L22: Multivariate multiple linear regression model

- 1. Multivariate multiple liner regression model and samples
 - (1) Model

Let
$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_p \end{pmatrix}$$
, $\beta = \begin{pmatrix} \beta_{10} & \beta_{11} & \cdots & \beta_{1,q-1} \\ \beta_{20} & \beta_{21} & \cdots & \beta_{2,q-1} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{p0} & \beta_{p1} & \cdots & \beta_{p,q-1} \end{pmatrix}$, $x = \begin{pmatrix} 1 \\ x_1 \\ \vdots \\ x_{q-1} \end{pmatrix}$ and $\epsilon = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_p \end{pmatrix} \sim N(0, \Sigma)$. Then

 $y = \beta x + \epsilon$ is a multivariate multiple linear regression model.

It is multivariate because the dependent response $y \in \mathbb{R}^p$ with p > 1; it is multiple because the independent predictor $x \in \mathbb{R}^q$ with q > 2; it is linear because the regression function $E(y) = \beta x$ is a linear function of unknown parameter matrix $\beta \in \mathbb{R}^{p \times q}$.

(2) p univariate multiple linear regression models

The multivariate multiple linear regression implies p univariate multiple linear regressions,

$$y_i = \beta_{i0} + \beta_{i1}x_1 + \dots + \beta_{i,q-1}x_{q-1} + \epsilon_i$$
 with $\epsilon_i \sim N(0, \sigma_i^2)$

for i = 1, ..., p. These p univariate models share the same predictor vector x. The p univariate models do not imply the original multivariate model since the specifications of $\operatorname{cov}(y_i, y_j) = \sigma_{ij}$ for $i \neq j$ in the original model are not specified by the group of p univariate models.

(3) Samples

Let the columns of $X \in \mathbb{R}^{q \times n}$ be *n* observed values of the predictor vector $x \in \mathbb{R}^{q}$, and the columns of $Y \in \mathbb{R}^{p \times n}$ be *n* corresponding observed response $y \in \mathbb{R}^{p}$. Then $\operatorname{vec}(Y) \sim N(\operatorname{vec}(\beta X), I_n \otimes \Sigma)$. Thus

 $Y \sim N_{p \times n}(\beta X, \Sigma, I_n)$ represents data from $y = \beta x + \epsilon$.

(4) Samples from the univariate models The elements of the *i*th row of Y, $(y_{i1}, ..., y_{in})$ are the observed $y_i = \beta_{i0} + \beta_{i1}x_1 + \dots + \beta_{iq-1}x_{q-1} + \epsilon_i$

when x assume the values of the columns of X. Thus

$$\begin{pmatrix} y_{i1} \\ \vdots \\ y_{in} \end{pmatrix} \sim N \begin{pmatrix} \beta_{i0} \\ \vdots \\ \beta_{iq-1} \end{pmatrix}, \sigma_i^2 I_n \end{pmatrix}$$

represents data from $y_i = \beta_{i0} + \beta_{i1}x_1 + \dots + \beta_{iq-1}x_{q-1} + \epsilon_i, i = 1, \dots, p.$

- 2. Least square estimator for parameter matrix $\beta \in \mathbb{R}^{p \times q}$
 - (1) Definition of LSE for β Based on $Y \sim N_{p \times n}(\beta X, \Sigma, I_n), E(Y) = \beta x$. If

$$Q(\beta) = \|Y - E(Y)\|^2 = \|Y - \beta X\|^2 = \operatorname{tr}[(Y - \beta X)(Y - \beta X)'] \ge Q(\widehat{\beta}) \text{ for all } \beta,$$

then $\widehat{\beta}$ is called a least square estimator (LSE) for β .

(2) Definition of LSE for the *i*th row of β .

Based on
$$\begin{pmatrix} y_{i1} \\ \vdots \\ y_{in} \end{pmatrix} \sim N\left(X'\begin{pmatrix} \beta_{i0} \\ \vdots \\ \beta_{iq-1} \end{pmatrix}, \sigma_i^2 I_n\right)$$
, if $\left\|\begin{pmatrix} y_{i1} \\ \vdots \\ y_{in} \end{pmatrix} - X'\begin{pmatrix} \beta_{i0} \\ \vdots \\ \beta_{iq-1} \end{pmatrix}\right\|^2 \ge \left\|\begin{pmatrix} y_{i1} \\ \vdots \\ y_{in} \end{pmatrix} - X'\begin{pmatrix} \widehat{\beta}_{i0} \\ \vdots \\ \widehat{\beta}_{iq-1} \end{pmatrix}\right\|^2$

for all
$$\begin{pmatrix} \beta_{i0} \\ \vdots \\ \beta_{iq-1} \end{pmatrix}$$
, then $\begin{pmatrix} \widehat{\beta}_{i0} \\ \vdots \\ \widehat{\beta}_{iq-1} \end{pmatrix}$ is the LSE for $\begin{pmatrix} \beta_{i0} \\ \vdots \\ \beta_{iq-1} \end{pmatrix}$, $i = 1, ..., p$.
Based on the study on universitie regression, it has been known that

Based on the study on univariate regression, it has been known that the LSE of the *i*th row of β

is
$$\begin{pmatrix} \beta_{i0} \\ \vdots \\ \widehat{\beta}_{iq-1} \end{pmatrix} = (XX')^{-1}X \begin{pmatrix} y_{i1} \\ \vdots \\ y_{in} \end{pmatrix}$$
. Thus $(\widehat{\beta}_{i0}, ..., \widehat{\beta}_{iq-1}) = (y_{i1}, ..., y_{in})X'(XX')^{-1}$.

(3) Formula for LSE of β Let $\hat{\beta} = \left(\hat{\beta}_{ij}\right)_{p \times q}$ with the *i*th row $(\hat{\beta}_{i0}, ..., \hat{\beta}_{iq-1}) = (y_{i1}, ..., y_{in})X'(XX')^{-1}$. Then $\hat{\beta} = YX'(XX')^{-1}$. This $\hat{\beta}$ is LSE for β .

Proof.
$$Q(\beta) = \operatorname{tr}[(Y - \beta X)(Y - \beta X)'] = \sum_{i=1}^{p} \left\| \begin{pmatrix} y_{i1} \\ \vdots \\ y_{in} \end{pmatrix} - X' \begin{pmatrix} \beta_{i0} \\ \vdots \\ \beta_{iq-1} \end{pmatrix} \right\|^{2}$$

$$\geq \sum_{i=1}^{p} \left\| \begin{pmatrix} y_{i1} \\ \vdots \\ y_{in} \end{pmatrix} - X' \begin{pmatrix} \widehat{\beta}_{i0} \\ \vdots \\ \widehat{\beta}_{iq-1} \end{pmatrix} \right\|^{2} = \operatorname{tr}[(Y - \widehat{\beta}X)(Y - \widehat{\beta}X)'] = Q(\widehat{\beta})$$

Comment: To get LSE of β , get LSE for each row of β in the univariate regression.

Ex: Consider model $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \beta_{10} & \beta_{11} & \beta_{12} \\ \beta_{20} & \beta_{21} & \beta_{23} \end{pmatrix} \begin{pmatrix} 1 \\ x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \end{pmatrix}$. In the output of SAS code

	For y1 parameter	value	For y2 parameter	value]			
there are	intercept	1.111	intercept	-1.111	Th	us $\hat{\beta} =$	us $\widehat{\beta} = \begin{pmatrix} 1.111 \\ -1.111 \end{pmatrix}$	us $\widehat{\beta} = \begin{pmatrix} 1.111 & 2.222 \\ -1.111 & -2.222 \end{pmatrix}$
	x1 x2	3.333	x1 x2	-2.222			X	X

- 3. LSE of β related statistics
 - (1) Estimated regression function The regression function $E[y(x)] = \beta x$ is estimated by $\hat{y}(x) = \hat{\beta} x$ also called the prediction equation. If x is given, $\hat{y}(x)$ gives the estimated mean of y.
 - (2) Fitted value matrix and residual matrix

With data $E(Y) = \beta X$ is estimated by the fitted value matrix $\hat{Y} = \hat{\beta} X = Y X' (X X')^{-1} X$. Here $X'(XX')X = X^+X = H$ is called the hat matrix. $Y - \hat{Y} = Y[I - X'(XX')^{-1}X]$ is the residual matrix.

(3) Error matrix E

 $E = (Y - \widehat{Y})(Y - \widehat{Y})' = Y[I - X'(XX')^{-1}X]Y'$ is the error matrix.

L23 UEs and MLEs

- 1. Sampling distributions
 - (1) Normal distributions (i) $\hat{\beta} \sim N_{p \times q}(\beta, \Sigma, (XX')^{-1})$ (ii) $\hat{y}(x) \sim N(\beta x, x'(XX')^{-1}x \Sigma)$ (iii) $\hat{Y} \sim N_{p \times n}(\beta X, \Sigma, X'(XX')^{-1}X)$ (iv) $Y - \hat{Y} \sim N_{p \times n}(0, \Sigma, I - X'(XX')^{-1}X)$. **Proof.** Tool: $X \sim N_{p \times n}(M, \Sigma, \Psi) \Longrightarrow AXB + C \sim N_{q \times m}(AMB + C, A\SigmaA', B'\PsiB)$. Note that $Y \sim N_{p \times n}(\beta X, \Sigma, I_n)$. (i) $\hat{\beta} = YX'(XX')^{-1} \sim N_{p \times q}(\beta, \Sigma, (XX')^{-1})$ (ii) $\hat{y}(x) = \hat{\beta}x = N_{p \times 1}(\beta x, \Sigma, x'(XX')^{-1}x) = N(\beta x, x'(XX')^{-1}x\Sigma)$. (iii) $\hat{Y} = \hat{\beta}X \sim N_{p \times n}(\beta X, \Sigma, X'(XX')^{-1}X)$. (iv) $Y - \hat{Y} = Y(I - H) \sim N_{p \times n}(\beta X(I - H), \Sigma, I - H) = N_{p \times n}(0, \Sigma, I - X'(XX')^{-1}X)$. (2) Wishart distribution: $E \sim W_{p \times p}(n - q, \Sigma)$. **Proof.** Tool: $X \sim N_{p \times n}(\beta X, \Sigma, I)$, $A^2 = A = A' \Longrightarrow XAX' \sim W_{p \times p}(MAM', tr(A), \Sigma)$. Note that $Y \sim N_{p \times n}(\beta X, \Sigma, I)$ and $(I - H)^2 = I - H = (I - H)'$. So $E = Y(I - H)Y' \sim W_{p \times p}((\beta X)(I - H)(\beta X)', tr(I - H), \Sigma) = W_{p \times p}(0, n - q, \Sigma)$ $= W_{p \times p}(n - q, \Sigma)$.
 - (3) $\widehat{\beta}$ and *E* are independent.

Proof. Tool: Under $X \sim N_{p \times n}(M, \Sigma, \Psi)$, A_1XB_1 and A_2XB_2 are independent $\iff A_1\Sigma A'_2 = 0$ or $B'_1\Psi B_2 = 0$. So $\hat{\beta} = YX'(XX')^{-1}$ and $Y - \hat{Y} = Y(I - H)$ are independent since $Y \sim N_{p \times n}(\beta X, \Sigma, I)$ and $[X'(XX')^{-1}]'I_n(I - H) = 0$. Consequently $\hat{\beta}$ and E = Y(I - H)[Y(I - H)]' are independent.

- **Ex1:** Suppose $X \in \mathbb{R}^{q \times n}$ has full row rank q. Then LSE of β , $\hat{\beta}$, is an UE for β since $E(\hat{\beta}) = E[N_{p \times q}(\beta, \Sigma, (XX')^{-1})] = \beta$.a $\frac{E}{n-q}$ is an UE for Σ since $E\left(\frac{E}{n-q}\right) = \frac{1}{n-q}E(E) = \frac{1}{n-q}E[W_{p \times p}(n-q, \Sigma)] = \frac{1}{n-q}(n-q)\Sigma = \Sigma$.
- 2. MLEs of β and Σ
 - (1) Maximizing the likelihood function: Step I With LSE $\hat{\beta} = YX'(XX')^{-1}$ and $E = (Y - \hat{\beta}X)(Y - \hat{\beta}X)'$, from $Y \sim N_{p \times n}(\beta X, \Sigma, I_n)$,

$$L(\beta, \Sigma) = \frac{1}{(2\pi)^{np/2} |\Sigma|^{n/2}} \exp\left\{-\frac{1}{2} \operatorname{tr}\left[(Y - \beta X)' \Sigma^{-1} (Y - \beta X)'\right]\right\} \\ = \frac{|\Sigma^{-1}|^{n/2}}{(2\pi)^{np/2}} \exp\left\{-\frac{1}{2} \operatorname{tr}\left[\Sigma^{-1/2} (Y - \beta X) (Y - \beta X)' \Sigma^{-1/2}\right]\right\}.$$

But $(Y - \beta X)(Y - \beta X)' = E + (\widehat{\beta}X - \beta X)(\widehat{\beta}X - \beta X)$. So

$$L(\beta, \Sigma) = \frac{|\Sigma^{-1}|^{n/2}}{(2\pi)^{np/2}} \exp\left[-\frac{1}{2} \operatorname{tr}(\Sigma^{-1/2} E \Sigma^{-1/2})\right] \cdot \exp\left\{-\frac{1}{2} \operatorname{tr}\left[\Sigma^{-1/2} (\widehat{\beta} X - \beta X) (\widehat{\beta} X - \beta X)' \Sigma^{-1/2}\right]\right\}$$

$$\leq \frac{|\Sigma^{-1/2} E \Sigma^{-1/2}|^{n/2}}{(2\pi)^{np/2} |E|^{n/2}} \exp\left[-\frac{1}{2} \operatorname{tr}(\Sigma^{-1/2} E \Sigma^{-1/2})\right] = L(\widehat{\beta}, \Sigma).$$

(2) Maximizing the likelihood function: Step II Let $\Sigma^{-1/2} E \Sigma^{-1/2} = P \Lambda P'$ be the EVD. Then

$$L(\widehat{\beta}, \Sigma) = \frac{(\lambda_1 \cdots \lambda_p)^{n/2}}{(2\pi)^{np/2} |E|^{n/2}} \exp\left(\frac{\lambda_1 + \cdots + \lambda_p}{2}\right)$$
$$= \frac{1}{(2\pi)^{np/2} |E|^{n/2}} \prod_{i=1}^p f(\lambda_i)$$

where $f(\lambda_i) = \lambda_i^{n/2} e^{-\frac{\lambda_i}{2}}$ is maximized when $\lambda_i = n$, i.e., $\Sigma^{-1/2} E \Sigma^{-1/2} = PnI_n P' = nI_n \iff \Sigma = \frac{E}{n}$. Hence

$$L(\widehat{\beta}, \Sigma) \le L\left(\widehat{\beta}, \frac{E}{n}\right) = \left(\frac{n}{2\pi e}\right)^{np/2} |E|^{-n/2}$$

(3) Conclusions

 $\widehat{\beta}$ is MLE for β , $\frac{E}{n}$ is MLE for Σ , and $\max[L(\beta, \Sigma) : \beta, \Sigma] = \left(\frac{n}{2\pi e}\right)^{np/2} \cdot |E|^{n/2}$.

3. Computations

					(1)			y_1	5	3	4	2	1
C : 1	(y_1)	β_{10}	β_{11}	β_{12}	$\begin{pmatrix} 1 \\ m \end{pmatrix}$	(ϵ_1)	:411-4-	y_2	-3	-1	-1	2	3
Consider	$\begin{pmatrix} y_2 \end{pmatrix} =$	β_{20}	β_{21}	β_{22}	$\begin{pmatrix} x_1 \\ \dots \end{pmatrix}$	$+ \langle \epsilon_2 \rangle$	with data	x_1	-2	-1	0	1	2
		×			$\langle x_2 \rangle$	~ /		x_2	3	4	2	1	5

We need to find $\hat{\beta}$, \hat{Y} and $Y - \hat{Y}$. Based on the result we can calculate E.

(1) Enter data

		5 -3 -2 3
data a;	Data file:	3 -1 -1 4
infile "D:\\Example.txt"		4 -1 0 2
input y1 y2 x1 x2;	2 000 110	2211
		1 3 2 5

(2) Find $\hat{\beta}$

proc reg;	
model y1	y2=x1 x2;
run;	

In the parameter table for the univariate model for y_1 , the first row of $\hat{\beta}$, $\hat{\beta}_{10}$, $\hat{\beta}_{11}$ and $\hat{\beta}_{12}$ are displayed. In the output for y_2 , the second row of $\hat{\beta}$ is displayed.

(3) Find \widehat{Y} and $Y - \widehat{Y}$.

proc reg;	
model y1	y2=x1 x2/p;
run;	

The first row of \hat{Y} and the first row of $Y - \hat{Y}$ are in the output for the model for y_1 . The second rows of \widehat{Y} and $Y - \widehat{Y}$ are in the output for the model for y_2 .

(4) Find $\hat{y}(3,2)$

 $\widehat{y}(3,2) = \widehat{\beta} \begin{pmatrix} 1\\3\\2 \end{pmatrix} = \widehat{\beta}_0 + \widehat{\beta}_1 \cdot 3 + \widehat{\beta}_2 \cdot 2 \in \mathbb{R}^2 \text{ is the value of estimated regression function when}$ $x_1 = 3 \text{ and } x_2 = 2.$ It is the estimated E[y(3,2)].

uata D,	data c;
datalinaa:	set a b;
atallies,	proc reg;
5 2	<pre>model y1 y2=x1 x2/p;</pre>
3	run;

The first component of $\hat{y}(3,2)$ is in the output for model for y_1 . The second component of $\hat{y}(3,2)$ is in that for y_2 .

Comments: In the output for (4) one can find $\hat{\beta}$, \hat{Y} , $Y - \hat{Y}$ and $\hat{y}(3,2)$. While $E = (Y - \hat{Y})(Y - \hat{Y})'$ can be calculated from $Y - \hat{Y}$, we will see how to ask SAS to display E.