Stat873 HW05

- 1. For $\beta \in \mathbb{R}^p$ in $Y = X\beta + \epsilon$, $\epsilon \sim (0, \sigma^2 I_n)$, with full column rank $X \in \mathbb{R}^{n \times p}$, $\hat{\beta}$ is the BLUE and $\hat{\beta}(q)$ is a principal component estimator.
 - (1) Is $\hat{\beta}(q)$ a linear biased estimator? Why?
 - (2) Show that $\|\widehat{\beta}(q)\|^2 \le \|\widehat{\beta}\|^2$.
- 2. In order to find principal component estimator for β in $Y = X\beta + \epsilon$, $\epsilon \sim (0, \sigma^2 \Sigma)$, convert the model equivalently to $Y_* = X_*\beta + \epsilon_*, \epsilon_* \sim (0, \sigma^2 I_n)$.
 - (1) Point out the relations of Y_* and Y; X_* and X; and ϵ_* and ϵ .
 - (2) Based on the second model, results in the lecture, and relations in (1), describe the principal component estimator for β in the first model.
- 3. Let $\hat{\beta}_1$ be the BLUE of β in $Y_1 = X_1\beta + \epsilon_1$, $\epsilon_1 \sim (0, \sigma^2 I_n)$; and $\hat{\beta}_2$ be the BLUE of β in $Y_2 = X_2\beta + \epsilon_2$, $\epsilon_2 \sim (0, \sigma^2 \Sigma)$. Write the mixed BLUE of β as weighted average of $\hat{\beta}_1$ and $\hat{\beta}_2$ and point out the matrix weights.