L24 LRTs in multivariate regression

1. Model and hypotheses

Many questions of interests in regression are related to hypotheses testing. Consider model

$$
\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{llll}
\beta_{10} & \beta_{11} & \beta_{12} & \beta_{13} \\
\beta_{20} & \beta_{21} & \beta_{22} & \beta_{23} \\
\beta_{30} & \beta_{31} & \beta_{32} & \beta_{33}
\end{array}\right)\left(\begin{array}{c}
1 \\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)+\left(\begin{array}{l}
\epsilon_{1} \\
\epsilon_{2} \\
\epsilon_{3}
\end{array}\right) .
$$

(1) Usefulness of the model

The model is useless \Longleftrightarrow None of the regressors $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3$ has impact on $E(y)$ $\Longleftrightarrow \quad \beta_{1}=0, \beta_{2}=0$ and $\beta_{3}=0$ $\Longleftrightarrow \quad \beta_{i j}=0$ for all $i=1,2,3$ and all $j=1,2,3$.
(2) Response mean is 0 when $x_{i}=0$ for all i
$\Longleftrightarrow \beta_{0}=0 \Longleftrightarrow \beta_{i 0}=0$ for all i
(3) The contributions of x_{1} and x_{2} to $E(y)$ are equal $\Longleftrightarrow \beta_{1}=\beta_{2} \Longleftrightarrow \beta_{i 1}=\beta_{i 2}$ for all $i=1,2,3$.
The increment in $E(y)$ caused by the increment in x_{i} by 1 unit can be used to measure the contribution of x_{i} to $E(y)$.
(4) The contributions from x_{1} to $E\left(y_{1}\right), E\left(y_{2}\right)$ and $E\left(y_{3}\right)$ are equal
$\Longleftrightarrow \beta_{1 i}=\beta_{1 j}$ for all i, j
2. Likelihood ratio tests (LRTs)
(1) Likelihood ratio

With data suppose E is the error matrix in the original model and E_{r} is the error matrix from the reduced model. Then
$\max [L(\beta, \Sigma): \beta, \Sigma]=\left(\frac{n}{2 \pi e}\right)^{n p / 2}|E|^{-n / 2}$ and $\max \left[L(\beta, \Sigma):\right.$ under $\left.H_{0}\right]=\left(\frac{n}{2 \pi e}\right)^{n p / 2}\left|E_{r}\right|^{-n / 2}$.
So the likelihood ratio

$$
\mathrm{LR}=\frac{\max \left[L(\beta, \Sigma): \text { under } H_{0}\right]}{\max [L(\beta, \Sigma): \beta, \Sigma]}=\left(\frac{|E|}{\left|E_{r}\right|}\right)^{n / 2}
$$

is an increasing function of Wilks Lambda

$$
\Lambda=\frac{|E|}{\left|E_{r}\right|}=\frac{|E|}{|E+H|}
$$

(2) Likelihood ratio test
H_{0} versus H_{a}
Test Statistic: $\Lambda=\frac{|E|}{|E+H|}$
Reject H_{0} if $\Lambda<c$.
is a LRT. For α-level test, c should be determined by

$$
P\left(\Lambda<c \mid H_{0} \text { is true }\right) \leq \alpha
$$

(3) Tests by p-values
H_{0} versus H_{a}
Test Statistic: $\Lambda=\frac{|E|}{|E+H|}$
p-value: $P\left(\Lambda \leq \Lambda_{o b} \mid H_{0}\right)$.
3. Implementation via SAS

Consider the model in 1
(1) SAS mtest statement.
(i) For $H_{0}: \beta_{1}=0$ and $\beta_{2}=0$ versus $H_{a}: \beta_{1} \neq 0$ or $\beta_{2} \neq 0$

```
proc reg;
    model y1 y2 y3=x1 x2 x3/noprint;
    mtest x1, x2;
    run;
```

So for $H_{0}: \beta_{i}=0$ for all $i=1,2,3$ one can use [mtest $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3$;]
But because it is a global test, one can even use [mtest ;]
(ii) For $H_{0}: \beta_{i 1}=\beta_{j 1}$ for all i, j versus $H_{a}: \beta_{i 1} \neq \beta_{j 1}$ for some i, j

```
proc reg;
    model y1 y2 y3=x1 x2 x3/noprint;
    mtest y1-y2, y2-y3, x1;
    run;
```

(iii) For $H_{0}: \beta_{1 j}=\beta_{2 j}$ for all j versus $H_{a}: \beta_{1 j} \neq \beta_{2 j}$ for some j

```
proc reg;
    model y1 y2 y3=x1 x2 x3/noprint;
    mtest y1-y2, x1, x2, x3;
    run;
```

(2) SAS output

With Wilk's Lambda $=\frac{|E|}{|E+H|}$, Pillai's trace $=\operatorname{tr}\left[H(E+H)^{-1}\right]$, Hotelling-Lawley trace $=\operatorname{tr}\left(H E^{-1}\right)$ and Roy's greatest root $=$ the largetst eigenvalue of $E^{-1 / 2} H E^{-1 / 2}$, SAS displays

Statistics	Value	F-value	Num DF	Den DF	$\operatorname{Pr}>\mathrm{F}$
Wilks' Lambda	------	-----	----	----	-----
Pillai's Trace	------	-----	----	----	-----
Hotellig-Lawley Trace			----	----	-----
Roy's Greatest Root				----	

The results from the four statistics may not be the same. All results are based on approximation. We stick to the result from the test statistic Λ
(3) A special case

Based on sample $Y \sim N_{p \times n}\left(\mu 1_{n}^{\prime}, \Sigma, I_{n}\right)$ from $N(\mu, \Sigma), E=Y^{\prime}\left(I-1_{n} 1_{n}^{+}\right) Y \sim W_{p \times p}(n-1, \Sigma)$ which is independent to $\widehat{\mu}=Y 1_{n}\left(1_{n}^{\prime} 1_{n}\right)^{-1}=\bar{Y} \sim N\left(\mu, \frac{1}{n} \Sigma\right)$.
Under $H_{0}: \mu=0$ from $N_{p \times n}\left(0, \Sigma, I_{n}\right), E_{r}=Y^{\prime} Y$. Thus $H=Y^{\prime} 1_{n} 1_{n}^{+} Y=n \overline{Y Y}^{\prime}$ where $\sqrt{n} \bar{Y} \stackrel{H_{0}}{\sim} N(0, \Sigma)$. Hence $T^{2}=n \bar{Y}^{\prime}(S)^{-1} \bar{Y}=\bar{Y}^{\prime}\left(\frac{S}{n}\right)^{-1} \bar{Y} \stackrel{H_{0}}{\sim} T^{2}(p, n-1)$.
From $\left|\begin{array}{cc}1 & -n \bar{Y}^{\prime} \\ \bar{Y} & E\end{array}\right|,|E|\left(1+n \bar{Y}^{\prime} E \bar{Y}\right)=|E+H|$. So $\Lambda=\left(1+\frac{T^{2}}{n-1}\right)^{-1}$.
Ex: For model in 1 with $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}$ in Table 7.5 on page 424 . By SAS in 3

$$
\begin{aligned}
& H_{0}: \beta_{i 1}=\beta_{j 1} \text { for all } i, j=1,2,3 \text { vs } H_{a}: \beta_{i 1} \neq \beta_{j 1} \text { for some } i, j=1,2,3 \\
& \text { Test Statistic: } \Lambda=\frac{|E|}{|E+H|} \\
& \text { p-value: } P\left(\Lambda<\Lambda_{o b} \mid H_{0}\right) \\
& \Lambda=0.9460 \\
& P \text {-value: } P\left(\Lambda \leq 0.9460 \mid H_{0}\right)=P(F(2,15)>0.43)=0.6596 \\
& \text { Fail to reject } H_{0} \\
& \text { No evidence against } \beta_{11}=\beta_{21}=\beta_{31}
\end{aligned}
$$

L25: The concept of regression

1. Regression function

(1) Regression model and regression function
$y=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{q-1} x_{q}+\epsilon$ where $y \in R^{p}, \beta_{i} \in R^{p}, i=0, \ldots, q-1, \epsilon \sim N(0, \Sigma)$ is a multivariate regression model.
Let $\beta=\left(\beta_{0}, \ldots, \beta_{q-1}\right) \in R^{p \times q}$ and $x=\binom{1}{x_{0}} \in R^{q}$ where $x_{0}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{q-1}\end{array}\right) \in R^{q-1}$.
Then the model can be written as $y=\beta x+\epsilon \sim N(X \beta, \Sigma)$
$E(y)=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{q-1} x_{q-1}=\beta x$ is a function of x_{0}.
This function is called the regression function of y on x_{0}.
(2) Sample and estimated β

Let the columns of $Y \in R^{p \times n}$ be n observations on y when the observations on $\binom{1}{x_{0}}$ are the columns of $X=\binom{1_{n}^{\prime}}{X_{0}} \in R^{q \times n}$.
Then $Y \sim N_{p \times n}\left(\beta X, \Sigma, I_{n}\right)$ characterizes the distribution of the samples.
By least square method, β is estimated by its LSE

$$
\widehat{\beta}=Y X^{+}=Y X^{\prime}\left(X X^{\prime}\right)^{-1}=Y\left(1_{n} X_{0}^{\prime}\right)\left(\begin{array}{cc}
n & 1_{n}^{\prime} X_{0}^{\prime} \\
X_{0} 1_{n} & X_{0} X_{0}^{\prime}
\end{array}\right)^{-1}
$$

(3) Estimated regression function

Thus the estimated regression function is

$$
g\left(x_{0}\right)=\left(Y 1_{n}, Y X_{0}^{\prime}\right)\left(\begin{array}{cc}
n & 1_{n}^{\prime} X_{0}^{\prime} \\
X_{0} 1_{n} & X_{0} X_{0}^{\prime}
\end{array}\right)^{-1}\binom{1}{x_{0}}
$$

2. A different definition of regression function
(1) A different definition of regression

Suppose x_{0} and y have a joint distribution. Then the conditional mean $E\left(y \mid x_{0}\right)$ is a function of x_{0}. This function is called the regression function of y on x_{0}.
If $\binom{x_{0}}{y} \sim N\left(\binom{\mu_{x_{0}}}{\mu_{y}},\left(\begin{array}{cc}\Sigma_{x_{0}} & \Sigma_{x_{0} y} \\ \Sigma_{y x_{0}} & \Sigma_{y}\end{array}\right)\right)$, then

$$
y \mid x_{0} \sim N\left(\mu_{y}-\Sigma_{y x_{0}} \Sigma_{x_{0}}^{-1}\left(x_{0}-\mu_{x_{0}}, \Sigma_{y}-\Sigma_{y x_{0}} \Sigma_{x_{0}}^{-1} \Sigma_{x_{0} y}\right)\right.
$$

So $E\left(y \mid x_{0}\right)=\mu_{y}+\Sigma_{y x_{0}} \Sigma_{x_{0}}^{-1}\left(x_{0}-\mu_{x_{0}}\right)$ is the regression function of y on x_{0}.
(2) Samples and estimated $\mu_{x_{0}}, \mu_{y}$ and Σ.

Let the columns of $\binom{X_{0}}{Y} \in R^{(p+q-1) \times n}$ be the n observations on $\binom{x_{0}}{y}$.
Then $\binom{\mu_{x_{0}}}{\mu_{y}}$ is estimated by $\binom{\bar{x}_{0}}{\bar{y}}=\binom{X_{0} 1_{n} / n}{Y 1_{n} / n}$
Let $E=\left(\begin{array}{cc}E_{x_{0}} & E_{x_{0} y} \\ E_{y x_{0}} & E_{y}\end{array}\right)=\binom{X_{0}}{Y}\left(I_{n}-1_{n} 1_{n}^{+}\right)\binom{X_{0}}{Y}^{\prime}$.
Then $S=\left(\begin{array}{cc}S_{x_{0}} & S_{x_{0} y} \\ S_{y x_{0}} & S_{y}\end{array}\right)=\frac{E}{n-1}$ is an UE for $\Sigma=\left(\begin{array}{cc}\Sigma_{x_{0}} & \Sigma_{x_{0} y} \\ \Sigma_{y x_{0}} & \Sigma_{y}\end{array}\right)$ and $\widehat{\Sigma}=\frac{E}{n}$ is MLE for Σ.
(3) Estimated regression function

In the regression function $E\left(y \mid x_{0}\right)=\mu_{y}+\Sigma_{y x_{0}} \Sigma_{x_{0}}^{-1}\left(x_{0}-\mu_{x_{0}}\right)$, replace $\mu_{x_{0}}$ and μ_{y} by their estimators \bar{x}_{0} and \bar{y}; and replace $\Sigma_{y x_{0}} \Sigma_{x_{0}}^{-1}$ by $\left.S_{y x_{0}} S_{x_{0}}^{-1}=\widehat{\Sigma}_{y x_{0}} \widehat{\Sigma}_{x_{0}}^{-1}=\left[Y\left(I-11^{+}\right) X_{0}^{\prime}\right]\left[X_{0}\left(I-11^{+}\right)\right] X_{0}^{\prime}\right]^{-1}$, we obtain the estimated regression function

$$
\bar{y}+\left[Y\left(I-11^{+}\right) X_{0}^{\prime}\right]\left[X_{0}\left(I-11^{+}\right) X_{0}^{\prime}\right]^{-1}\left(x_{0}-\bar{x}_{0}\right)
$$

3. The identical results

We show that the two approaches reach identical results on the estimated regression function
(1) A tool

For $A=\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right)$, let $A_{22.1}=A_{22}-A_{21} A_{11}^{-1} A_{12}$.
Then $|A|=\left|A_{11}\right| \cdot\left|A_{22.1}\right|$ and $A^{-1}=\left(\begin{array}{cc}I & -A_{11}^{-1} A_{12} \\ 0 & I\end{array}\right)\left(\begin{array}{cc}A_{11}^{-1} & 0 \\ 0 & A_{22.1}^{-1}\end{array}\right)\left(\begin{array}{cc}I & 0 \\ -A_{21} A_{11}^{-1} & I\end{array}\right)$.
Proof. By direct computation, $\left(\begin{array}{cc}I & 0 \\ -A_{21} A_{11}^{-1} & I\end{array}\right)\left(\begin{array}{cc}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right)\left(\begin{array}{cc}I & -A_{11}^{-1} A_{12} \\ 0 & I\end{array}\right)=\left(\begin{array}{cc}A_{11} & 0 \\ 0 & A_{22.1}\end{array}\right)$.
Taking the determinants of the both sides of the equation leads to $|A|=\left|A_{11}\right| \cdot\left|A_{22.1}\right|$.
Taking the inverses of the both sides of the equation and then solve the resulted equation for A^{-1} leads to $A^{-1}=\left(\begin{array}{cc}I & -A_{11}^{-1} A_{12} \\ 0 & I\end{array}\right)\left(\begin{array}{cc}A_{11}^{-1} & 0 \\ 0 & A_{22.1}^{-1}\end{array}\right)\left(\begin{array}{cc}I & 0 \\ -A_{21} A_{11}^{-1} & I\end{array}\right)$.
Ex: For $A=\left(\begin{array}{cc}n & 1_{n}^{\prime} X_{0}^{\prime} \\ X_{0} 1_{n} & X_{0} X_{0}^{\prime}\end{array}\right), A_{11}^{-1}=\frac{1}{n}, A_{22.1}^{-1}=\left[X_{0}\left(I-11^{+}\right) X_{0}\right]^{-1},-A_{11}^{-1} A_{12}=-\frac{1_{n}^{\prime} X_{0}^{\prime}}{n}$ and $-A_{21} A_{11}^{-1}=-\bar{x}_{0}$. Thus $A^{-1}=\left(\begin{array}{cc}1 & \frac{1_{n}^{\prime} X_{0}^{\prime}}{n} \\ 0 & I\end{array}\right)\left(\begin{array}{cc}\frac{1}{n} & 0 \\ 0 & {\left[X_{0}\left(I-11^{+}\right) X_{0}^{\prime}\right]^{-1}}\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ -\bar{x}_{0} & I\end{array}\right)$.
Comment: For $A=\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right)$, let $A_{11.2}=A_{11}-A_{12} A_{22}^{-1} A_{21}$.
Then $|A|=\left|A_{11.2}\right| \cdot\left|A_{22}\right|$ and $A^{-1}=\left(\begin{array}{cc}I & 0 \\ -A_{22}^{-1} A_{21} & I\end{array}\right)\left(\begin{array}{cc}A_{11.2}^{-1} & 0 \\ 0 & A_{22}^{-1}\end{array}\right)\left(\begin{array}{cc}I & -A_{12} A_{22}^{-1} \\ 0 & I\end{array}\right)$.
The proof follows from $\left(\begin{array}{cc}I & -A_{12} A_{22}^{-1} \\ 0 & I\end{array}\right)\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right)\left(\begin{array}{cc}I & 0 \\ -A_{22}^{-1} A_{21} & I\end{array}\right)=\left(\begin{array}{cc}A_{11.2} & 0 \\ 0 & A_{22}\end{array}\right)$
(2) Theorem

$$
\begin{aligned}
g\left(x_{0}\right) & =\left(Y 1_{n}, Y X_{0}^{\prime}\right)\left(\begin{array}{cc}
n & 1_{n}^{\prime} X_{0}^{\prime} \\
X_{0} 1_{n} & X_{0} X_{0}^{\prime}
\end{array}\right)^{-1}\binom{1}{x_{0}} \\
& =\bar{y}+\left[Y\left(I_{n}-1_{n} 1_{n}^{+}\right) X_{0}^{\prime}\right]\left[X_{0}\left(I_{n}-1_{n} 1_{n}^{+}\right) X_{0}^{\prime}\right]^{-1}\left(x_{0}-\bar{x}_{0}\right)
\end{aligned}
$$

Proof By the result in Ex,

$$
\begin{aligned}
g\left(x_{0}\right) & =\left(Y 1_{n}, Y X_{0}^{\prime}\right)\left(\begin{array}{cc}
n & 1_{n}^{\prime} X_{0}^{\prime} \\
X_{0} 1_{n} & X_{0} X_{0}^{\prime}
\end{array}\right)^{-1}\binom{1}{x_{0}} \\
& =\left(Y 1_{n}, Y X_{0}^{\prime}\right)\left(\begin{array}{cc}
1 & -\frac{1_{n}^{\prime} X_{0}^{\prime}}{n} \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
n^{-1} & 0 \\
0 & {\left[X_{0}\left(I_{n}-1_{n} 1_{n}^{+}\right) X_{0}^{\prime}\right]^{-1}}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-\bar{x}_{0} & I
\end{array}\right)\binom{1}{x_{0}} \\
& =\left(Y 1_{n}, Y\left(I_{n}-1_{n} 1_{n}^{+}\right) X_{0}^{\prime}\right)\left(\begin{array}{cc}
\frac{1}{n} & {\left[X_{0}\left(I_{n}-1_{n} 1_{n}^{+}\right) X_{0}^{\prime}\right]^{-1}} \\
0 & {\left[X_{1}\right.}
\end{array}\right)\binom{1}{x_{0}-\bar{x}_{0}} \\
& =\left(\bar{y},\left[Y\left(I_{n}-1_{n} 1_{n}^{+}\right) X_{0}\right]\left[X_{0}\left(I_{n}-1_{n} 1_{n}^{+}\right) X_{0}^{\prime}\right]^{-1}\right)\binom{1}{x_{0}-\bar{x}_{0}} \\
& =\bar{y}+\left[Y\left(I_{n}-1_{n} 1_{n}^{+}\right) X_{0}^{\prime}\right]\left[X_{0}\left(I_{n}-1_{n} 1_{n}^{+}\right) X_{0}^{\prime}\right]^{-1}\left(x_{0}-\bar{x}_{0}\right) .
\end{aligned}
$$

(2) A note on E and H by SAS
(i) "print" option in the following SAS will print matrices E and H

```
proc reg;
    model y1 y2 y3=x1 x2 x3/noprint;
    mtest y1-y2, y3, x2/print;
    run;
```

(ii) $E \in R^{2 \times 2}$ and $H \in R^{2 \times 2}$ since the model for $\binom{y_{1}-y_{2}}{y_{3}} \in R^{2}$ is treated as the original model in which we test that the coefficient vector for x_{2} is $0 \in R^{2}$.
(iii) Thus "mtest / print;" will display $E \in R^{3 \times 3}$ in the true original model.

