Exam 2

Name:

- 1. In model $Y = X\beta + \epsilon, \ \epsilon \sim N(0, \ \sigma^2 \Sigma), \ X \in \mathbb{R}^{n \times p}$ has full column rank.
 - (1) Write out $\hat{\beta}$, the MVUE for β , and its distribution. (5 points)
 - (2) Write out the two risks, $MSEM(\hat{\beta}, \beta)$ and $MSE(\hat{\beta}, \beta)$. (10 points)
- 2. Let $\widehat{\beta}(s) = s\widehat{\beta}$ where 0 < s < 1 and $\widehat{\beta}$ is in 1 (1).
 - (1) Show that $\hat{\beta}(s)$ is a linear biased estimator for β . (10 points)
 - (2) Find the risk $MSE(\hat{\beta}(s), \beta)$. (10 points)
 - (3) Find a sufficient and necessary condition on s for $\hat{\beta}(s)$ to dominate $\hat{\beta}$ by MSE(\cdot, \cdot). Hint: Write MSE($\hat{\beta}(s), \beta$) – MSE($\hat{\beta}, \beta$) as a function of s. (20 points)
- 3. Consider Bayesian approach for estimating β in 1.
 - (1) Find likelihood function $L(\beta)$ and $f_1(\beta)$ such that $L(\beta) \propto f_1(\beta)$. (10 points)
 - (2) With prior $\beta \sim N(\beta_0, \Sigma_0)$, its pdf $f_{\beta}(\beta) \propto f_0(\beta)$. This $f_0(\beta)$ was given in the lecture. Based on the relation $f_{\beta|Y}(\beta) \propto f_0(\beta)f_1(\beta)$, find the posterior distribution of β given Y. (20 points)
 - (3) Find the Bayesian estimator $\hat{\beta}_B$ for β and express it as a weighted average of β_0 and $\hat{\beta}$ in 1. (15 points)