Stat873

1. \mathcal{A} is an affine set in linear space V. Then Show \Rightarrow only.
Hint: For $x, y \in \mathcal{A}$, one needs to show $\alpha x+\beta y \in \mathcal{A}$ for all scalars α and β.
Discuss three cases: (i) $\alpha+\beta \neq 0$, (ii) $\alpha+\beta=0$ and $\alpha=0$, (iii) $\alpha+\beta=0$, but $\alpha \neq 0$.
2. In linear space V,

$$
\mathcal{A} \text { is an affine set } \Longleftrightarrow \mathcal{A}=x_{0}+S \text { where } x_{0} \in V \text { and } S \text { is a subspace in } V \text {. }
$$

Show \Rightarrow only.
Hint: Take $x_{0} \in \mathcal{A}$. Then $\mathcal{A}=x_{0}+\mathcal{A}-x_{0}$. Using 1 to show $\mathcal{A}-x_{0}$ is a space.
3. $\mathcal{A}=x_{0}+S$ is an affine set in V where S is a subspace. If $x_{1} \in \mathcal{A}$, then $\mathcal{A}=x_{1}+S$. Show $\mathcal{A} \supset x_{1}+S$ only.
4. For affine set $\mathcal{A}=x_{0}+S$ in $3, x_{1}=x_{0}-\pi\left(x_{0} \mid S\right) \in x_{0}+S=\mathcal{A}$. So $\mathcal{A}=x_{1}+S$. Show that among all $x \in \mathcal{A},\left\|x_{1}\right\|^{2} \leq\|x\|^{2}$.

