Stat873 HW04

- 1. Consider Model $Y = X\beta + \epsilon, \epsilon \sim N(0, \sigma^2 \Sigma)$.
 - (1) Among all maximum likelihood estimators for β , point out the one with minimum norm.
 - (2) Which norm was used in (1)? Why not $\|\cdot\|_{\Sigma^{-1}}$?
 - (3) Suppose X has full column rank. Find the distribution for the estimator in (1).
- 2. In Model $Y = X\beta + \epsilon$, $\epsilon \sim N(0, \sigma^2 I_n)$, X has full column rank, and $X'X = P\Lambda P'$ is the EVD.
 - (1) Let $\hat{\beta}$ be the MVUE for β . Write out the expression for $\hat{\beta}$ and its distribution.
 - (2) Let $\widehat{\beta}(K) = [P(\Lambda + K)P']^{-1}X'Y$ be the ridge estimator for β . Express matrix A via P, Λ and K such that $\widehat{\beta}(K) = A\widehat{\beta}$.
 - (3) Find the expression for $\operatorname{Cov}(\widehat{\beta}(K))$ via σ^2 , P, Λ and K only. Hint: $\operatorname{Cov}(\widehat{\beta}(K)) = A[\operatorname{Cov}(\widehat{\beta})]A'$.
 - (4) Based on (3) find $\operatorname{tr}[\operatorname{Cov}(\widehat{\beta}(K))]$ via σ^2 , Λ and K only.