Name:

1. For Model $Y \sim N\left(X \beta, \sigma^{2} \Sigma\right)$ where $X \in R^{n \times p}$ with $\operatorname{rank}(X)=p$ and $1_{n} \notin \mathcal{R}(X), R^{2}=\frac{S S M}{S S T O}$, called the coefficient of determination, is the proportion of the variation in Y explained by the model.
(1) Define F in ANOVA table via R^{2}.

$$
F=\frac{M S M}{M S E}=\frac{S S M}{S S E} \cdot \frac{n-p}{p}=\frac{S S M}{S S T O-S S M} \cdot \frac{n-p}{p}=\frac{R^{2}}{1-R^{2}} \cdot \frac{n-p}{p}=\frac{R^{2} / p}{\left(1-R^{2}\right) /(n-p)} .
$$

(2) Replacing SSE and SSTO in $R^{2}=\frac{S S M}{S S T O}=\frac{S S T O-S S E}{S S T O}$ by MSE and MSTO we obtain $R_{a d j}^{2}$, the adjusted R^{2}. Express F via $R_{a d j}^{2}$.
(20 points)

$$
\begin{aligned}
R_{a d j}^{2} & =\frac{M S T O-M S E}{M S T O}=1-\frac{M S E}{M S T O} . \text { So } \frac{M S E}{M S T O}=1-R_{a d j}^{2} . \\
F & =\frac{M S M}{M S E}=\frac{S S M}{M S E} \cdot \frac{1}{p}=\frac{U \cdot S S T O-S S E}{M S E} \cdot \frac{1}{p}=\frac{n \cdot M S T O-(n-p) \cdot M S E}{p \cdot M S E}=\frac{n-(n-p) \frac{M S E}{M S T O}}{p \cdot \frac{M S E}{M S T O}} \\
& =\frac{n-(n-p)\left(1-R_{a d j}^{2}\right)}{p\left(1-R_{a d j}^{2}\right)}=1-\frac{n}{p}+\frac{n}{p} \cdot \frac{1}{1-R_{a d j}^{2}}=1+\frac{R_{a d j}^{2} / p}{\left(1-R_{a d j}^{d}\right) / n} .
\end{aligned}
$$

(3) $R_{\text {adj }}^{2}$ could assume negative values. Find the condition on R^{2} for $R_{a d j}^{2}<0$.

$$
\begin{aligned}
R_{a d j}^{2}<0 & \Longleftrightarrow \frac{M S T O-M S E}{M S E}<0 \Longleftrightarrow M S T O<M S E \Longleftrightarrow \frac{S S T O}{n}<\frac{S S E}{n-p} \\
& \Longleftrightarrow \frac{n-p}{n}<\frac{S S E}{S S T O}=\frac{S S T O-S S M}{S S T O}=1-R^{2} \Longleftrightarrow-\frac{p}{n}<-R^{2} \\
& \Longleftrightarrow R^{2}<\frac{p}{n} .
\end{aligned}
$$

So $R_{\text {adj }}^{2}<0$ if and only if $R^{2}<\frac{p}{n}$.
2. Model M: $Y \sim N\left(X \beta, \sigma^{2} I_{n}\right)$ where $X=\left(X_{I}, X_{I I}\right) \in R^{n \times p}$ has full column rank and $X_{I} \in R^{n \times p_{1}}$. With $\beta=\binom{\beta_{I}}{\beta_{I I}} \in R^{p}$ where $\beta_{I} \in R^{p_{1}}, H_{0}: \beta_{I I}=0$ reduces M to Model M_{*}. Let SSE and SSE_{*} be from M and M_{*}. Define $\mathrm{SSD}=\mathrm{SSE}_{*}-\mathrm{SSE}$.
(1) Fill out the form below. Write SS as quadratic forms.
(15 points)

Source	SS	DF
Difference	$\mathrm{SSD}=\underline{Y^{\prime}\left(X X^{+}-X_{I} X_{I}^{+}\right) Y}$	$p-p_{1}$
Error M	$\mathrm{SSE}=\underline{Y^{\prime}\left(I-X X^{+}\right) Y}$	$n-p$
Error M_{*}	$\mathrm{SSE}_{*}=\quad Y^{\prime}\left(I-X_{I} X_{I}^{+}\right) Y$	$n-p_{1}$

(2) Derive the distribution of $\frac{S S D}{\sigma^{2}}$ under H_{0}.
(20 points)

Under $H_{0}, Y \sim N\left(X_{I} \beta_{I}, \sigma^{2} I_{n}\right)$.
$\frac{S S D}{\sigma^{2}}=Y^{\prime} A Y$ where $A=\frac{X X^{+}-X_{I} X_{I}^{+}}{\sigma^{2}}$.
Note that $X X^{+} X_{I} X_{I}^{+}=X_{I} X_{I}^{\sigma^{+}}=X_{I} X_{I}^{+} X X^{+}$. So
(i) $A \sigma^{2} I_{n} A=A=A^{\prime}$.
(ii) $\left(X_{I} \beta_{I}\right)^{\prime} A\left(X_{I} \beta_{I}\right)=\left(X_{I} \beta_{I}\right)^{\prime} A\left(X_{I} X_{I}^{+}\right)\left(X_{I} \beta_{I}\right)=0$.
(iii) $\operatorname{tr}\left(A \sigma^{2} I_{n}\right)=p-p_{1}$.

Thus $\frac{S S D}{\sigma^{2}} \stackrel{H_{0}}{\sim} \chi^{2}\left(p-p_{1}\right)$.
(3) Show that $S S D$ and $S S E$ are independent.
(15 points)
$Y \sim N\left(X \beta, \sigma^{2} I_{n}\right), S S D=Y^{\prime}\left(X X^{+}-X_{I} X_{I}^{+}\right) Y$ and $S S E=Y^{\prime}\left(I-X X^{+}\right) Y$.
$\left(X X^{+}-X_{I} X_{I}^{+}\right) \sigma^{2} I_{n}\left(I-X X^{+}\right)=\sigma^{2}\left(X X^{+}-X_{I} X_{I}^{+}-X X^{+}+X_{I} X_{I}^{+}\right)=0$.
So $S S D$ and $S S E$ are independent.

