L22: Multivariate multiple linear regression model

1. Multivariate multiple liner regression model and samples
(1) Model

Let $y=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{p}\end{array}\right), \beta=\left(\begin{array}{cccc}\beta_{10} & \beta_{11} & \cdots & \beta_{1, q-1} \\ \beta_{20} & \beta_{21} & \cdots & \beta_{2, q-1} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{p 0} & \beta_{p 1} & \cdots & \beta_{p, q-1}\end{array}\right), x=\left(\begin{array}{c}1 \\ x_{1} \\ \vdots \\ x_{q-1}\end{array}\right)$ and $\epsilon=\left(\begin{array}{c}\epsilon_{1} \\ \epsilon_{2} \\ \vdots \\ \epsilon_{p}\end{array}\right) \sim N(0, \Sigma)$. Then $y=\beta x+\epsilon$ is a multivariate multiple linear regression model.

It is multivariate because the dependent response $y \in R^{p}$ with $p>1$; it is multiple because the independent predictor $x \in R^{q}$ with $q>2$; it is linear because the regression function $E(y)=\beta x$ is a linear function of unknown parameter matrix $\beta \in R^{p \times q}$.
(2) p univariate multiple linear regression models

The multivariate multiple linear regression implies p univariate multiple linear regressions,

$$
y_{i}=\beta_{i 0}+\beta_{i 1} x_{1}+\cdots+\beta_{i, q-1} x_{q-1}+\epsilon_{i} \text { with } \epsilon_{i} \sim N\left(0, \sigma_{i}^{2}\right)
$$

for $i=1, \ldots, p$. These p univariate models share the same predictor vector x.
The p univariate models do not imply the original multivariate model since the specifications of $\operatorname{cov}\left(y_{i}, y_{j}\right)=\sigma_{i j}$ for $i \neq j$ in the original model are not specified by the group of p univariate models.
(3) Samples

Let the columns of $X \in R^{q \times n}$ be n observed values of the predictor vector $x \in R^{q}$, and the columns of $Y \in R^{p \times n}$ be n corresponding observed response $y \in R^{p}$. Then $\operatorname{vec}(Y) \sim N\left(\operatorname{vec}(\beta X), I_{n} \otimes \Sigma\right)$. Thus

$$
Y \sim N_{p \times n}\left(\beta X, \Sigma, I_{n}\right) \text { represents data from } y=\beta x+\epsilon
$$

(4) Samples from the univariate models

The elements of the i th row of $Y,\left(y_{i 1}, \ldots, y_{i n}\right)$ are the observed $y_{i}=\beta_{i 0}+\beta_{i 1} x_{1}+\cdots+\beta_{i q-1} x_{q-1}+\epsilon_{i}$ when x assume the values of the columns of X. Thus

$$
\left(\begin{array}{c}
y_{i 1} \\
\vdots \\
y_{i n}
\end{array}\right) \sim N\left(X^{\prime}\left(\begin{array}{c}
\beta_{i 0} \\
\vdots \\
\beta_{i q-1}
\end{array}\right), \sigma_{i}^{2} I_{n}\right)
$$

represents data from $y_{i}=\beta_{i 0}+\beta_{i 1} x_{1}+\cdots+\beta_{i q-1} x_{q-1}+\epsilon_{i}, i=1, \ldots, p$.
2. Least square estimator for parameter matrix $\beta \in R^{p \times q}$
(1) Definition of LSE for β

Based on $Y \sim N_{p \times n}\left(\beta X, \Sigma, I_{n}\right), E(Y)=\beta x$. If

$$
Q(\beta)=\|Y-E(Y)\|^{2}=\|Y-\beta X\|^{2}=\operatorname{tr}\left[(Y-\beta X)(Y-\beta X)^{\prime}\right] \geq Q(\widehat{\beta}) \text { for all } \beta
$$

then $\widehat{\beta}$ is called a least square estimator (LSE) for β.
(2) Definition of LSE for the i th row of β.

Based on $\left(\begin{array}{c}y_{i 1} \\ \vdots \\ y_{i n}\end{array}\right) \sim N\left(X^{\prime}\left(\begin{array}{c}\beta_{i 0} \\ \vdots \\ \beta_{i q-1}\end{array}\right), \sigma_{i}^{2} I_{n}\right)$, if $\left\|\left(\begin{array}{c}y_{i 1} \\ \vdots \\ y_{i n}\end{array}\right)-X^{\prime}\left(\begin{array}{c}\beta_{i 0} \\ \vdots \\ \beta_{i q-1}\end{array}\right)\right\|^{2} \geq\left\|\left(\begin{array}{c}y_{i 1} \\ \vdots \\ y_{i n}\end{array}\right)-X^{\prime}\left(\begin{array}{c}\widehat{\beta}_{i 0} \\ \vdots \\ \widehat{\beta}_{i q-1}\end{array}\right)\right\|^{2}$
for all $\left(\begin{array}{c}\beta_{i 0} \\ \vdots \\ \beta_{i q-1}\end{array}\right)$, then $\left(\begin{array}{c}\widehat{\beta}_{i 0} \\ \vdots \\ \widehat{\beta}_{i q-1}\end{array}\right)$ is the LSE for $\left(\begin{array}{c}\beta_{i 0} \\ \vdots \\ \beta_{i q-1}\end{array}\right), i=1, \ldots, p$.
Based on the study on univariate regression, it has been known that the LSE of the i th row of β
is $\left(\begin{array}{c}\widehat{\beta}_{i 0} \\ \vdots \\ \widehat{\beta}_{i q-1}\end{array}\right)=\left(X X^{\prime}\right)^{-1} X\left(\begin{array}{c}y_{i 1} \\ \vdots \\ y_{i n}\end{array}\right)$. Thus $\left(\widehat{\beta}_{i 0}, \ldots, \widehat{\beta}_{i q-1}\right)=\left(y_{i 1}, \ldots, y_{i n}\right) X^{\prime}\left(X X^{\prime}\right)^{-1}$.
(3) Formula for LSE of β

Let $\widehat{\beta}=\left(\widehat{\beta}_{i j}\right)_{p \times q}$ with the i th row $\left(\widehat{\beta}_{i 0}, \ldots, \widehat{\beta}_{i q-1}\right)=\left(y_{i 1}, \ldots, y_{i n}\right) X^{\prime}\left(X X^{\prime}\right)^{-1}$. Then $\widehat{\beta}=Y X^{\prime}\left(X X^{\prime}\right)^{-1}$.
This $\widehat{\beta}$ is LSE for β.
$\begin{aligned} \text { Proof. } Q(\beta) & =\operatorname{tr}\left[(Y-\beta X)(Y-\beta X)^{\prime}\right]=\sum_{i=1}^{p}\left\|\left(\begin{array}{c}y_{i 1} \\ \vdots \\ y_{i n}\end{array}\right)-X^{\prime}\left(\begin{array}{c}\beta_{i 0} \\ \vdots \\ \beta_{i q-1}\end{array}\right)\right\|^{2} \\ & \geq \sum_{i=1}^{p}\left\|\left(\begin{array}{c}y_{i 1} \\ \vdots \\ y_{i n}\end{array}\right)-X^{\prime}\left(\begin{array}{c}\widehat{\beta}_{i 0} \\ \vdots \\ \widehat{\beta}_{i q-1}\end{array}\right)\right\|^{2}=\operatorname{tr}\left[(Y-\widehat{\beta} X)(Y-\widehat{\beta} X)^{\prime}\right]=Q(\widehat{\beta}) .\end{aligned}$
Comment: To get LSE of β, get LSE for each row of β in the univariate regression.
Ex: Consider model $\binom{y_{1}}{y_{2}}=\left(\begin{array}{lll}\beta_{10} & \beta_{11} & \beta_{12} \\ \beta_{20} & \beta_{21} & \beta_{23}\end{array}\right)\left(\begin{array}{c}1 \\ x_{1} \\ x_{2}\end{array}\right)+\binom{\epsilon_{1}}{\epsilon_{2}}$. In the output of SAS code

data a;	
\quad infile "C:\data.txt";	proc reg;
input y1 y2 x1 x2;	model y1 y2=x1 x2;
run;	run;

there are	For y1		For y2		Thus $\widehat{\beta}=\left(\begin{array}{c}1.111 \\ -1.111\end{array}\right.$	2.222-2.222	$\left.\begin{array}{c}3.333 \\ -3.333\end{array}\right)$
	parameter	$\begin{aligned} & \text { value } \\ & 1.111 \end{aligned}$	parameter intercept	$\begin{aligned} & \text { value } \\ & -1.111 \end{aligned}$			
	x 1	2.222	x 1	-2.222			
	x2	3.333	x2	-3.333			

3. LSE of β related statistics
(1) Estimated regression function

The regression function $E[y(x)]=\beta x$ is estimated by $\widehat{y}(x)=\widehat{\beta} x$ also called the prediction equation. If x is given, $\widehat{y}(x)$ gives the estimated mean of y.
(2) Fitted value matrix and residual matrix

With data $E(Y)=\beta X$ is estimated by the fitted value matrix $\widehat{Y}=\widehat{\beta} X=Y X^{\prime}\left(X X^{\prime}\right)^{-1} X$. Here $X^{\prime}\left(X X^{\prime}\right) X=X^{+} X=H$ is called the hat matrix. $Y-\widehat{Y}=Y\left[I-X^{\prime}\left(X X^{\prime}\right)^{-1} X\right]$ is the residual matrix.
(3) Error matrix E
$E=(Y-\widehat{Y})(Y-\widehat{Y})^{\prime}=Y\left[I-X^{\prime}\left(X X^{\prime}\right)^{-1} X\right] Y^{\prime}$ is the error matrix.

L23 UEs and MLEs

1. Sampling distributions
(1) Normal distributions
(i) $\widehat{\beta} \sim N_{p \times q}\left(\beta, \Sigma,\left(X X^{\prime}\right)^{-1}\right)$
(ii) $\widehat{y}(x) \sim N\left(\beta x, x^{\prime}\left(X X^{\prime}\right)^{-1} x \Sigma\right)$
(iii) $\widehat{Y} \sim N_{p \times n}\left(\beta X, \Sigma, X^{\prime}\left(X X^{\prime}\right)^{-1} X\right)$
(iv) $Y-\widehat{Y} \sim N_{p \times n}\left(0, \Sigma, I-X^{\prime}\left(X X^{\prime}\right)^{-1} X\right)$.

Proof. Tool: $X \sim N_{p \times n}(M, \Sigma, \Psi) \Longrightarrow A X B+C \sim N_{q \times m}\left(A M B+C, A \Sigma A^{\prime}, B^{\prime} \Psi B\right)$.
Note that $Y \sim N_{p \times n}\left(\beta X, \Sigma, I_{n}\right)$.
(i) $\widehat{\beta}=Y X^{\prime}\left(X X^{\prime}\right)^{-1} \sim N_{p \times q}\left(\beta, \Sigma,\left(X X^{\prime}\right)^{-1}\right)$
(ii) $\widehat{y}(x)=\widehat{\beta} x=N_{p \times 1}\left(\beta x, \Sigma, x^{\prime}\left(X X^{\prime}\right)^{-1} x\right)=N\left(\beta x, x^{\prime}\left(X X^{\prime}\right)^{-1} x \Sigma\right)$.
(iii) $\widehat{Y}=\widehat{\beta} X \sim N_{p \times n}\left(\beta X, \Sigma, X^{\prime}\left(X X^{\prime}\right)^{-1} X\right)$.
(iv) $Y-\widehat{Y}=Y(I-H) \sim N_{p \times n}(\beta X(I-H), \Sigma, I-H)=N_{p \times n}\left(0, \Sigma, I-X^{\prime}\left(X X^{\prime}\right)^{-1} X\right)$.
(2) Wishart distribution: $E \sim W_{p \times p}(n-q, \Sigma)$.

Proof. Tool: $X \sim N_{p \times n}(M, \Sigma, I), A^{2}=A=A^{\prime} \Longrightarrow X A X^{\prime} \sim W_{p \times p}\left(M A M^{\prime}, \operatorname{tr}(A), \Sigma\right)$.
Note that $Y \sim N_{p \times n}(\beta X, \Sigma, I)$ and $(I-H)^{2}=I-H=(I-H)^{\prime}$. So

$$
\begin{aligned}
E=Y(I-H) Y^{\prime} & \sim W_{p \times p}\left((\beta X)(I-H)(\beta X)^{\prime}, \operatorname{tr}(I-H), \Sigma\right)=W_{p \times p}(0, n-q, \Sigma) \\
& =W_{p \times p}(n-q, \Sigma) .
\end{aligned}
$$

(3) $\widehat{\beta}$ and E are independent.

Proof. Tool: Under $X \sim N_{p \times n}(M, \Sigma, \Psi)$,
$A_{1} X B_{1}$ and $A_{2} X B_{2}$ are independent $\Longleftrightarrow A_{1} \Sigma A_{2}^{\prime}=0$ or $B_{1}^{\prime} \Psi B_{2}=0$.
So $\widehat{\beta}=Y X^{\prime}\left(X X^{\prime}\right)^{-1}$ and $Y-\widehat{Y}=Y(I-H)$ are independent since $Y \sim N_{p \times n}(\beta X, \Sigma, I)$ and $\left[X^{\prime}\left(X X^{\prime}\right)^{-1}\right]^{\prime} I_{n}(I-H)=0$. Consequently $\widehat{\beta}$ and $E=Y(I-H)[Y(I-H)]^{\prime}$ are independent.

Ex1: Suppose $X \in R^{q \times n}$ has full row rank q. Then
LSE of $\beta, \widehat{\beta}$, is an UE for β since $E(\widehat{\beta})=E\left[N_{p \times q}\left(\beta, \Sigma,\left(X X^{\prime}\right)^{-1}\right)\right]=\beta$ a
$\frac{E}{n-q}$ is an UE for Σ since $E\left(\frac{E}{n-q}\right)=\frac{1}{n-q} E(E)=\frac{1}{n-q} E\left[W_{p \times p}(n-q, \Sigma)\right]=\frac{1}{n-q}(n-q) \Sigma=\Sigma$.
2. MLEs of β and Σ
(1) Maximizing the likelihood function: Step I

With LSE $\widehat{\beta}=Y X^{\prime}\left(X X^{\prime}\right)^{-1}$ and $E=(Y-\widehat{\beta} X)(Y-\widehat{\beta} X)^{\prime}$, from $Y \sim N_{p \times n}\left(\beta X, \Sigma, I_{n}\right)$,

$$
\begin{aligned}
L(\beta, \Sigma) & =\frac{1}{(2 \pi)^{n p / 2}|\Sigma|^{n / 2}} \exp \left\{-\frac{1}{2} \operatorname{tr}\left[(Y-\beta X)^{\prime} \Sigma^{-1}(Y-\beta X)^{\prime}\right]\right\} \\
& =\frac{\left|\Sigma^{-1}\right|^{n / 2}}{(2 \pi)^{n p / 2}} \exp \left\{-\frac{1}{2} \operatorname{tr}\left[\Sigma^{-1 / 2}(Y-\beta X)(Y-\beta X)^{\prime} \Sigma^{-1 / 2}\right]\right\}
\end{aligned}
$$

$\operatorname{But}(Y-\beta X)(Y-\beta X)^{\prime}=E+(\widehat{\beta} X-\beta X)(\widehat{\beta} X-\beta X)$. So

$$
\begin{aligned}
L(\beta, \Sigma) & =\frac{\left|\Sigma^{-1}\right|^{n / 2}}{(2 \pi)^{n p / 2}} \exp \left[-\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1 / 2} E \Sigma^{-1 / 2}\right)\right] \cdot \exp \left\{-\frac{1}{2} \operatorname{tr}\left[\Sigma^{-1 / 2}(\widehat{\beta} X-\beta X)(\widehat{\beta} X-\beta X)^{\prime} \Sigma^{-1 / 2}\right]\right\} \\
& \leq \frac{\left|\Sigma^{-1 / 2} E \Sigma^{-1 / 2}\right|^{n / 2}}{(2 \pi)^{n p / 2}|E|^{n / 2}} \exp \left[-\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1 / 2} E \Sigma^{-1 / 2}\right)\right]=L(\widehat{\beta}, \Sigma) .
\end{aligned}
$$

(2) Maximizing the likelihood function: Step II

Let $\Sigma^{-1 / 2} E \Sigma^{-1 / 2}=P \Lambda P^{\prime}$ be the EVD. Then

$$
\begin{aligned}
L(\widehat{\beta}, \Sigma) & =\frac{\left(\lambda_{1} \cdots \lambda_{p}\right)^{n / 2}}{(2 \pi)^{n / 2}|E|^{n / 2}} \exp \left(\frac{\lambda_{1}+\cdots+\lambda_{p}}{2}\right) \\
& =\frac{1}{(2 \pi)^{n p / 2}|E|^{n / 2}} \prod_{i=1}^{p} f\left(\lambda_{i}\right)
\end{aligned}
$$

where $f\left(\lambda_{i}\right)=\lambda_{i}^{n / 2} e^{-\frac{\lambda_{i}}{2}}$ is maximized when $\lambda_{i}=n$, i.e., $\Sigma^{-1 / 2} E \Sigma^{-1 / 2}=P n I_{n} P^{\prime}=n I_{n} \Longleftrightarrow \Sigma=\frac{E}{n}$. Hence

$$
L(\widehat{\beta}, \Sigma) \leq L\left(\widehat{\beta}, \frac{E}{n}\right)=\left(\frac{n}{2 \pi e}\right)^{n p / 2}|E|^{-n / 2}
$$

(3) Conclusions
$\widehat{\beta}$ is MLE for $\beta, \frac{E}{n}$ is MLE for Σ, and $\max [L(\beta, \Sigma): \beta, \Sigma]=\left(\frac{n}{2 \pi e}\right)^{n p / 2} \cdot|E|^{n / 2}$.
3. Computations

Consider \(\binom{y_{1}}{y_{2}}=\left($$
\begin{array}{lll}\beta_{10} & \beta_{11} & \beta_{12} \\
\beta_{20} & \beta_{21} & \beta_{22}\end{array}
$$\right)\left(\begin{array}{c}1

x_{1}

x_{2}\end{array}\right)+\binom{\epsilon_{1}}{\epsilon_{2}}\) with data | y_{1} | 5 | 3 | 4 | 2 | 1 |
| :---: | ---: | ---: | ---: | ---: | ---: |
| y_{2} | -3 | -1 | -1 | 2 | 3 |
| x_{1} | -2 | -1 | 0 | 1 | 2 |
| x_{2} | 3 | 4 | 2 | 1 | 5 |.

We need to find $\widehat{\beta}, \widehat{Y}$ and $Y-\widehat{Y}$. Based on the result we can calculate E.
(1) Enter data
data a;
infile "D:
Example.txt"
input y1 y2 x1 x2;

$$
\begin{array}{llll}
5 & -3 & -2 & 3 \\
3 & -1 & -1 & 4 \\
4 & -1 & 0 & 2 \\
2 & 2 & 1 & 1 \\
1 & 3 & 2 & 5
\end{array}
$$

(2) Find $\widehat{\beta}$

```
proc reg;
    model y1 y2=x1 x2;
    run;
```

In the parameter table for the univariate model for y_{1}, the first row of $\widehat{\beta}, \widehat{\beta}_{10}, \widehat{\beta}_{11}$ and $\widehat{\beta}_{12}$ are displayed. In the output for y_{2}, the second row of $\widehat{\beta}$ is displayed.
(3) Find \widehat{Y} and $Y-\widehat{Y}$.

```
proc reg;
    model y1 y2=x1 x2/p;
    run;
```

The first row of \widehat{Y} and the first row of $Y-\widehat{Y}$ are in the output for the model for y_{1}. The second rows of \widehat{Y} and $Y-\widehat{Y}$ are in the output for the model for y_{2}.
(4) Find $\widehat{y}(3,2)$
$\widehat{y}(3,2)=\widehat{\beta}\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)=\widehat{\beta}_{0}+\widehat{\beta}_{1} \cdot 3+\widehat{\beta}_{2} \cdot 2 \in R^{2}$ is the value of estimated regression function when $x_{1}=3$ and $x_{2}=2$. It is the estimated $E[y(3,2)]$.

The first component of $\widehat{y}(3,2)$ is in the output for model for y_{1}. The second component of $\widehat{y}(3,2)$ is in that for y_{2}.

Comments: In the output for (4) one can find $\widehat{\beta}, \widehat{Y}, Y-\widehat{Y}$ and $\widehat{y}(3,2)$. While $E=(Y-\widehat{Y})(Y-\widehat{Y})^{\prime}$ can be calculated from $Y-\widehat{Y}$, we will see how to ask SAS to display E.

