L24 LRTs in multivariate regression

1. Model and hypotheses

Many questions of interests in regression are related to hypotheses testing. Consider model

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} \beta_{10} & \beta_{11} & \beta_{12} & \beta_{13} \\ \beta_{20} & \beta_{21} & \beta_{22} & \beta_{23} \\ \beta_{30} & \beta_{31} & \beta_{32} & \beta_{33} \end{pmatrix} \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \end{pmatrix}$$

(1) Usefulness of the model

The model is useless \iff None of the regressors x1, x2, x3 has impact on E(y) $\iff \beta_1 = 0, \beta_2 = 0 \text{ and } \beta_3 = 0$ $\iff \beta_{ij} = 0 \text{ for all } i = 1, 2, 3 \text{ and all } j = 1, 2, 3.$

- (2) Response mean is 0 when $x_i = 0$ for all $i \iff \beta_0 = 0 \iff \beta_{i0} = 0$ for all i
- (3) The contributions of x₁ and x₂ to E(y) are equal
 ⇒ β₁ = β₂ ⇔⇒ β_{i1} = β_{i2} for all i = 1, 2, 3..
 The increment in E(y) caused by the increment in x_i by 1 unit can be used to measure the contribution of x_i to E(y).
- (4) The contributions from x_1 to $E(y_1)$, $E(y_2)$ and $E(y_3)$ are equal $\iff \beta_{i1} = \beta_{j1}$ for all i, j
- 2. Likelihood ratio tests (LRTs)
 - (1) Likelihood ratio

With data suppose E is the error matrix in the original model and E_r is the error matrix from the reduced model. Then

 $\max[L(\beta, \Sigma) : \beta, \Sigma] = \left(\frac{n}{2\pi e}\right)^{np/2} |E|^{-n/2} \text{ and } \max[L(\beta, \Sigma) : \text{ under } H_0] = \left(\frac{n}{2\pi e}\right)^{np/2} |E_r|^{-n/2}.$ So the likelihood ratio

$$LR = \frac{\max[L(\beta, \Sigma): \text{under } H_0]}{\max[L(\beta, \Sigma): \beta, \Sigma]} = \left(\frac{|E|}{|E_r|}\right)^{n/2}$$

is an increasing function of Wilks Lambda

$$\Lambda = \frac{|E|}{|E_r|} = \frac{|E|}{|E+H|}$$

(2) Likelihood ratio test

 $\begin{array}{l} H_0 \text{ versus } H_a \\ \text{Test Statistic: } \Lambda = \frac{|E|}{|E+H|} \\ \text{Reject } H_0 \text{ if } \Lambda < c. \end{array}$

is a LRT. For α -level test, c should be determined by $P(\Lambda < c | H_0 \text{ is true}) \leq \alpha.$

(3) Tests by p-values

 $\begin{array}{l} H_0 \text{ versus } H_a \\ \text{Test Statistic: } \Lambda = \frac{|E|}{|E+H|} \\ p\text{-value: } P(\Lambda \leq \Lambda_{ob} | H_0). \end{array}$

- 3. Implementation via SAS Consider the model in 1
 - (1) SAS mest statement.

(i) For H_0 : $\beta_1 = 0$ and $\beta_2 = 0$ versus H_a : $\beta_1 \neq 0$ or $\beta_2 \neq 0$

proc reg; model y1 y2 y3=x1 x2 x3/noprint; mtest x1, x2; run;

So for H_0 : $\beta_i = 0$ for all i = 1, 2, 3 one can use [mtest x1, x2, x3;] But because it is a global test, one can even use [mtest ;]

(ii) For H_0 : $\beta_{i1} = \beta_{j1}$ for all i, j versus H_a : $\beta_{i1} \neq \beta_{j1}$ for some i, j

proc	reg;	
	model	y1 y2 y3=x1 x2 x3/noprint;
	mtest	y1-y2, y2-y3, x1;
	run;	

(iii) For H_0 : $\beta_{1j} = \beta_{2j}$ for all j versus H_a : $\beta_{1j} \neq \beta_{2j}$ for some j

- proc reg; model y1 y2 y3=x1 x2 x3/noprint; mtest y1-y2, x1, x2, x3; run;
- (2) SAS output

With Wilk's Lambda= $\frac{|E|}{|E+H|}$, Pillai's trace= tr[$H(E+H)^{-1}$], Hotelling-Lawley trace= tr(HE^{-1}) and Roy's greatest root= the largetst eigenvalue of $E^{-1/2}HE^{-1/2}$, SAS displays

Statistics	Value	F-value	Num DF	Den DF	Pr>F	
Wilks' Lambda						
Pillai's Trace						
Hotellig-Lawley Trace						
Roy's Greatest Root						

The results from the four statistics may not be the same. All results are based on approximation. We stick to the result from the test statistic Λ

(3) A special case

Based on sample $Y \sim N_{p \times n}(\mu 1'_n, \Sigma, I_n)$ from $N(\mu, \Sigma), E = Y(I - 1_n 1^+_n)Y' \sim W_{p \times p}(n - 1, \Sigma)$ which is independent to $\hat{\mu} = Y 1_n (1'_n 1_n)^{-1} = \overline{Y} \sim N(\mu, \frac{1}{n}\Sigma)$. Under H_0 : $\mu = 0$ from $N_{p \times n}(0, \Sigma, I_n), E_r = YY'$. Thus $H = Y 1_n 1^+_n Y' = n\overline{Y} \overline{Y}'$ where $\sqrt{n\overline{Y}} \stackrel{H_0}{\sim} N(0, \Sigma)$. Hence $T^2 = n\overline{Y}'(S)^{-1} \overline{Y} = \overline{Y}'(\frac{S}{n})^{-1} \overline{Y} \stackrel{H_0}{\sim} T^2(p, n - 1)$. From $\begin{vmatrix} 1 & -n\overline{Y}' \\ \overline{Y} & E \end{vmatrix}$, $|E|(1 + n\overline{Y}'E^{-1}\overline{Y}) = |E + H|$. So $\Lambda = (1 + \frac{T^2}{n-1})^{-1}$.

Ex: For model in 1 with x_1 , x_2 , x_3 , y_1 , y_2 , y_3 in Table 7.5 on page 424. By SAS in 3

$$\begin{split} H_{0} : \beta_{i1} &= \beta_{j1} \text{ for all } i, j = 1, 2, 3 \text{ vs } H_{a} : \beta_{i1} \neq \beta_{j1} \text{ for some } i, j = 1, 2, 3 \\ \text{Test Statistic: } \Lambda &= \frac{|E|}{|E+H|} \\ \text{p-value: } P(\Lambda < \Lambda_{ob} | H_{0}) \\ \\ \Lambda &= 0.9460 \\ P\text{-value: } P(\Lambda \leq 0.9460 | H_{0}) = P(F(2, 15) > 0.43) = 0.6596 \\ \text{Fail to reject } H_{0} \\ \text{No evidence against } \beta_{11} = \beta_{21} = \beta_{31} \end{split}$$

L25: The concept of regression

- 1. Regression function
 - (1) Regression model and regression function $y = \beta_0 + \beta_1 x_1 + \dots + \beta_{q-1} x_q + \epsilon$ where $y \in \mathbb{R}^p$, $\beta_i \in \mathbb{R}^p$, $i = 0, \dots, q-1$, $\epsilon \sim N(0, \Sigma)$ is a multivariate regression model.

Let
$$\beta = (\beta_0, ..., \beta_{q-1}) \in \mathbb{R}^{p \times q}$$
 and $x = \begin{pmatrix} 1 \\ x_0 \end{pmatrix} \in \mathbb{R}^q$ where $x_0 = \begin{pmatrix} x_1 \\ \vdots \\ x_{q-1} \end{pmatrix} \in \mathbb{R}^{q-1}$.

Then the model can be written as $y = \beta x + \epsilon \sim N(X\beta, \Sigma)$ $E(y) = \beta_0 + \beta_1 x_1 + \dots + \beta_{q-1} x_{q-1} = \beta x$ is a function of x_0 . This function is called the regression function of y on x_0 .

(2) Sample and estimated β

Let the columns of $Y \in \mathbb{R}^{p \times n}$ be *n* observations on *y* when the observations on $\begin{pmatrix} 1 \\ x_0 \end{pmatrix}$ are the columns of $X = \begin{pmatrix} 1'_n \\ X_0 \end{pmatrix} \in \mathbb{R}^{q \times n}$.

Then $Y \sim N_{p \times n}(\beta X, \Sigma, I_n)$ characterizes the distribution of the samples. By least square method, β is estimated by its LSE

$$\widehat{\beta} = YX^{+} = YX'(XX')^{-1} = Y(1_n X'_0) \begin{pmatrix} n & 1'_n X'_0 \\ X_0 1_n & X_0 X'_0 \end{pmatrix}^{-1}$$

(3) Estimated regression function Thus the estimated regression function is

$$g(x_0) = (Y1_n, YX'_0) \begin{pmatrix} n & 1'_n X'_0 \\ X_0 1_n & X_0 X'_0 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ x_0 \end{pmatrix}$$

- 2. A different definition of regression function
 - (1) A different definition of regression

Suppose x_0 and y have a joint distribution. Then the conditional mean $E(y|x_0)$ is a function of x_0 . This function is called the regression function of y on x_0 .

If
$$\begin{pmatrix} x_0 \\ y \end{pmatrix} \sim N\left(\begin{pmatrix} \mu_{x_0} \\ \mu_y \end{pmatrix}, \begin{pmatrix} \Sigma_{x_0} & \Sigma_{x_0y} \\ \Sigma_{yx_0} & \Sigma_y \end{pmatrix}\right)$$
, then
$$y|x_0 \sim N\left(\mu_y - \Sigma_{yx_0} \Sigma_{x_0}^{-1} (x_0 - \mu_{x_0}, \Sigma_y - \Sigma_{yx_0} \Sigma_{x_0}^{-1} \Sigma_{x_0y})\right).$$

So $E(y|x_0) = \mu_y + \sum_{yx_0} \sum_{x_0}^{-1} (x_0 - \mu_{x_0})$ is the regression function of y on x_0 . (2) Samples and estimated μ_{x_0}, μ_y and Σ .

Let the columns of
$$\begin{pmatrix} X_0 \\ Y \end{pmatrix} \in R^{(p+q-1)\times n}$$
 be the *n* observations on $\begin{pmatrix} x_0 \\ y \end{pmatrix}$.
Then $\begin{pmatrix} \mu_{x_0} \\ \mu_y \end{pmatrix}$ is estimated by $\begin{pmatrix} \overline{x}_0 \\ \overline{y} \end{pmatrix} = \begin{pmatrix} X_0 1_n/n \\ Y 1_n/n \end{pmatrix}$
Let $E = \begin{pmatrix} E_{x_0} & E_{x_0y} \\ E_{yx_0} & E_y \end{pmatrix} = \begin{pmatrix} X_0 \\ Y \end{pmatrix} (I_n - 1_n 1_n^+) \begin{pmatrix} X_0 \\ Y \end{pmatrix}'$.
Then $S = \begin{pmatrix} S_{x_0} & S_{x_0y} \\ S_{yx_0} & S_y \end{pmatrix} = \frac{E}{n-1}$ is an UE for $\Sigma = \begin{pmatrix} \Sigma_{x_0} & \Sigma_{x_0y} \\ \Sigma_{yx_0} & \Sigma_y \end{pmatrix}$ and $\widehat{\Sigma} = \frac{E}{n}$ is MLE for Σ

(3) Estimated regression function

In the regression function $E(y|x_0) = \mu_y + \sum_{yx_0} \sum_{x_0}^{-1} (x_0 - \mu_{x_0})$, replace μ_{x_0} and μ_y by their estimators \overline{x}_0 and \overline{y} ; and replace $\sum_{yx_0} \sum_{x_0}^{-1}$ by $S_{yx_0} S_{x_0}^{-1} = \widehat{\Sigma}_{yx_0} \widehat{\Sigma}_{x_0}^{-1} = [Y(I-11^+)X'_0][X_0(I-11^+)]X'_0]^{-1}$, we obtain the estimated regression function

$$\overline{y} + [Y(I - 11^+)X_0'][X_0(I - 11^+)X_0']^{-1}(x_0 - \overline{x}_0)$$

3. The identical results

We show that the two approaches reach identical results on the estimated regression function

(1) A tool
For
$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$
, let $A_{22.1} = A_{22} - A_{21}A_{11}^{-1}A_{12}$.
Then $|A| = |A_{11}| \cdot |A_{22.1}|$ and $A^{-1} = \begin{pmatrix} I & -A_{11}^{-1}A_{12} \\ 0 & I \end{pmatrix} \begin{pmatrix} A_{11}^{-1} & 0 \\ A_{21}A_{21}^{-1} \end{pmatrix} \begin{pmatrix} I & 0 \\ -A_{21}A_{11}^{-1} & I \end{pmatrix}$.
Proof. By direct computation, $\begin{pmatrix} I & 0 \\ -A_{21}A_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} I & -A_{11}^{-1}A_{12} \\ 0 & I \end{pmatrix} = \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22.1} \end{pmatrix}$.
Taking the determinants of the both sides of the equation leads to $|A| = |A_{11}| \cdot |A_{22.1}|$.
Taking the inverses of the both sides of the equation and then solve the resulted equation for
 A^{-1} leads to $A^{-1} = \begin{pmatrix} I & -A_{11}^{-1}A_{12} \\ 0 & I \end{pmatrix} \begin{pmatrix} A_{11}^{-1} & 0 \\ 0 & A_{22.1}^{-1} \end{pmatrix} \begin{pmatrix} I & 0 \\ -A_{21}A_{11}^{-1} & I \end{pmatrix}$.
Ex: For $A = \begin{pmatrix} n & 1_n'X_0' \\ X_0 I_n & X_0 X_0' \end{pmatrix}$, $A_{11}^{-1} = \frac{1}{n}$, $A_{22.1}^{-1} = [X_0(I - 11^+)X_0]^{-1}$, $-A_{11}^{-1}A_{12} = -\frac{1_n'X_0'}{n}$ and
 $-A_{21}A_{11}^{-1} = -\overline{x}_0$. Thus $A^{-1} = \begin{pmatrix} 1 & \frac{1_n'X_0'}{n} \\ 0 & I \end{pmatrix} \begin{pmatrix} \frac{1}{n} & 0 \\ 0 & [X_0(I - 11^+)X_0]^{-1} \end{pmatrix} \begin{pmatrix} I & 0 \\ -\overline{x}_0 & I \end{pmatrix}$.
Comment: For $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$, let $A_{11.2} = A_{11} - A_{12}A_{22}^{-1}A_{21}$.
Then $|A| = |A_{11.2}| \cdot |A_{22}|$ and $A^{-1} = \begin{pmatrix} I & 0 \\ -A_{22}^{-1}A_{21} & I \end{pmatrix} \begin{pmatrix} A_{11}^{-1} & 0 \\ 0 & A_{22}^{-1} \end{pmatrix} \begin{pmatrix} I & -A_{12}A_{22}^{-1} \\ 0 & I \end{pmatrix}$.
The proof follows from $\begin{pmatrix} I & -A_{12}A_{22}^{-1} \\ 0 & I \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} I & -A_{12}A_{22}^{-1} \\ 0 & I \end{pmatrix} = \begin{pmatrix} A_{11.2} & 0 \\ 0 & A_{22} \end{pmatrix}$.
(2) Theorem

$$g(x_0) = (Y1_n, YX'_0) \begin{pmatrix} n & 1'_n X'_0 \\ X_0 1_n & X_0 X'_0 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ x_0 \end{pmatrix}$$

= $\overline{y} + [Y(I_n - 1_n 1_n^+) X'_0] [X_0 (I_n - 1_n 1_n^+) X'_0]^{-1} (x_0 - \overline{x}_0).$

Proof By the result in Ex,

$$\begin{split} g(x_0) &= (Y1_n, YX'_0) \begin{pmatrix} n & 1'_n X'_0 \\ X_0 1_n & X_0 X'_0 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ x_0 \end{pmatrix} \\ &= (Y1_n, YX'_0) \begin{pmatrix} 1 & -\frac{1'_n X'_0}{n} \\ 0 & I \end{pmatrix} \begin{pmatrix} n^{-1} & 0 \\ 0 & [X_0(I_n - 1_n 1_n^+) X'_0]^{-1} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\overline{x}_0 & I \end{pmatrix} \begin{pmatrix} 1 \\ x_0 \end{pmatrix} \\ &= (Y1_n, Y(I_n - 1_n 1_n^+) X'_0) \begin{pmatrix} \frac{1}{n} & 0 \\ 0 & [X_0(I_n - 1_n 1_n^+) X'_0]^{-1} \end{pmatrix} \begin{pmatrix} 1 \\ x_0 - \overline{x}_0 \end{pmatrix} \\ &= (\overline{y}, [Y(I_n - 1_n 1_n^+) X_0] [X_0(I_n - 1_n 1_n^+) X'_0]^{-1} \begin{pmatrix} 1 \\ x_0 - \overline{x}_0 \end{pmatrix} \\ &= \overline{y} + [Y(I_n - 1_n 1_n^+) X'_0] [X_0(I_n - 1_n 1_n^+) X'_0]^{-1} (x_0 - \overline{x}_0). \end{split}$$

 $(2)\,$ A note on E and H by SAS

(i) "print" option in the following SAS will print matrices E and H

- (ii) $E \in R^{2 \times 2}$ and $H \in R^{2 \times 2}$ since the model for $\begin{pmatrix} y_1 y_2 \\ y_3 \end{pmatrix} \in R^2$ is treated as the original model in which we test that the coefficient vector for x_2 is $0 \in R^2$.
- (iii) Thus "mtest /print;" will display $E \in R^{3 \times 3}$ in the true original model.