Stat873 HW01

- 1. \mathcal{A} is an affine set in linear space V. Then $0 \in \mathcal{A} \iff \mathcal{A}$ is a subspace. Show \Rightarrow only. Hint: For $x, y \in \mathcal{A}$, one needs to show $\alpha x + \beta y \in \mathcal{A}$ for all scalars α and β . Discuss three cases: (i) $\alpha + \beta \neq 0$, (ii) $\alpha + \beta = 0$ and $\alpha = 0$, (iii) $\alpha + \beta = 0$, but $\alpha \neq 0$.
- 2. In linear space V,

 \mathcal{A} is an affine set $\iff \mathcal{A} = x_0 + S$ where $x_0 \in V$ and S is a subspace in V.

Show \Rightarrow only. Hint: Take $x_0 \in \mathcal{A}$. Then $\mathcal{A} = x_0 + \mathcal{A} - x_0$. Using 1 to show $\mathcal{A} - x_0$ is a space.

- 3. $\mathcal{A} = x_0 + S$ is an affine set in V where S is a subspace. If $x_1 \in \mathcal{A}$, then $\mathcal{A} = x_1 + S$. Show $\mathcal{A} \supset x_1 + S$ only.
- 4. For affine set $\mathcal{A} = x_0 + S$ in 3, $x_1 = x_0 \pi(x_0|S) \in x_0 + S = \mathcal{A}$. So $\mathcal{A} = x_1 + S$. Show that among all $x \in \mathcal{A}$, $||x_1||^2 \leq ||x||^2$.