Name:

1. For Model $Y \sim N\left(X \beta, \sigma^{2} \Sigma\right)$ where $X \in R^{n \times p}$ with $\operatorname{rank}(X)=p$ and $1_{n} \notin \mathcal{R}(X), R^{2}=\frac{S S M}{S S T O}$, called the coefficient of determination, is the proportion of the variation in Y explained by the model.
(1) Define F in ANOVA table via R^{2}.
(10 points)
(2) Replacing SSE and SSTO in $R^{2}=\frac{S S M}{S S T O}=\frac{S S T O-S S E}{S S T O}$ by MSE and MSTO we obtain $R_{a d j}^{2}$, the adjusted R^{2}. Express F via $R_{a d j}^{2}$.
(20 points)
(3) $R_{\text {adj }}^{2}$ could assume negative values. Find the condition on R^{2} for $R_{a d j}^{2}<0$. (20 points)
2. Model M: $Y \sim N\left(X \beta, \sigma^{2} I_{n}\right)$ where $X=\left(X_{I}, X_{I I}\right) \in R^{n \times p}$ has full column rank and $X_{I} \in R^{n \times p_{1}}$. With $\beta=\binom{\beta_{I}}{\beta_{I I}} \in R^{p}$ where $\beta_{I} \in R^{p_{1}}, H_{0}: \beta_{I I}=0$ reduces M to Model M_{*}. Let SSE and SSE_{*} be from M and M_{*}. Define $\mathrm{SSD}=\mathrm{SSE}_{*}-\mathrm{SSE}$.
(1) Fill out the form below. Write SS as quadratic forms.
(15 points)

Source	SS	DF
Difference	$\mathrm{SSD}=\square$	-
Error M	$\mathrm{SSE}=\square$	-
Error M_{*}	$\mathrm{SSE}_{*}=\square$	

(2) Derive the distribution of $\frac{S S D}{\sigma^{2}}$ under H_{0}.
(3) Show that $S S D$ and $S S E$ are independent.

