Name:

1. For $Y=X \beta+\epsilon$ with $\epsilon \sim\left(0, \sigma^{2} \Sigma\right)$ under $G \beta=b$, the collection of all restricted generalized least square estimators for β is

$$
\operatorname{RGLSE}_{\Sigma^{-1}}(\beta)=\widehat{\beta}+\left(I-G^{+} G\right) \mathcal{N}\left(X\left(I-G^{+} G\right)\right)
$$

where $\widehat{\beta}=G^{+} b+\left[\Sigma^{-1 / 2} X\left(I-G^{+} G\right)\right]^{+} \Sigma^{-1 / 2}\left(Y-X G^{+} b\right)$.
Show that $\widehat{\beta} \in \operatorname{RGLSE}_{\Sigma^{-1}}(\beta)$, and has minimum norm among all estimators in $\operatorname{RGLSE}_{\Sigma^{-1}}(\beta)$.
(25 points)
2. If $L Y+d$ is P1UE for $H \beta$ under $G \beta=b$ in Model A: $Y=X \beta+\epsilon, \epsilon \sim\left(0, \sigma^{2} \Sigma\right)$, then $L Y_{*}$ is a LUE for $H\left(I-G^{+} G\right) \eta$ in Model B: $Y_{*}=X_{*} \eta+\epsilon, \epsilon \sim\left(0, \sigma^{2} \Sigma\right)$ and $X_{*}=X\left(I-G^{+} G\right)$. Prove this statement.
3. For Model A: $Y=X \beta+\epsilon, \epsilon \sim\left(0, \sigma^{2} \Sigma\right)$, under $G \beta=b, \beta=G^{+} b+\left(I-G^{+} G\right) \eta$. So $H \beta=H G^{+} b+H\left(I-G^{+} G\right) \eta$.
Let $\widehat{\xi}$ be the BLUE for $H\left(I-G^{+} G\right) \eta$ in Model B: $Y_{*}=X_{*} \eta+\epsilon, \epsilon \sim\left(0, \sigma^{2} \Sigma\right)$.
With $Y_{*}=Y-X G^{+} b$ and $X_{*}=X\left(I-G^{+} G\right)$, show that $H G^{+} b+\widehat{\xi}$ is the best PIUE for $H \beta$ under $G \beta=b$ in Model A.
(25 points)

4. Present the followings

(1) For Model $Y=X \beta+\epsilon, \epsilon \sim\left(0, \sigma^{2} \Sigma\right)$, write down the best PIUE for $H \beta$ under the restriction $G \beta=b$.
(2) For Model $Y=X \beta+\epsilon, \epsilon \sim\left(0, \sigma^{2} I_{n}\right)$, by (1) write down the best PIUE for $H \beta$ under the restriction $G \beta=b$.
(3) For Model $Y=X \beta+\epsilon, \epsilon \sim\left(0, \sigma^{2} \Sigma\right)$, by (1) write down the BLUE for $H \beta$ under $G \beta=0$.
(4) For Model $Y=X \beta+\epsilon, \epsilon \sim\left(0, \sigma^{2} I\right)$, by (1) write down the BLUE for $H \beta$ under $G \beta=0$.
(5) For Model $Y=X \beta+\epsilon, \epsilon \sim\left(0, \sigma^{2} \Sigma\right)$, by (1) write down the BLUE for $H \beta$.
(6) For Model $Y=X \beta+\epsilon, \epsilon \sim\left(0, \sigma^{2} I_{n}\right)$, by (1) write down the BLUE for $H \beta$.

