Name:

1. In model $Y=X \beta+\epsilon, \epsilon \sim N\left(0, \sigma^{2} \Sigma\right), X \in R^{n \times p}$ has full column rank.
(1) Write out $\widehat{\beta}$, the MVUE for β, and its distribution.
(5 points)

$$
\widehat{\beta}=\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{-1 / 2} Y=\left(X^{\prime} \Sigma^{-1} X\right)^{-1} X^{\prime} \Sigma^{-1} Y \sim N\left(\beta, \sigma^{2}\left(X^{\prime} \Sigma^{-1} X\right)^{-1}\right) .
$$

(2) Write out the two risks, $\operatorname{MSEM}(\widehat{\beta}, \beta)$ and $\operatorname{MSE}(\widehat{\beta}, \beta)$.
(10 points)

$$
\begin{aligned}
& \operatorname{MSEM}(\widehat{\beta}, \beta)=\operatorname{Cov}(\widehat{\beta})=\sigma^{2}\left(X^{\prime} \Sigma^{-1} X\right)^{-1} \\
& \operatorname{MSE}(\widehat{\beta}, \beta)=\operatorname{tr}(\operatorname{Cov}(\widehat{\beta}))=\sigma^{2} \operatorname{tr}\left(\left(X^{\prime} \Sigma^{-1} X\right)^{-1}\right)
\end{aligned}
$$

2. Let $\widehat{\beta}(s)=s \widehat{\beta}$ where $0<s<1$ and $\widehat{\beta}$ is in 1 (1).
(1) Show that $\widehat{\beta}(s)$ is a linear biased estimator for β.
(10 points)
$\widehat{\beta}(s)=s \widehat{\beta}=s\left(X^{\prime} \Sigma^{-1} X\right)^{-1} X^{\prime} \Sigma^{-1} Y$ is a linear function of Y.
$\widehat{\beta}(s) \sim N\left(s \beta, \sigma^{2} s^{2}\left(X^{\prime} \Sigma^{-1} X\right)^{-1}\right)$.
$E(\widehat{\beta}(s))=s \beta \neq \beta$. So $\widehat{\beta}(s)$ is a biased estimator for β.
Hence $\widehat{\beta}(s)$ is a linear biased estimator for β.
(2) Find the risk $\operatorname{MSE}(\widehat{\beta}(s), \beta)$.
(10 points)

$$
\begin{aligned}
\operatorname{MSE}(\widehat{\beta}(s), \beta) & =E\left[(\widehat{\beta}(s)-\beta)^{\prime}(\widehat{\beta}(s)-\beta)\right]=\operatorname{tr} E\left[(\widehat{\beta}(s)-\beta)(\widehat{\beta}(s)-\beta)^{\prime}\right] \\
& =\operatorname{tr} E\left[(\widehat{\beta}(s)-s \beta+(s-1) \beta)(\widehat{\beta}(s)-s \beta+(s-1) \beta)^{\prime}\right] \\
& =\operatorname{tr}\left[\operatorname{Cov}(\widehat{\beta}(s))+(s-1)^{2} \beta \beta^{\prime}\right] \\
& =(s-1)^{2} \beta^{\prime} \beta+s^{2} \sigma^{2} \operatorname{tr}\left(\left(X^{\prime} \Sigma^{-1} X\right)^{-1}\right) .
\end{aligned}
$$

(3) Find a sufficient and necessary condition on s for $\widehat{\beta}(s)$ to dominate $\widehat{\beta}$ by $\operatorname{MSE}(\cdot, \cdot)$. Hint: Write $\operatorname{MSE}(\widehat{\beta}(s), \beta)-\operatorname{MSE}(\widehat{\beta}, \beta)$ as a function of s.
(20 points)

$$
\begin{aligned}
\operatorname{MSE}(\widehat{\beta}(s), \beta)-\operatorname{MSE}(\widehat{\beta}, \beta) & =(s-1)^{2} \beta^{\prime} \beta+\left(s^{2}-1\right) \sigma^{2} \operatorname{tr}\left(\left(X^{\prime} \Sigma^{-1} X\right)^{-1}\right) \\
& =a s^{2}+b s+c
\end{aligned}
$$

where $a=\beta^{\prime} \beta+\sigma^{2} \operatorname{tr}\left(\left(X^{\prime} \Sigma^{-1} X\right)^{-1}\right), b=-2 \beta^{\prime} \beta$ and $c=\beta^{\prime} \beta-\sigma^{2} \operatorname{tr}\left(\left(X^{\prime} \Sigma^{-1} X\right)^{-1}\right)$.
With $a>0, s_{1}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}=\frac{\beta^{\prime} \beta-\sigma^{2} \operatorname{tr}\left(\left(X^{\prime} \Sigma^{-1} X\right)^{-1}\right)}{\beta^{\prime} \beta+\sigma^{2} \operatorname{tr}\left(\left(X^{\prime} \Sigma^{-1} X\right)^{-1}\right)}$ and

$$
\begin{gathered}
s_{2}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}=\frac{\beta^{\prime} \beta+\sigma^{2} \operatorname{tr}\left(\left(X^{\prime} \Sigma^{-1} X\right)^{-1}\right)}{\beta^{\prime} \beta+\sigma^{2} \operatorname{tr}\left(\left(X^{\prime} \Sigma^{-1} X\right)^{-1}\right)}=1, \\
\operatorname{MSE}(\widehat{\beta}(s), \beta)-\operatorname{MSE}(\widehat{\beta}, \beta)<0 \Longleftrightarrow\left\{\begin{array}{l}
0<s<1, \quad s_{1} \leq 0 \Longleftrightarrow \beta^{\prime} \beta \leq \sigma^{2} \operatorname{tr}\left(\left(X^{\prime} \Sigma^{-1} X\right)^{-1}\right) \\
s_{1} \leq s<1,
\end{array} s_{1}>0 \Longleftrightarrow \beta^{\prime} \beta>\sigma^{2} \operatorname{tr}\left(\left(X^{\prime} \Sigma^{-1} X\right)^{-1}\right) .\right.
\end{gathered} .
$$

3. Consider Bayesian approach for estimating β in 1.
(1) Find likelihood function $L(\beta)$ and $f_{1}(\beta)$ such that $L(\beta) \propto f_{1}(\beta)$.
(10 points)

$$
\begin{aligned}
L(\beta) & =\frac{1}{(2 \pi)^{n / 2}\left|\sigma^{2} \Sigma\right|^{1 / 2}} \exp \left[-\frac{1}{2 \sigma^{2}}(Y-X \beta)^{\prime} \Sigma^{-1}(Y-X \beta)\right] \\
& =\frac{1}{\left(2 \pi\left|\sigma^{2} \Sigma\right|^{1 / 2}\right.} \exp \left(-\frac{1}{2 \sigma^{2}} Y^{\prime} \Sigma^{-1} Y\right) \exp \left(-\frac{\beta^{\prime} X^{\prime} \Sigma^{-1} X \beta-2 \beta^{\prime} X^{\prime} \Sigma^{-1} Y}{2 \sigma^{2}}\right) \\
& \propto f_{1}(\beta) \text { where } \\
f_{1}(\beta) & =\exp \left(-\frac{\beta^{\prime} X^{\prime} \Sigma^{-1} X \beta-2 \beta^{\prime} X^{\prime} \Sigma^{-1} Y}{2 \sigma^{2}}\right) .
\end{aligned}
$$

(2) With prior $\beta \sim N\left(\beta_{0}, \Sigma_{0}\right)$, its pdf $f_{\beta}(\beta) \propto f_{0}(\beta)$. This $f_{0}(\beta)$ was given in the lecture. Based on the relation $f_{\beta \mid Y}(\beta) \propto f_{0}(\beta) f_{1}(\beta)$, find the posterior distribution of β given Y.
(20 points)
With $f_{0}(\beta)=\exp \left(\frac{\beta^{\prime} \Sigma_{0}^{-1} \beta-2 \beta^{\prime} \Sigma_{0}^{-1} \beta_{0}}{-2}\right)$ from class, and $f_{1}(\beta)$ in (1),

$$
\begin{aligned}
& f_{0}(\beta) f_{1}(\beta)=\exp \left[\frac{\beta^{\prime}\left(\Sigma_{0}^{-1}+\frac{X^{\prime} \Sigma^{-1} X}{\sigma^{2}}\right) \beta-2 \beta^{\prime}\left(\Sigma_{0}^{-1} \beta_{0}+\frac{X^{\prime} \Sigma^{-1} Y}{\sigma^{2}}\right)}{-2}\right] \\
= & \exp \left[\frac{\beta^{\prime}\left(\Sigma_{0}^{-1}+\frac{X^{\prime} \Sigma^{-1} X}{\sigma^{2}}\right) \beta-2 \beta^{\prime}\left(\Sigma_{0}^{-1}+\frac{X^{\prime} \Sigma^{-1} X}{\sigma^{2}}\right)\left(\Sigma_{0}^{-1}+\frac{X^{\prime} \Sigma^{-1} X}{\sigma^{2}}\right)^{-1}\left(\Sigma_{0}^{-1} \beta_{0}+\frac{X^{\prime} \Sigma^{-1} Y}{\sigma^{2}}\right)}{-2}\right] \\
\propto & \exp \left\{\frac{\left[\beta-\left(\Sigma_{0}^{-1}+\frac{X^{\prime} \Sigma^{-1} X}{\sigma^{2}}\right)^{-1}\left(\Sigma_{0}^{-1} \beta_{0}+\frac{X^{\prime} \Sigma^{-1} Y}{\sigma^{2}}\right)\right]^{\prime}\left(\Sigma_{0}^{-1}+\frac{X^{\prime} \Sigma^{-1} X}{\sigma^{2}}\right)\left[\beta-\left(\Sigma_{0}^{-1}+\frac{X^{\prime} \Sigma^{-1} X}{\sigma^{2}}\right)^{-1}\left(\Sigma_{0}^{-1} \beta_{0}+\frac{X^{\prime} \Sigma^{-1} Y}{\sigma^{2}}\right)\right]}{-2}\right\} .
\end{aligned}
$$

Hence $\beta \left\lvert\, Y \sim N\left(\left(\Sigma_{0}^{-1}+\frac{X^{\prime} \Sigma^{-1} X}{\sigma^{2}}\right)^{-1}\left(\Sigma_{0}^{-1} \beta_{0}+\frac{X^{\prime} \Sigma^{-1} Y}{\sigma^{2}}\right),\left(\Sigma_{0}^{-1}+\frac{X^{\prime} \Sigma^{-1} X}{\sigma^{2}}\right)^{-1}\right)\right.$
(3) Find the Bayesian estimator $\widehat{\beta}_{B}$ for β and express it as a weighted average of β_{0} and $\widehat{\beta}$ in 1.

Let $W_{1}=\Sigma_{0}^{-1}>0, W_{2}=\frac{X^{\prime} \Sigma^{-1} X}{\sigma^{2}}>0$ and $W=W_{1}+W_{2}>0$.
With the BLUE for $\beta, \widehat{\beta}=\left(X^{\prime} \Sigma^{-1} X\right)^{-1} X^{\prime} \Sigma^{-1} Y$,

$$
\begin{aligned}
\widehat{\beta}_{B} & =E(\beta \mid Y)=\left(\Sigma_{0}^{-1}+\frac{X^{\prime} \Sigma^{-1} X}{\sigma^{2}}\right)^{-1}\left(\Sigma_{0}^{-1} \beta_{0}+\frac{X^{\prime} \Sigma^{-1} Y}{\sigma^{2}}\right) \\
& =\left(W_{1}+W_{2}\right)^{-1}\left(W_{1} \beta_{0}+\frac{X^{\prime} \Sigma^{-1} X}{\sigma^{2}}\left(X^{\prime} \Sigma^{-1} X\right)^{-1} X^{\prime} \Sigma^{-1} Y\right) \\
& =W^{-1}\left(W_{1} \beta_{0}+W_{2} \widehat{\beta}\right)
\end{aligned}
$$

is a weighted average of β_{0} and $\widehat{\beta}$ with weight matrices W_{1} and W_{2}.

