Name:

1. For $Y=X \beta+\epsilon$ with $\epsilon \sim\left(0, \sigma^{2} \Sigma\right)$ under $G \beta=b$, the collection of all restricted generalized least square estimators for β is

$$
\operatorname{RGLSE}_{\Sigma^{-1}}(\beta)=\widehat{\beta}+\left(I-G^{+} G\right) \mathcal{N}\left(X\left(I-G^{+} G\right)\right)
$$

where $\widehat{\beta}=G^{+} b+\left[\Sigma^{-1 / 2} X\left(I-G^{+} G\right)\right]^{+} \Sigma^{-1 / 2}\left(Y-X G^{+} b\right)$.
Show that $\widehat{\beta} \in \operatorname{RGLSE}_{\Sigma^{-1}}(\beta)$, and has minimum norm among all estimators in $\operatorname{RGLSE}_{\Sigma^{-1}}(\beta)$.
(25 points)

Note that $0 \in \mathcal{N}\left(X\left(I-G^{+} G\right)\right)$. So

$$
\widehat{\beta}=\widehat{\beta}+0=\widehat{\beta}+\left(I-G^{+} G\right) 0 \in \widehat{\beta}+\left(I-G^{+} G\right) \mathcal{N}\left(X\left(I-G^{+} G\right)\right)=\operatorname{RGLSE}_{\Sigma^{-1}}(\beta) .
$$

Thus $\widehat{\beta} \in \operatorname{RGLSE}_{\Sigma^{-1}}(\beta)$.
For $\left(I-G^{+} G\right) Z$ with $Z \in \mathcal{N}\left(X\left(I-G^{+} G\right)\right)$, let $T=\Sigma^{-1 / 2} X\left(I-G^{+} G\right)$ and $Y_{*}=Y-X G^{+} b$.
Then $\quad\left\langle\widehat{\beta},\left(I-G^{+} G\right) Z\right\rangle=Z^{\prime}\left(I-G^{+} G\right) \widehat{\beta}$

$$
=Z^{\prime}\left(I-G^{+} G\right) G^{+} b+Z^{\prime}\left(I-G^{+} G\right)\left[\Sigma^{-1 / 2} X\left(I-G^{+} G\right)\right]^{+} \Sigma^{-1 / 2}\left(Y-X G^{+} b\right)
$$

$$
=Z^{\prime}\left(I-G^{+} G\right) G^{+} b+Z^{\prime}\left(I-G^{+} G\right) T^{+} \Sigma^{-1 / 2} Y_{*}
$$

Here $Z^{\prime}\left(I-G^{+} G\right) G^{+} b=Z^{\prime}\left(G^{+}-G^{+}\right) b=0$, and

$$
\begin{aligned}
& Z^{\prime}\left(I-G^{+} G\right) T^{+} \Sigma^{-1 / 2} Y_{*}=Z^{\prime}\left(I-G^{+} G\right) T^{+} T T^{+} \Sigma^{-1 / 2} Y_{*} \\
= & Z^{\prime}\left(I-G^{+} G\right) T^{\prime}\left(T^{+}\right)^{\prime} T^{+} \Sigma^{-1 / 2} Y_{*}=Z^{\prime}\left(I-G^{+} G\right) X^{\prime} \Sigma^{-1 / 2}\left(T^{+}\right)^{\prime} T^{+} \Sigma^{-1 / 2} Y_{*} \\
= & {\left[X\left(I-G^{+} G\right) Z\right]^{\prime} \Sigma^{-1 / 2}\left(T^{+}\right)^{\prime} T^{+} \Sigma^{-1 / 2} Y_{*}=0^{\prime} \Sigma^{-1 / 2}\left(T^{+}\right)^{\prime} T^{+} \Sigma^{-1 / 2} Y_{*}=0 . }
\end{aligned}
$$

So $\widehat{\beta} \perp\left(I-G^{+} G\right) Z$ for all $Z \in \mathcal{N}\left(X\left(I-G^{+} G\right)\right)$.
For $\widetilde{\beta} \in \operatorname{RGLSE}_{\Sigma^{-1}}(\beta)=\widehat{\beta}+\left(I-G^{+} G\right) \mathcal{N}\left(X\left(I-G^{+} G\right)\right)$,

$$
\widetilde{\beta}=\widehat{\beta}+\left(I-G^{+} G\right) Z \text { for some } Z \in \mathcal{N}\left(X\left(I-G^{+} G\right)\right) .
$$

By Pythagorean Theorem,

$$
\|\widetilde{\beta}\|^{2}=\left\|\widehat{\beta}+\left(I-G^{+} G\right) Z\right\|^{2}=\|\widehat{\beta}\|^{2}+\left\|\left(I-G^{+} G\right) Z\right\|^{2} \geq\|\widehat{\beta}\|^{2}
$$

Thus $\widehat{\beta} \in \operatorname{RGLSE}_{\Sigma^{-1}}(\beta)$ and has minimum norm in the class of estimators.
2. If $L Y+d$ is P1UE for $H \beta$ under $G \beta=b$ in Model A: $Y=X \beta+\epsilon, \epsilon \sim\left(0, \sigma^{2} \Sigma\right)$, then $L Y_{*}$ is a LUE for $H\left(I-G^{+} G\right) \eta$ in Model B: $Y_{*}=X_{*} \eta+\epsilon, \epsilon \sim\left(0, \sigma^{2} \Sigma\right)$ and $X_{*}=X\left(I-G^{+} G\right)$. Prove this statement.
$L Y+d$ is P1UE for $H \beta$ under $G \beta=b$ in Model A. So, by Lecture L06,

$$
L X\left(I-G^{+} G\right)=H\left(I-G^{+} G\right) \text {, i.e., } L X_{*}=H\left(I-G^{+} G\right) .
$$

In Model B, $L Y_{*}$ is a LUE for $H\left(I-G^{+} G\right) \eta$ if and only if

$$
E\left(L Y_{*}\right) \equiv H\left(I-G^{+} G\right) \eta \Longleftrightarrow L X_{*} \eta \equiv H\left(I-G^{+} G\right) \eta \text { for all } \eta \Longleftrightarrow L X_{*}=H\left(I-G^{+} G\right) .
$$

Thus $L Y_{*}$ is LUE for $H\left(I-G^{+} G\right) \eta$ in Model B.
3. For Model A: $Y=X \beta+\epsilon, \epsilon \sim\left(0, \sigma^{2} \Sigma\right)$, under $G \beta=b, \beta=G^{+} b+\left(I-G^{+} G\right) \eta$. So $H \beta=H G^{+} b+H\left(I-G^{+} G\right) \eta$.
Let $\widehat{\xi}$ be the BLUE for $H\left(I-G^{+} G\right) \eta$ in Model B: $Y_{*}=X_{*} \eta+\epsilon, \epsilon \sim\left(0, \sigma^{2} \Sigma\right)$.
With $Y_{*}=Y-X G^{+} b$ and $X_{*}=X\left(I-G^{+} G\right)$, show that $H G^{+} b+\widehat{\xi}$ is the best PIUE for $H \beta$ under $G \beta=b$ in Model A.
(25 points)

BLUE for $H\left(I-G^{+} G\right) \eta$ in Model B: $Y_{*}=X_{*} \eta+\epsilon, \epsilon \sim\left(0, \sigma^{2} \Sigma\right)$, is

$$
\widehat{\xi}=H\left(I-G^{+} G\right)\left(\Sigma^{-1 / 2} X_{*}\right)^{+} \Sigma^{-1 / 2} Y_{*} .
$$

Thus

$$
H G^{+} b+\widehat{\xi}=H G^{+} b+H\left(I-G^{+} G\right)\left(\Sigma^{-1 / 2} X_{*}\right)^{+} \Sigma^{-1 / 2} Y_{*} .
$$

With $Y_{*}=Y-X G^{+} b$ and $X_{*}=X\left(I-G^{+} G\right)$,

$$
\begin{aligned}
H G^{+} b+\widehat{\xi} & =H G^{+} b+H\left(I-G^{+} G\right)\left(\Sigma^{-1 / 2} X_{*}\right)^{+} \Sigma^{-1 / 2} Y_{*} \\
& =H G^{+} b+H\left(I-G^{+} G\right)\left[\Sigma^{-1 / 2} X\left(I-G^{+} G\right)\right]^{+} \Sigma^{-1 / 2}\left(Y-X G^{+} b\right) \\
& =H G^{+} b+H\left[\Sigma^{-1 / 2} X\left(I-G^{+} G\right)\right]^{+} \Sigma^{-1 / 2}\left(Y-X G^{+} b\right) .
\end{aligned}
$$

By Lecture 06, this $H G^{+} b+\widehat{\xi}$ is the best PIUE for $H \beta$ under $G \beta=b$.
4. Present the followings
(25 points)
(1) For Model $Y=X \beta+\epsilon, \epsilon \sim\left(0, \sigma^{2} \Sigma\right)$, write down the best PIUE for $H \beta$ under the restriction $G \beta=b$.
$H G^{+} b+H\left[\Sigma^{-1 / 2} X\left(I-G^{+} G\right)\right]^{+} \Sigma^{-1 / 2}\left(Y-X G^{+} b\right)$.
(2) For Model $Y=X \beta+\epsilon, \epsilon \sim\left(0, \sigma^{2} I_{n}\right)$, by (1) write down the best PIUE for $H \beta$ under the restriction $G \beta=b$.
$H G^{+} b+H\left[X\left(I-G^{+} G\right)\right]^{+}\left(Y-X G^{+} b\right)$.
(3) For Model $Y=X \beta+\epsilon, \epsilon \sim\left(0, \sigma^{2} \Sigma\right)$, by (1) write down the BLUE for $H \beta$ under $G \beta=0$. $H\left[\Sigma^{-1 / 2} X\left(I-G^{+} G\right)\right]^{+} \Sigma^{-1 / 2} Y$.
(4) For Model $Y=X \beta+\epsilon, \epsilon \sim\left(0, \sigma^{2} I_{n}\right)$, by (1) write down the BLUE for $H \beta$ under $G \beta=0$.
$H\left[X\left(I-G^{+} G\right)\right]^{+} Y$.
(5) For Model $Y=X \beta+\epsilon, \epsilon \sim\left(0, \sigma^{2} \Sigma\right)$, by (1) write down the BLUE for $H \beta$. $H\left(\Sigma^{-1 / 2} X\right)^{+} \Sigma^{-1 / 2} Y$.
(6) For Model $Y=X \beta+\epsilon, \epsilon \sim\left(0, \sigma^{2} I_{n}\right)$, by (1) write down the BLUE for $H \beta$. $H X^{+} Y$.

