + \beta = 0$ and $\alpha = 0$, $\alpha x + \beta y = 0x + 0y = 0 \in \mathcal{A}$.
- (iii) $\alpha + \beta = 0$ and $\alpha \neq 0$ Under $\alpha + \beta = 0$ and $\alpha \neq 0$, $\alpha x + \beta y = \alpha x - \alpha y$. By scalar multiplications, $2\alpha x \in \mathcal{A}$ and $-2\alpha y \in \mathcal{A}$. So the affine combination $\frac{1}{2}(2\alpha x) + \frac{1}{2}(-2\alpha y) = \alpha x - \alpha y \in \mathcal{A}$.

So \mathcal{A} is closed under linear combinations. Hence \mathcal{A} is a linear space.

2. In linear space V,

 \mathcal{A} is an affine set $\iff \mathcal{A} = x_0 + S$ where $x_0 \in V$ and S is a subspace in V.

Show \Rightarrow only. Hint: Take $x_0 \in \mathcal{A}$. Then $\mathcal{A} = x_0 + \mathcal{A} - x_0$. Using 1 to show $\mathcal{A} - x_0$ is a space.

Take $x_0 \in \mathcal{A}$. Then $A = x_0 + \mathcal{A} - x_0 = x_0 + S$ where $S = \mathcal{A} - x_0$. $x_0 \in \mathcal{A} \Longrightarrow 0 = x_0 - x_0 \in \mathcal{A} - x_0 = S$. If $x, y \in S$, then $x = x_A - x_0$ and $y = y_A - x_0$ where $x_A, y_A \in \mathcal{A}$. But

$$\alpha x + (1 - \alpha)y = [\alpha x_A + (1 - \alpha)y_A] - x_0 \in \mathcal{A} - x_0 = S$$

So S is an affine set containing 0. By 1, S is a space.

3. $\mathcal{A} = x_0 + S$ is an affine set in V where S is a subspace. If $x_1 \in \mathcal{A}$, then $\mathcal{A} = x_1 + S$. Show $\mathcal{A} \supset x_1 + S$ only.

If $x \in x_1 + S$, then $x = x_1 + u$ where $u \in S$. But $x_1 \in \mathcal{A} = x_0 + S$ implies $x_1 = x_0 + u_1$ where $u_1 \in S$. So $x = x_1 + u = x_0 + (x_1 - x_0 + u) = x_0 + (u_1 + u) \in x_0 + S = \mathcal{A}$. 4. For affine set $\mathcal{A} = x_0 + S$ in 3, $x_1 = x_0 - \pi(x_0|S) \in x_0 + S = \mathcal{A}$. So $\mathcal{A} = x_1 + S$. Show that among all $x \in \mathcal{A}$, $||x_1||^2 \le ||x||^2$.

 $x \in \mathcal{A} = x_1 + S \Longrightarrow x = x_1 + u$ where $u \in S$. But $x_1 = x_0 - \pi(x_0|S)$. So $x_1 \perp u$. By Pythagorean theorem

 $||x||^2 = ||x_1 + u||^2 = ||x_1||^2 + ||u||^2 \ge ||x_1||^2.$