1. Suppose $Y \sim N\left(X \beta, \sigma^{2} \Sigma\right)$ where $X=\left(X_{I}, X_{I I}\right) \in R^{n \times p}$ with $\operatorname{rank}(X)=r$ and $X_{I} \in R^{n \times p_{1}}$ with $\operatorname{rank}\left(X_{I}\right)=r_{1}$.
(1) Show that $\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}\left(\Sigma^{-1 / 2} X_{I}\right)\left(\Sigma^{-1 / 2} X_{I}\right)^{+}=\left(\Sigma^{-1 / 2} X_{I}\right)\left(\Sigma^{-1 / 2} X_{I}\right)^{+}$
(2) Show that $\left(\Sigma^{-1 / 2} X_{I}\right)\left(\Sigma^{-1 / 2} X_{I}\right)^{+}\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}=\left(\Sigma^{-1 / 2} X_{I}\right)\left(\Sigma^{-1 / 2} X_{I}\right)^{+}$
(3) Let $A=\frac{\left(\Sigma^{-1 / 2} X\right)\left(\Sigma^{-1 / 2} X\right)^{+}-\left(\Sigma^{-1 / 2} X_{I}\right)\left(\Sigma^{-1 / 2} X_{I}\right)^{+}}{\sigma^{2}}$.

Find the distribution for $Z^{2}=\left[\Sigma^{-1 / 2}(Y-X \beta)\right]^{\prime} A\left[\Sigma^{-1 / 2}(Y-X \beta)\right]$.
2. File mydata.dat in HW07 contains variable y and character variable Sid that identifies 4 levels of a factor in one-way ANOVA. Find ANOVA table for this ANOVA model. Keep 4 digits after decimal point.
3. File T6-10.dat in HW08 contains variables y, x_{1}, x_{2} and a character variable type. Find ANOVA table for regression $y=\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon$. Keep 4 digits after decimal point.

