L24 LRTs in multivariate regression

1. Model and hypotheses
Many questions of interests in regression are related to hypotheses testing. Consider model

1
Y1 Bio Puu Bz Pis ) €1
y2 | = | B2o Por Bz Pos 2 + | e
Y3 B0 B31 B3z Bss . €3

(1) Usefulness of the model
The model is useless <= None of the regressors x1, x2, x3 has impact on E(y)
<~ (1 =0,ps=0and f3=0
< fiy=0forali=1,2,3andall j =1,2,3.

(2) Response mean is 0 when x; = 0 for all 4
< By =0<= B;p=0forall i

(3) The contributions of z; and z3 to E(y) are equal
— 1 =0y < i1 =0 foralli=1, 2, 3..
The increment in E(y) caused by the increment in z; by 1 unit can be used to measure the
contribution of z; to E(y).

(4) The contributions from z; to F(y1), F(y2) and E(y3) are equal
— B = le for all 4, j

2. Likelihood ratio tests (LRTS)

(1) Likelihood ratio
With data suppose E' is the error matrix in the original model and F, is the error matrix from
the reduced model. Then
max[L(8, B) : B, 3] = (52)""*|E|~/2 and max[L(8, ©) : under Ho] = (52 )""/? |E,|~"/2.
So the likelihood ratio

_ max[L(8, x):under Hy] _ ( |B] \"/?
LR = max[L(8,X): B, 3] == (\E )
is an increasing function of Wilks Lambda
A= 1Bl _ 1Bl
[Ey| |E+H|

vl

(2) Likelihood ratio test

Hy versus H,

Test Statistic: A = %
Reject Hy if A < c.

is a LRT. For a-level test, ¢ should be determined by
P(A < c|Hp is true) < a.
(3) Tests by p-values
Hy versus H,
|E|

Test Statistic: A = BT

p-value: P(A < Ayp|Hp).

3. Implementation via SAS
Consider the model in 1

(1) SAS mtest statement.



(i) For Hy: 1 =0and B2 =0 versus H, : 81 0 or B2 #0

proc reg;
model yl y2 y3=x1 x2 x3/noprint;
mtest x1, x2;
run;

So for Hy : 8; =0 for all i = 1,2,3 one can use [mtest x1, x2, x3;]

But because it is a global test, one can even use [mtest ;]

(ii) For Hy : Bin = pj1 for all ¢, j versus H, : B;1 # B;1 for some 4, j

proc reg;
model y1 y2 y3=x1 x2 x3/noprint;
mtest yl-y2, y2-y3, x1;
run;

(ili) For Hy : fB1; = fBo; for all j versus H, : 1; # [2; for some j

proc reg;
model yl1 y2 y3=x1 x2 x3/noprint;
mtest yl-y2, x1, x2, x3;
run;

(2) SAS output
With Wilk’s Lambda= 74, Pillai’s trace= tr[H (E+ H) '], Hotelling-Lawley trace= tr(HE 1)

and Roy’s greatest root= the largetst eigenvalue of E~1/2HE~1/2 SAS displays

Statistics Value F-value Num DF Den DF Pr>F
Wilks’ Lambda
Pillai’s Trace
Hotellig-Lawley Trace ______ _____ _— ——— oo
Roy’s Greatest Root  ______  _____ ——— —— e

The results from the four statistics may not be the same. All results are based on approximation.
We stick to the result from the test statistic A
(3) A special case
Based on sample Y ~ Npun(ul),, 3, I) from N(u, ¥), E =Y (I = 1,1,1)Y" ~ Wysp(n —1,%)
which is independent to 7 = Y1,(1,1,) "' =Y ~ N(p, 1%).
Under Hy : p = 0 from Npxn(0, %, I,), E, = YY'. Thus H = Y1,1}Y" = nYY where
VY % N(0, ¥). Hence T2 =nY (S)"'Y =Y (%)71? Lor2(p, n—1).
—
—nY

— _ —1
e (1+nY’E—1Y) —|E+H| SoA= (1+nT—f1) .

1
F -
rom ‘Y

Ex: For model in 1 with xy, z2, x3, y1, y2, y3 in Table 7.5 on page 424. By SAS in 3

Ho : B = B for all 4,5 =1,2,3 vs Ha @ B # Bj1 for some i,j =1,2,3
Test Statistic: A = |E‘E‘H|
p-value: P(A < Ayp|Hp)

A =0.9460

P-value: P(A < 0.9460|Hy) = P(F(2,15) > 0.43) = 0.6596
Fail to reject Hy

No evidence against 811 = [21 = (31




L25: The concept of regression

1. Regression function

(1) Regression model and regression function
y = Po+ fiz1+ -+ Bg—12q + € where y € RP, B, € RP, i = 0,...,q— 1, e ~ N(0, %) is a
multivariate regression model.
Ty

Let 8= (Bo, ..., Bg—1) € RP*? and z = < ! ) € R? where xg = : € R,

Zo
Tg—1
Then the model can be written as y = Sz + € ~ N(X3, %)
E(y) = Bo+ b1x1 + -+ + By—1x4—1 = B is a function of x.
This function is called the regression function of y on xg.

(2) Sample and estimated

. . 1
Let the columns of Y € RP*™ be n observations on y when the observations on (:c ) are the
0
1/
columns of X = | (I | € RT*™.
Xo

Then Y ~ Npxn(8X, X, I,) characterizes the distribution of the samples.
By least square method, § is estimated by its LSE

BovXt=vxX(XX) =y, xS Lo -
n o)\ X1, XoX4)

(3) Estimated regression function
Thus the estimated regression function is

noo LX)
g(mo):(Y1”’ YX(/)) (Xoln XOX%> <x0>

2. A different definition of regression function

(1) A different definition of regression
Suppose zg and y have a joint distribution. Then the conditional mean E(y|xo) is a function of
xg. This function is called the regression function of y on xzg.

If (-770) ~N ((Hwo) <Zwo Zxoy)) then
y ty ) \yzy Xy ) )’
y‘xO ~ N (My — Xyao Z;(,l (wo — Hags 2y — Dyz, Eajolzwoy) .
So E(y|zo) = py + Eyao Xz (To — pay) is the regression function of y on .
(2) Samples and estimated fi4,, ity and X.
Let the columns of )éo € RP+a=1)xn he the n observations on (:ZO
Then <Mx°> is estimated by <"TO> = (Xoln/n)
Hy ) Y1,/n
_ [ Eey Eagy) _ (Xo _ + Xo /
Let F = (nyo B )=y (I, —1,17) v )
Then § = ( o0 Seov) — L is an UE for © = Yro Z20v) and = £ is MLE for ¥,
Syzq Sy nt Ly y "

(3) Estimated regression function
In the regression function E(y|2z) = pty + Xy Xyt (20 — fiz, ), Teplace fiz, and pu, by their estima-

~

tors To and 7; and replace ¥yq, X, 1 by Sy, Sy = Eymoigol = [Y(I-117)X}][Xo(I -117)] X)L,
we obtain the estimated regression function

7+ [Y(I - 117 X0][Xo (I — 117) Xg) ™ (20 — To)



3. The identical results
We show that the two approaches reach identical results on the estimated regression function

(1) A tool

A A _

For A = (A; A;z>’ let Agg 1 = Aoy — A1 Aj7 Ara.
I —A'A A0 I 0

_ . -1 _ 11 4112 11

Hhen |A| B |A11| |A22.1| and 4 (O I ) ( 0 A2_21.1) <_A21A111 I>.
. . I 0 A1 Aqg I —AilAlQ . A 0

Proof. By direct computation, (—A21A1_11 I) (A21 A22) (0 I =0 Apmy)

2)

Taking the determinants of the both sides of the equation leads to |A| = |A11] - |A22.1]-
Taking the inverses of the both sides of the equation and then solve the resulted equation for

I —A7'A A7l 0 I 0
—1 -1 _ 11 12 11
AT leads to AT = (O 1 > ( 0 A221.1> <_A21A111 I>.

1/ X’ _ _ _ It
s For 4 = <X:1n XT;X(E))’ A =1 Ay = [Xo - 11 Xo) Y, —AG A = *%A and
17, X{ 1
o -1 _ = —-1 _ 1 "TO n 0 1 0
Az Ay = —To. Thus A7 = <0 T > (0 [Xo(I — 11+)X6]‘1) (—xo 1)

A A _ —1
Ay, A22>’ let Ai1.20 = A11 — A12A5 Ao

—1 1
Then |A| = |A112] - |Age| and A7 = ( I 0) (A11.2 0 1) (I _A12A22)'

Comment: For A = (

At Agy T 0 Ay )\0 I
I —ApALY (A An I 0\ [(An=2 O
The proof follows from (O 7 Aoy Agy B A2_21 Ao 1) 0 Ao
Theorem
-1
_ , n 1, X 1
9(170) - (Ylna YXO) Xoln XOX(/) T

= y+ [Yan - 1nlrt)X(/)] [XO(In - 1n1$)X(I)}_1(x0 - EO)-
Proof By the result in Ex,

—1
p n 1, X, 1
(Y]-nu YX()) (Xoln XOXé Zo
1 LX) /-t 0 1 0\ /1
4 n
(V1n, YX5) (o I} ) ( 0 [Xo(I, — lnljg)X()]1> (:17 1) (x())
1

g(wo)

0
L 0 1
_ _ + / n
= (Yo, Y = 1a13) Xo) (o (Xo(I, — 1,1) X4 ! (mo —a:o)
_ _ 1
= (ya Y (I — 1n1:)XOHXO(In - 1711;:)X(/)] 1) xo — $0>

= T+ Y (I — L L) Xg][Xo(In — 1n1;0) Xg] ™ (w0 — To)-

A note on E and H by SAS
(i) “print” option in the following SAS will print matrices E and H

proc reg;
model y1 y2 y3=x1 x2 x3/noprint;
mtest yl-y2, y3, x2/print;
run;

(ii) E € R**? and H € R**? since the model for (yl ; y2> € R? is treated as the original model
3

in which we test that the coefficient vector for x5 is 0 € R2.
(iii) Thus “mtest /print;” will display E € R**3 in the true original model.



