
L24 LRTs in multivariate regression

1. Model and hypotheses
Many questions of interests in regression are related to hypotheses testing. Consider modely1

y2
y3

 =
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x1
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+

ϵ1
ϵ2
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.

(1) Usefulness of the model
The model is useless ⇐⇒ None of the regressors x1, x2, x3 has impact on E(y)

⇐⇒ β1 = 0, β2 = 0 and β3 = 0
⇐⇒ βij = 0 for all i = 1, 2, 3 and all j = 1, 2, 3.

(2) Response mean is 0 when xi = 0 for all i
⇐⇒ β0 = 0 ⇐⇒ βi0 = 0 for all i

(3) The contributions of x1 and x2 to E(y) are equal
⇐⇒ β1 = β2 ⇐⇒ βi1 = βi2 for all i = 1, 2, 3..
The increment in E(y) caused by the increment in xi by 1 unit can be used to measure the
contribution of xi to E(y).

(4) The contributions from x1 to E(y1), E(y2) and E(y3) are equal
⇐⇒ β1i = β1j for all i, j

2. Likelihood ratio tests (LRTs)

(1) Likelihood ratio
With data suppose E is the error matrix in the original model and Er is the error matrix from
the reduced model. Then
max[L(β, Σ) : β, Σ] =

(
n

2πe

)np/2 |E|−n/2 and max[L(β, Σ) : under H0] =
(

n
2πe

)np/2 |Er|−n/2.
So the likelihood ratio

LR = max[L(β,Σ):under H0]
max[L(β,Σ): β,Σ] =

(
|E|
|Er|

)n/2

is an increasing function of Wilks Lambda

Λ = |E|
|Er| =

|E|
|E+H|

(2) Likelihood ratio test

H0 versus Ha

Test Statistic: Λ = |E|
|E+H|

Reject H0 if Λ < c.

is a LRT. For α-level test, c should be determined by
P (Λ < c|H0 is true) ≤ α.

(3) Tests by p-values

H0 versus Ha

Test Statistic: Λ = |E|
|E+H|

p-value: P (Λ ≤ Λob|H0).

3. Implementation via SAS
Consider the model in 1

(1) SAS mtest statement.
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(i) For H0 : β1 = 0 and β2 = 0 versus Ha : β1 ̸= 0 or β2 ̸= 0

proc reg;

model y1 y2 y3=x1 x2 x3/noprint;

mtest x1, x2;

run;

So for H0 : βi = 0 for all i = 1, 2, 3 one can use [mtest x1, x2, x3;]
But because it is a global test, one can even use [mtest ;]

(ii) For H0 : βi1 = βj1 for all i, j versus Ha : βi1 ̸= βj1 for some i, j

proc reg;

model y1 y2 y3=x1 x2 x3/noprint;

mtest y1-y2, y2-y3, x1;

run;

(iii) For H0 : β1j = β2j for all j versus Ha : β1j ̸= β2j for some j

proc reg;

model y1 y2 y3=x1 x2 x3/noprint;

mtest y1-y2, x1, x2, x3;

run;

(2) SAS output

With Wilk’s Lambda= |E|
|E+H| , Pillai’s trace= tr[H(E+H)−1], Hotelling-Lawley trace= tr(HE−1)

and Roy’s greatest root= the largetst eigenvalue of E−1/2HE−1/2, SAS displays

Statistics Value F-value Num DF Den DF Pr>F

Wilks’ Lambda ______ _____ ____ ____ _____

Pillai’s Trace ______ _____ ____ ____ _____

Hotellig-Lawley Trace ______ _____ ____ ____ _____

Roy’s Greatest Root ______ _____ ____ ____ _____

The results from the four statistics may not be the same. All results are based on approximation.
We stick to the result from the test statistic Λ

(3) A special case
Based on sample Y ∼ Np×n(µ1

′
n, Σ, In) from N(µ, Σ), E = Y ′(I − 1n1

+
n )Y ∼ Wp×p(n − 1,Σ)

which is independent to µ̂ = Y 1n(1
′
n1n)

−1 = Y ∼ N(µ, 1
nΣ).

Under H0 : µ = 0 from Np×n(0, Σ, In), Er = Y ′Y . Thus H = Y ′1n1
+
nY = nY Y

′
where

√
nY

H0∼ N(0, Σ). Hence T 2 = nY
′
(S)

−1
Y = Y

′ (S
n

)−1
Y

H0∼ T 2(p, n− 1).

From

∣∣∣∣ 1 −nY
′

Y E

∣∣∣∣, |E|
(
1 + nY

′
EY

)
= |E +H|. So Λ =

(
1 + T 2

n−1

)−1

.

Ex: For model in 1 with x1, x2, x3, y1, y2, y3 in Table 7.5 on page 424. By SAS in 3

H0 : βi1 = βj1 for all i, j = 1, 2, 3 vs Ha : βi1 ̸= βj1 for some i, j = 1, 2, 3

Test Statistic: Λ = |E|
|E+H|

p-value: P (Λ < Λob|H0)

Λ = 0.9460
P -value: P (Λ ≤ 0.9460|H0) = P (F (2, 15) > 0.43) = 0.6596
Fail to reject H0

No evidence against β11 = β21 = β31
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L25: The concept of regression

1. Regression function

(1) Regression model and regression function
y = β0 + β1x1 + · · · + βq−1xq + ϵ where y ∈ Rp, βi ∈ Rp, i = 0, ..., q − 1, ϵ ∼ N(0, Σ) is a
multivariate regression model.

Let β = (β0, ..., βq−1) ∈ Rp×q and x =

(
1
x0

)
∈ Rq where x0 =

 x1

...
xq−1

 ∈ Rq−1.

Then the model can be written as y = βx+ ϵ ∼ N(Xβ, Σ)
E(y) = β0 + β1x1 + · · ·+ βq−1xq−1 = βx is a function of x0.
This function is called the regression function of y on x0.

(2) Sample and estimated β

Let the columns of Y ∈ Rp×n be n observations on y when the observations on

(
1
x0

)
are the

columns of X =

(
1′n
X0

)
∈ Rq×n.

Then Y ∼ Np×n(βX, Σ, In) characterizes the distribution of the samples.
By least square method, β is estimated by its LSE

β̂ = Y X+ = Y X ′(XX ′)−1 = Y (1n X
′
0)

(
n 1′nX

′
0

X01n X0X
′
0

)−1

.

(3) Estimated regression function
Thus the estimated regression function is

g(x0) = (Y 1n, Y X ′
0)

(
n 1′nX

′
0

X01n X0X
′
0

)−1 (
1
x0

)
2. A different definition of regression function

(1) A different definition of regression
Suppose x0 and y have a joint distribution. Then the conditional mean E(y|x0) is a function of
x0. This function is called the regression function of y on x0.

If

(
x0

y

)
∼ N

((
µx0

µy

)
,

(
Σx0 Σx0y

Σyx0 Σy

))
, then

y|x0 ∼ N
(
µy − Σyx0

Σ−1
x0

(x0 − µx0
, Σy − Σyx0

Σ−1
x0

Σx0y

)
.

So E(y|x0) = µy +Σyx0
Σ−1

x0
(x0 − µx0

) is the regression function of y on x0.

(2) Samples and estimated µx0
, µy and Σ.

Let the columns of

(
X0

Y

)
∈ R(p+q−1)×n be the n observations on

(
x0

y

)
.

Then

(
µx0

µy

)
is estimated by

(
x0

y

)
=

(
X01n/n
Y 1n/n

)
Let E =

(
Ex0 Ex0y

Eyx0 Ey

)
=

(
X0

Y

)
(In − 1n1

+
n )

(
X0

Y

)′

.

Then S =

(
Sx0

Sx0y

Syx0 Sy

)
= E

n−1 is an UE for Σ =

(
Σx0 Σx0y

Σyx0 Σy

)
and Σ̂ = E

n is MLE for Σ.

(3) Estimated regression function
In the regression function E(y|x0) = µy +Σyx0Σ

−1
x0

(x0−µx0), replace µx0 and µy by their estima-

tors x0 and y; and replace Σyx0Σ
−1
x0

by Syx0S
−1
x0

= Σ̂yx0Σ̂
−1
x0

= [Y (I−11+)X ′
0][X0(I−11+)]X ′

0]
−1,

we obtain the estimated regression function

y + [Y (I − 11+)X ′
0][X0(I − 11+)X ′

0]
−1(x0 − x0)
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3. The identical results
We show that the two approaches reach identical results on the estimated regression function

(1) A tool

For A =

(
A11 A12

A21 A22

)
, let A22.1 = A22 −A21A

−1
11 A12.

Then |A| = |A11| · |A22.1| and A−1 =

(
I −A−1

11 A12

0 I

)(
A−1

11 0
0 A−1

22.1

)(
I 0

−A21A
−1
11 I

)
.

Proof. By direct computation,

(
I 0

−A21A
−1
11 I

)(
A11 A12

A21 A22

)(
I −A−1

11 A12

0 I

)
=

(
A11 0
0 A22.1

)
.

Taking the determinants of the both sides of the equation leads to |A| = |A11| · |A22.1|.
Taking the inverses of the both sides of the equation and then solve the resulted equation for

A−1 leads to A−1 =

(
I −A−1

11 A12

0 I

)(
A−1

11 0
0 A−1

22.1

)(
I 0

−A21A
−1
11 I

)
.

Ex: For A =

(
n 1′nX

′
0

X01n X0X
′
0

)
, A−1

11 = 1
n , A

−1
22.1 = [X0(I − 11+)X0]

−1, −A−1
11 A12 = − 1′nX

′
0

n and

−A21A
−1
11 = −x0. Thus A

−1 =

(
1

1′nX
′
0

n
0 I

)(
1
n 0
0 [X0(I − 11+)X ′

0]
−1

)(
1 0

−x0 I

)
.

Comment: For A =

(
A11 A12

A21 A22

)
, let A11.2 = A11 −A12A

−1
22 A21.

Then |A| = |A11.2| · |A22| and A−1 =

(
I 0

−A−1
22 A21 I

)(
A−1

11.2 0
0 A−1

22

)(
I −A12A

−1
22

0 I

)
.

The proof follows from

(
I −A12A

−1
22

0 I

)(
A11 A12

A21 A22

)(
I 0

−A−1
22 A21 I

)
=

(
A11.2 0
0 A22

)
(2) Theorem

g(x0) = (Y 1n, Y X ′
0)

(
n 1′nX

′
0

X01n X0X
′
0

)−1 (
1
x0

)
= y + [Y (In − 1n1

+
n )X

′
0][X0(In − 1n1

+
n )X

′
0]

−1(x0 − x0).

Proof By the result in Ex,

g(x0) = (Y 1n, Y X ′
0)

(
n 1′nX

′
0

X01n X0X
′
0

)−1 (
1
x0

)
= (Y 1n, Y X ′

0)

(
1 − 1′nX

′
0

n
0 I

)(
n−1 0
0 [X0(In − 1n1

+
n )X

′
0]

−1

)(
1 0

−x0 I

)(
1
x0

)
= (Y 1n, Y (In − 1n1

+
n )X

′
0)

(
1
n 0
0 [X0(In − 1n1

+
n )X

′
0]

−1

)(
1

x0 − x0

)
=

(
y, [Y (In − 1n1

+
n )X0][X0(In − 1n1

+
n )X

′
0]

−1
)( 1

x0 − x0

)
= y + [Y (In − 1n1

+
n )X

′
0][X0(In − 1n1

+
n )X

′
0]

−1(x0 − x0).

(2) A note on E and H by SAS

(i) “print” option in the following SAS will print matrices E and H

proc reg;

model y1 y2 y3=x1 x2 x3/noprint;

mtest y1-y2, y3, x2/print;

run;

(ii) E ∈ R2×2 and H ∈ R2×2 since the model for

(
y1 − y2

y3

)
∈ R2 is treated as the original model

in which we test that the coefficient vector for x2 is 0 ∈ R2.

(iii) Thus “mtest /print;” will display E ∈ R3×3 in the true original model.
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