Stat873 HW06

For $Y = X\beta + \epsilon$, $\epsilon \sim N(0, \sigma^2 \Sigma)$, $X \in \mathbb{R}^{n \times p}$ has full column rank. $\theta = l'\beta \in \mathbb{R}$ has BLUE $l'\hat{\beta}$ where $\hat{\beta}$ is the minimum norm $\text{GLSE}_{\Sigma^{-1}}(\beta)$.

- 1. Find $\sigma^2_{l'\hat{\beta}}$, the variance of $l'\hat{\beta}$.
- 2. Replacing parameters in the expression of $\sigma^2_{l'\hat{\beta}}$ by their UEs one can get the estimated the variance of $l'\hat{\beta}$, $S^2_{l'\hat{\beta}}$. Find $S^2_{l'\hat{\beta}}$.
- 3. It is known that $F(1, n-p) = [t(n-p)]^2$. Derive the relation of $F_{\alpha}(1, n-p)$ and $t_{\alpha/2}(n-p)$.
- 4. Express the 1α confidence interval for $\theta = l'\beta$ derived in the lecture using the cut-off point for t(n-p) distribution and $S_{l'\hat{\beta}}$.