Name:

1. For Model $Y \sim N(X\beta, \sigma^2\Sigma)$ where $X \in \mathbb{R}^{n \times p}$ with $\operatorname{rank}(X) = p$ and $1_n \notin \mathcal{R}(X)$, $\mathbb{R}^2 = \frac{SSM}{SSTO}$, called the coefficient of determination, is the proportion of the variation in Y explained by the model.

(1) Define F in ANOVA table via \mathbb{R}^2 .

(10 points)

(2) Replacing SSE and SSTO in $R^2 = \frac{SSM}{SSTO} = \frac{SSTO - SSE}{SSTO}$ by MSE and MSTO we obtain R^2_{adj} , the adjusted R^2 . Express F via R^2_{adj} . (20 points)

(3) R_{adj}^2 could assume negative values. Find the condition on R^2 for $R_{adj}^2 < 0$. (20 points)

- 2. Model M: $Y \sim N(X\beta, \sigma^2 I_n)$ where $X = (X_I, X_{II}) \in R^{n \times p}$ has full column rank and $X_I \in R^{n \times p_1}$. With $\beta = \begin{pmatrix} \beta_I \\ \beta_{II} \end{pmatrix} \in R^p$ where $\beta_I \in R^{p_1}$, $H_0 : \beta_{II} = 0$ reduces M to Model M_{*}. Let SSE and SSE_{*} be from M and M_{*}. Define SSD=SSE_{*}-SSE.
 - (1) Fill out the form below. Write SS as quadratic forms. (15 points)

Source	SS	DF
Difference	SSD=	
Error M	SSE=	
Error M_*	SSE _* =	

(2) Derive the distribution of $\frac{SSD}{\sigma^2}$ under H_0 . (20 points)

(3) Show that SSD and SSE are independent. (15 points)