Stat873	Exam 1	Feb. $7, 2024$
---------	--------	----------------

Name:

1. For $Y = X\beta + \epsilon$ with $\epsilon \sim (0, \sigma^2 \Sigma)$ under $G\beta = b$, the collection of all restricted generalized least square estimators for β is

$$\operatorname{RGLSE}_{\Sigma^{-1}}(\beta) = \widehat{\beta} + (I - G^+ G) \mathcal{N} \left(X (I - G^+ G) \right)$$

where $\hat{\beta} = G^+ b + [\Sigma^{-1/2} X (I - G^+ G)]^+ \Sigma^{-1/2} (Y - XG^+ b).$ Show that $\hat{\beta} \in \text{RGLSE}_{\Sigma^{-1}}(\beta)$, and has minimum norm among all estimators in $\text{RGLSE}_{\Sigma^{-1}}(\beta)$. (25 points) 2. If LY + d is P1UE for $H\beta$ under $G\beta = b$ in Model A: $Y = X\beta + \epsilon$, $\epsilon \sim (0, \sigma^2 \Sigma)$, then LY_* is a LUE for $H(I - G^+G)\eta$ in Model B: $Y_* = X_*\eta + \epsilon$, $\epsilon \sim (0, \sigma^2 \Sigma)$ and $X_* = X(I - G^+G)$. Prove this statement. (25 points)

3. For Model A: $Y = X\beta + \epsilon$, $\epsilon \sim (0, \sigma^2 \Sigma)$, under $G\beta = b$, $\beta = G^+ b + (I - G^+ G)\eta$. So $H\beta = HG^+ b + H(I - G^+ G)\eta$. Let $\hat{\xi}$ be the BLUE for $H(I - G^+ G)\eta$ in Model B: $Y_* = X_*\eta + \epsilon$, $\epsilon \sim (0, \sigma^2 \Sigma)$. With $Y_* = Y - XG^+ b$ and $X_* = X(I - G^+ G)$, show that $HG^+ b + \hat{\xi}$ is the best PIUE for $H\beta$ under $G\beta = b$ in Model A. (25 points) 4. Present the followings

(25 points)

- (1) For Model $Y = X\beta + \epsilon$, $\epsilon \sim (0, \sigma^2 \Sigma)$, write down the best PIUE for $H\beta$ under the restriction $G\beta = b$.
- (2) For Model $Y = X\beta + \epsilon$, $\epsilon \sim (0, \sigma^2 I_n)$, by (1) write down the best PIUE for $H\beta$ under the restriction $G\beta = b$.
- (3) For Model $Y = X\beta + \epsilon$, $\epsilon \sim (0, \sigma^2 \Sigma)$, by (1) write down the BLUE for $H\beta$ under $G\beta = 0$.
- (4) For Model $Y = X\beta + \epsilon$, $\epsilon \sim (0, \sigma^2 I)$, by (1) write down the BLUE for $H\beta$ under $G\beta = 0$.
- (5) For Model $Y = X\beta + \epsilon$, $\epsilon \sim (0, \sigma^2 \Sigma)$, by (1) write down the BLUE for $H\beta$.
- (6) For Model $Y = X\beta + \epsilon$, $\epsilon \sim (0, \sigma^2 I_n)$, by (1) write down the BLUE for $H\beta$.