L26: One-way MANOVA

1. One-way MANOVA model
(1) An experiment

A factor; q-levels, q-treatments; q-random response
Univariate: $N\left(\mu_{i}, \sigma^{2}\right), i=1, \ldots, q$. Multivariate $N_{p}\left(\theta_{i}, \Sigma\right)$.
Example: School district; Three specific school district; SAT scores; ($\left.\begin{array}{c}\text { SAT } \\ \text { Household income }\end{array}\right)$
(2) Formulation for the populations
$y=\theta_{1} x_{1}+\cdots+\theta_{q} x_{q}+\epsilon$. Here $x_{i}=\left\{\begin{array}{cc}1 & \text { level } i \\ 0 & \text { otherwise }\end{array}, \epsilon \sim N(0, \Sigma)\right.$.
$y=\left(\theta_{1}, \ldots, \theta_{q}\right)\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{q}\end{array}\right)+\epsilon, \epsilon \sim N(0, \Sigma)$. Thus $y=\Theta x+\epsilon$.
(3) Formulation for data

The n columns of $Y \in R^{p \times n}$ are n observed response y with corresponding n values of x being the n columns of $X \in R^{q \times n}$. Then $Y \sim N_{p \times n}\left(\Theta X, \Sigma, I_{n}\right)$.
Comment: One-way MANOVA fits the frame work of multivariate regression, $y=\beta x+\epsilon$ and $Y \sim N_{p \times n}\left(\beta X, \Sigma, I_{n}\right)$.
2. Estimating Θ and Σ
(1) Estimator of Θ

By the framework for regression, the LSE and MLE of Θ is $\widehat{\Theta}=Y X^{\prime}\left(X X^{\prime}\right)^{-1}$.
Note that $Y \sim N_{p \times n}\left(\Theta X, \Sigma, I_{n}\right)$ represents q samples from the responses to q-treatments. Let n_{i}, \bar{y}_{i} and CSSCP_{i} be from the i th sample. Then $Y X^{\prime} \in R^{p \times q}$ gives the summations of y in q samples, $X X^{\prime}=\operatorname{diag}\left(n_{1}, . ., n_{q}\right)$. Hence $\widehat{\Theta}=\left(\bar{y}_{1}, \ldots, \bar{y}_{q}\right)$.
(2) Matrix E
$E=Y\left[I-X^{\prime}\left(X X^{\prime}\right)^{-1} X\right] Y^{\prime}=\sum_{i=1}^{q} \mathrm{CSSCP}_{i}$ gives the summation of variations within q samples and hence is often denoted by W in ANOVA.
ANOVA specifies q different treatments. Thus the variations between treatments are the ones expected by the model. But the variations within samples are regarded as Errors.
(3) Estimators for Σ

By the framework from regression, $S_{p}=\frac{E}{n-q}$ is an UE for Σ, and $\frac{E}{n}$ is MLE for Σ.
Comments: $\widehat{\Theta} \sim N_{p \times q}\left(\Theta, \Sigma,\left(X X^{\prime}\right)^{-1}\right)$ and $E \sim W_{p \times p}(n-q, \Sigma)$ are independent.

$$
L(\Theta, \Sigma) \leq L\left(\bar{Y}, \frac{E}{n}\right)=\left(\frac{n}{2 \pi e}\right)^{n p / 2}|E|^{-n / 2}
$$

3. Global F-test
(1) H_{0} and $E_{r}=W+B$
H_{0} : The factor is not effective $\Longleftrightarrow H_{0}: \theta_{i}=\theta_{j}$ for all i, j
Under $H_{0}, Y \sim N_{p \times n}\left(\theta_{1} 1_{n}^{\prime}, \Sigma, I_{n}\right)$ is one sample from $N\left(\theta_{1}, \Sigma\right)$ with sample size n, sample mean \bar{y} and CSSCP. Here $E_{r}=C S S C P$ is also denoted by T for total variation-covariation in samples. Write $E_{r}=T=E+H=W+B$. Here $H=B$ is for the variation-covariation between samples.
(2) LRT

By the framework from regression

$$
\begin{aligned}
& H_{0}: \theta_{i}=\theta_{j} \text { for all } i, j \text { versus } H_{a}: \theta_{i}=\theta_{j} \text { for some } i \neq j \\
& \text { Test statistic: } \Lambda=\frac{|W|}{|W+B|} \\
& \text { Reject } H_{0} \text { if } \Lambda<c
\end{aligned}
$$

Here c is determined by $P\left(\Lambda<c \mid H_{0}\right) \leq \alpha$.
By p-value,
$H_{0}: \theta_{i}=\theta_{j}$ for all i, j versus $H_{a}: \theta_{i}=\theta_{j}$ for some $i \neq j$
Test statistic: $\Lambda=\frac{|E|}{|E+H|}$
p-value: $P\left(\Lambda<\Lambda_{o b} \mid H_{0}\right)$.
(3) Implementation
(i) Data: Ex6.9 p304

Treatment	A	B	C
Response	$\binom{9}{3},\binom{6}{2},\binom{9}{7}$	$\binom{0}{4},\binom{2}{0}$	$\binom{3}{8},\binom{1}{9},\binom{2}{7}$

(ii) SAS

```data a; input y1 y2 id $ @@; datalines; 9 3 A 6 2 A 97 A O 4 B 2 0 B 3 8 C 19 C 2 7 C```	```proc anova; class id; model y1 y2=id/nouni; manova h=id/printe printh; run;```

(iii) Output

$$
E=\left(\begin{array}{cc}
10 & 1 \\
1 & 24
\end{array}\right) \text { and } H=\left(\begin{array}{cc}
78 & -12 \\
-12 & 48
\end{array}\right)
$$

Statistic	Value	F Value Num DF Den DF Pr > F			
Wilks' Lambda	0.03845535	8.20	4	8	0.0062
Pillai's Trace	1.54078842	8.39	4	10	0.0031
Hotelling-Lawley Trace	9.94142259	9.94	4	4	0.0235
Roy's Greatest Root	8.07638502	20.19	2	5	0.0040

(iv) Test report
$H_{0}: \alpha_{i}=0$ for all $i$ vs $H_{a}: \alpha_{i} \neq 0$ for some $i$
Test Statistic: $\Lambda=\frac{|W|}{|B+W|}$
$p$-value: $P\left(\Lambda \leq \Lambda_{o b} \mid H_{0}\right)$.
$\Lambda=0.03846$
$p$-value: $P\left(\Lambda<0.03846 \mid H_{0}\right) \approx P(F(4,8)>8.20)=0.0062$
Reject $H_{0}$. The model is useful.
Comment: Replacing SAS "proc anova;" by "proc glm;" produces the same output.

1. SAS for one-way MANOVA
(1) Data in an example

We study how to use SAS for one-way ANOVA via an example with $p=2, q=3, n_{1}=3, n_{2}=2$ and $n_{3}=3$.

Treatment	A	B	C
Response	$\binom{9}{3},\binom{6}{2},\binom{9}{7}$	$\binom{0}{4},\binom{2}{0}$	$\binom{3}{8},\binom{1}{9},\binom{2}{7}$

(2) SAS data set

We create a SAS data set that contains responses $y_{1}, y_{2}$; indicators $x_{1}, x_{2}, x_{3}$; character variable id and $z-1=x_{1}-x_{3}$ and $z_{2}=x_{2}-x_{3}$ for late use.

```
data a;
 input y1 y2 x1 x2 x3 id $ @@;
 z1=x1-x3; z2=x2-x3;
 datalines;
 93100 A 6 2 100 A
 97100A04010 B
 20010 B 3 8 0 0 1 C
 19001C27001 C
 ;
```

(3) Problems under the consideration

Testing on $H_{0}: \mu_{x}=\mu_{y}$ against $H_{a}: \mu_{x} \neq \mu_{y}$. Matrices $E$ and $H$.
2. SAS
(1) The simplest way is to use proc anova.
proc anova;
class id;
model y1 y2=id/nouni;
manova h=id/printe printh;
run;
$\Longrightarrow E=\left(\begin{array}{cc}10 & 1 \\ 1 & 24\end{array}\right), H=\left(\begin{array}{cc}78 & -12 \\ -12 & 48\end{array}\right), \Lambda=0.038, p$-value: 0.0062.
(2) Alternatively, it can be formulated as a regression without intercept $y=\mu_{1} x_{1}+\mu_{2} x_{2}+\mu_{3} x_{3}+\epsilon$ and we test $\mu_{1}=\mu_{2}=\mu_{3}$.

```
proc reg;
 model y1 y2=x1 x2 x3/noint noprint;
 mtest x1=x2, x2=x3/print;
 run;
```

$\Longrightarrow E=\left(\begin{array}{cc}10 & 1 \\ 1 & 24\end{array}\right), H=\left(\begin{array}{cc}78 & -12 \\ -12 & 48\end{array}\right), \Lambda=0.038, p$-value: 0.0062 .
This method needs $q$ indicator variable.
(3) It can also be formulated as a regression with intercept
$y=\mu .+\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}+\epsilon$ where $\alpha_{1}+\alpha_{2}+\alpha_{3}=0$, i.e., $y=\mu .+\alpha_{1}\left(x_{1}-x_{3}\right)+\alpha_{2}\left(x_{2}-x_{3}\right)+\epsilon$ and we test $\alpha_{1}=\alpha_{2}=0$ Thus new variables $z_{1}=x_{1}-x_{3}$ and $z_{2}=x_{2}-x_{3}$ are needed.

$$
\begin{aligned}
& \Longrightarrow E=\left(\begin{array}{cc}
10 & 1 \\
1 & 24
\end{array}\right), H=\left(\begin{array}{cc}
\text { proc reg; } \\
\text { model y1 y2=z1 z2/noprint; } \\
\text { mtest /print; } \\
\text { run; }
\end{array}\right. \\
& \left.\Longrightarrow \begin{array}{cc}
78 & -12 \\
-12 & 48
\end{array}\right), \Lambda=0.038, p \text {-value: } 0.0062 .
\end{aligned}
$$

(4) proc glm can do the job of proc anova

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { proc glm; } \\
\text { class id; } \\
\text { model y1 y2=id/nouni; } \\
\text { manova } \mathrm{h}=\mathrm{id} / \text { printe printh; } \\
\text { run; }
\end{array} \\
& \Longrightarrow E=\left(\begin{array}{cc}
10 & 1 \\
1 & 24
\end{array}\right), H=\left(\begin{array}{cc}
78 & -12 \\
-12 & 48
\end{array}\right), \Lambda=0.038, p \text {-value: } 0.0062 .
\end{aligned}
$$

3. Two-sample problem
(1) Two sample test

$$
\begin{aligned}
& H_{0}: \mu_{x}=\mu_{y} \text { vs } H_{a}: \mu_{x} \neq \mu_{y} \\
& \text { Test statistic: } T^{2}=(\bar{x}-\bar{y})^{\prime}\left(\frac{n}{n_{1} n_{2}} S_{p}\right)^{-1}(\bar{x}-\bar{y}) \\
& p \text {-value: } P\left(T^{2}(p, n-2)>T_{o b}^{2}\right)
\end{aligned}
$$

(2) The implementation can be carried out by proc anova

```
proc anova;
 class id;
 model y1 y2=id/nouni;
 manova h=id/print;
 run;
```

since $\Lambda=\frac{|E|}{|E+H|}=\left(1+\frac{T^{2}}{n-2}\right)^{-1}$
Proof. For two-sample problem $E=Y\left(I-J J^{+}\right) Y^{\prime}$ where $J=\left(\begin{array}{cc}1_{n_{1}} & 0 \\ 0 & 1_{n_{2}}\end{array}\right)$ and $S_{p}=\frac{E}{n-2}$.
Under $H_{0}, E_{r}=Y\left(I-1_{n} 1_{n}^{+}\right) Y^{\prime}$. So $H=E_{r}-E=Y\left(J J^{+}-11^{+}\right) Y^{\prime}$. Here

$$
\begin{aligned}
Y\left(J J^{+}-11^{+}\right) & =\left[\left(\bar{x}-\frac{n_{1} \bar{x}+n_{2} \bar{y}}{n}\right) 1_{n_{1}}^{\prime},\left(\bar{y}-\frac{n_{1} \bar{x}+n_{2} \bar{y}}{n}\right) 1_{n_{2}}^{\prime}\right] \\
& =\left[\frac{n_{2}(\bar{x}-\bar{y})}{n} 1_{n_{1}}^{\prime}, \frac{-n_{1}(\bar{x}-\bar{y})}{n} 1_{n_{2}}^{\prime}\right]=(\bar{x}-\bar{y})\left(\frac{n_{2}}{n} 1_{n_{1}}^{\prime}, \frac{-n_{1}}{n} 1_{n_{2}}^{\prime}\right) .
\end{aligned}
$$

It follows that $H=\left[Y\left(J J^{+}-11^{+}\right)\right]\left[Y\left(J J^{+}-11^{+}\right)\right]^{\prime}=\frac{n_{1} n_{2}}{n}(\bar{x}-\bar{y})(\bar{x}-\bar{y})^{\prime}$.
Consider $\left|\begin{array}{cc}1 & -\frac{n_{1} n_{2}}{n}(\bar{x}-\bar{y})^{\prime} \\ E & \bar{y}\end{array}\right|$. We have

$$
\left|E+\frac{n_{1} n_{2}}{n}(\bar{x}-\bar{y})(\bar{x}-\bar{y})\right|=|E| \cdot\left[1+\frac{n_{1} n_{2}}{n}(\bar{x}-\bar{y})^{\prime} E^{-1}(\bar{x}-\bar{y})\right] .
$$

Therefore $\Lambda=\left(1+\frac{T^{2}}{n-2}\right)^{-1}$.
(3) Comment

For testing on $H_{0}: \mu_{x}-\mu_{y}=\delta_{0}$ the second sample is modified to be the one from a population with mean $\mu_{y}+\delta_{0}$ in implementation.

