
L22: Multivariate multiple linear regression model

1. Multivariate multiple liner regression model and samples

(1) Model

Let y =


y1
y2
...
yp

, β =


β10 β11 · · · β1,q−1

β20 β21 · · · β2, q−1

...
...

. . .
...

βp0 βp1 · · · βp,q−1

, x =


1
x1

...
xq−1

 and ϵ =


ϵ1
ϵ2
...
ϵp

 ∼ N(0, Σ). Then

y = βx+ ϵ is a multivariate multiple linear regression model.

It is multivariate because the dependent response y ∈ Rp with p > 1; it is multiple because the
independent predictor x ∈ Rq with q > 2; it is linear because the regression function E(y) = βx
is a linear function of unknown parameter matrix β ∈ Rp×q.

(2) p univariate multiple linear regression models
The multivariate multiple linear regression implies p univariate multiple linear regressions,

yi = βi0 + βi1x1 + · · ·+ βi,q−1xq−1 + ϵi with ϵi ∼ N(0, σ2
i )

for i = 1, ..., p. These p univariate models share the same predictor vector x.
The p univariate models do not imply the original multivariate model since the specifications of
cov(yi, yj) = σij for i ̸= j in the original model are not specified by the group of p univariate
models.

(3) Samples
Let the columns of X ∈ Rq×n be n observed values of the predictor vector x ∈ Rq, and the columns
of Y ∈ Rp×n be n corresponding observed response y ∈ Rp. Then vec(Y ) ∼ N (vec(βX), In ⊗ Σ).
Thus

Y ∼ Np×n(βX, Σ, In) represents data from y = βx+ ϵ.

(4) Samples from the univariate models
The elements of the ith row of Y , (yi1, ..., yin) are the observed yi = βi0+βi1x1+· · ·+βiq−1xq−1+ϵi
when x assume the values of the columns of X. Thusyi1

...
yin

 ∼ N

X ′

 βi0

...
βiq−1

 , σ2
i In


represents data from yi = βi0 + βi1x1 + · · ·+ βiq−1xq−1 + ϵi, i = 1, ..., p.

2. Least square estimator for parameter matrix β ∈ Rp×q

(1) Definition of LSE for β
Based on Y ∼ Np×n(βX, Σ, In), E(Y ) = βx. If

Q(β) = ∥Y − E(Y )∥2 = ∥Y − βX∥2 = tr[(Y − βX)(Y − βX)′] ≥ Q(β̂) for all β,

then β̂ is called a least square estimator (LSE) for β.

(2) Definition of LSE for the ith row of β.

Based on

yi1
...

yin

 ∼ N

X ′

 βi0

...
βiq−1

 , σ2
i In

, if

∥∥∥∥∥∥∥
yi1

...
yin

−X ′

 βi0

...
βiq−1


∥∥∥∥∥∥∥
2

≥

∥∥∥∥∥∥∥
yi1

...
yin

−X ′

 β̂i0

...

β̂iq−1


∥∥∥∥∥∥∥
2
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for all

 βi0

...
βiq−1

, then

 β̂i0

...

β̂iq−1

 is the LSE for

 βi0

...
βiq−1

, i = 1, ..., p.

Based on the study on univariate regression, it has been known that the LSE of the ith row of β

is

 β̂i0

...

β̂iq−1

 = (XX ′)−1X

yi1
...

yin

. Thus (β̂i0, ..., β̂iq−1) = (yi1, ..., yin)X
′(XX ′)−1.

(3) Formula for LSE of β

Let β̂ =
(
β̂ij

)
p×q

with the ith row (β̂i0, ..., β̂iq−1) = (yi1, ..., yin)X
′(XX ′)−1. Then β̂ = Y X ′(XX ′)−1.

This β̂ is LSE for β.

Proof. Q(β) = tr[(Y − βX)(Y − βX)′] =
∑p

i=1

∥∥∥∥∥∥∥
yi1

...
yin

−X ′

 βi0

...
βiq−1


∥∥∥∥∥∥∥
2

≥
∑p

i=1

∥∥∥∥∥∥∥
yi1

...
yin

−X ′

 β̂i0

...

β̂iq−1


∥∥∥∥∥∥∥
2

= tr[(Y − β̂X)(Y − β̂X)′] = Q(β̂).

.

Comment: To get LSE of β, get LSE for each row of β in the univariate regression.

Ex: Consider model

(
y1
y2

)
=

(
β10 β11 β12

β20 β21 β23

) 1
x1

x2

+

(
ϵ1
ϵ2

)
. In the output of SAS code

data a;

infile "C:\data.txt";

input y1 y2 x1 x2;

run;

proc reg;

model y1 y2=x1 x2;

run;

there are

For y1 For y2

parameter value parameter value

intercept 1.111 intercept -1.111

x1 2.222 x1 -2.222

x2 3.333 x2 -3.333

Thus β̂ =

(
1.111 2.222 3.333
−1.111 −2.222 −3.333

)

3. LSE of β related statistics

(1) Estimated regression function

The regression function E[y(x)] = βx is estimated by ŷ(x) = β̂x also called the prediction
equation. If x is given, ŷ(x) gives the estimated mean of y.

(2) Fitted value matrix and residual matrix

With data E(Y ) = βX is estimated by the fitted value matrix Ŷ = β̂X = Y X ′(XX ′)−1X. Here

X ′(XX ′)X = X+X = H is called the hat matrix. Y − Ŷ = Y [I −X ′(XX ′)−1X] is the residual
matrix.

(3) Error matrix E

E = (Y − Ŷ )(Y − Ŷ )′ = Y [I −X ′(XX ′)−1X]Y ′ is the error matrix.
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L23 UEs and MLEs

1. Sampling distributions

(1) Normal distributions

(i) β̂ ∼ Np×q(β, Σ, (XX ′)−1) (ii) ŷ(x) ∼ N(βx, x′(XX ′)−1xΣ)

(iii) Ŷ ∼ Np×n(βX, Σ, X ′(XX ′)−1X) (iv) Y − Ŷ ∼ Np×n(0, Σ, I −X ′(XX ′)−1X).

Proof. Tool: X ∼ Np×n(M, Σ, Ψ) =⇒ AXB + C ∼ Nq×m(AMB + C, AΣA′, B′ΨB).
Note that Y ∼ Np×n(βX, Σ, In).

(i) β̂ = Y X ′(XX ′)−1 ∼ Np×q(β, Σ, (XX ′)−1)

(ii) ŷ(x) = β̂x = Np×1(βx, Σ, x
′(XX ′)−1x) = N(βx, x′(XX ′)−1xΣ).

(iii) Ŷ = β̂X ∼ Np×n(βX, Σ, X ′(XX ′)−1X).

(iv) Y − Ŷ = Y (I −H) ∼ Np×n(βX(I −H), Σ, I −H) = Np×n(0, Σ, I −X ′(XX ′)−1X).

(2) Wishart distribution: E ∼ Wp×p(n− q, Σ).

Proof. Tool: X ∼ Np×n(M, Σ, I), A2 = A = A′ =⇒ XAX ′ ∼ Wp×p(MAM ′, tr(A), Σ).
Note that Y ∼ Np×n(βX, Σ, I) and (I −H)2 = I −H = (I −H)′. So
E = Y (I −H)Y ′ ∼ Wp×p((βX)(I −H)(βX)′, tr(I −H), Σ) = Wp×p(0, n− q, Σ)

= Wp×p(n− q, Σ).

(3) β̂ and E are independent.

Proof. Tool: Under X ∼ Np×n(M, Σ, Ψ),
A1XB1 and A2XB2 are independent ⇐⇒ A1ΣA

′
2 = 0 or B′

1ΨB2 = 0.

So β̂ = Y X ′(XX ′)−1 and Y − Ŷ = Y (I−H) are independent since Y ∼ Np×n(βX, Σ, I) and

[X ′(XX ′)−1]′In(I−H) = 0. Consequently β̂ and E = Y (I−H)[Y (I−H)]′ are independent.

Ex1: Suppose X ∈ Rq×n has full row rank q. Then
LSE of β, β̂, is an UE for β since E(β̂) = E[Np×q(β, Σ, (XX ′)−1)] = β.a
E

n−q is an UE for Σ since E
(

E
n−q

)
= 1

n−qE(E) = 1
n−qE[Wp×p(n− q, Σ)] = 1

n−q (n− q)Σ = Σ.

2. MLEs of β and Σ

(1) Maximizing the likelihood function: Step I

With LSE β̂ = Y X ′(XX ′)−1 and E = (Y − β̂X)(Y − β̂X)′, from Y ∼ Np×n(βX, Σ, In),

L(β, Σ) = 1
(2π)np/2|Σ|n/2 exp

{
− 1

2 tr
[
(Y − βX)′Σ−1(Y − βX)′

]}
= |Σ−1|n/2

(2π)np/2 exp
{
− 1

2 tr
[
Σ−1/2(Y − βX)(Y − βX)′Σ−1/2

]}
.

But (Y − βX)(Y − βX)′ = E + (β̂X − βX)(β̂X − βX). So

L(β, Σ) = |Σ−1|n/2

(2π)np/2 exp
[
− 1

2 tr(Σ
−1/2EΣ−1/2)

]
· exp

{
− 1

2 tr
[
Σ−1/2(β̂X − βX)(β̂X − βX)′Σ−1/2

]}
≤ |Σ−1/2EΣ−1/2|n/2

(2π)np/2|E|n/2 exp
[
− 1

2 tr(Σ
−1/2EΣ−1/2)

]
= L(β̂, Σ).

(2) Maximizing the likelihood function: Step II
Let Σ−1/2EΣ−1/2 = PΛP ′ be the EVD. Then

L(β̂, Σ) =
(λ1···λp)

n/2

(2π)np/2|E|n/2 exp
(

λ1+···+λp

2

)
= 1

(2π)np/2|E|n/2

∏p
i=1 f(λi)

where f(λi) = λ
n/2
i e−

λi
2 is maximized when λi = n, i.e.,

Σ−1/2EΣ−1/2 = PnInP
′ = nIn ⇐⇒ Σ = E

n . Hence

L(β̂, Σ) ≤ L

(
β̂,

E

n

)
=

( n

2πe

)np/2

|E|−n/2
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(3) Conclusions

β̂ is MLE for β, E
n is MLE for Σ, and max[L(β, Σ) : β, Σ] =

(
n

2πe

)np/2 · |E|n/2.

3. Computations

Consider

(
y1
y2

)
=

(
β10 β11 β12

β20 β21 β22

) 1
x1

x2

+

(
ϵ1
ϵ2

)
with data

y1 5 3 4 2 1
y2 -3 -1 -1 2 3
x1 -2 -1 0 1 2
x2 3 4 2 1 5

.

We need to find β̂, Ŷ and Y − Ŷ . Based on the result we can calculate E.

(1) Enter data

data a;

infile "D:\\Example.txt"

input y1 y2 x1 x2;
Data file:

5 -3 -2 3

3 -1 -1 4

4 -1 0 2

2 2 1 1

1 3 2 5

(2) Find β̂

proc reg;

model y1 y2=x1 x2;

run;

In the parameter table for the univariate model for y1, the first row of β̂, β̂10, β̂11 and β̂12 are
displayed. In the output for y2, the second row of β̂ is displayed.

(3) Find Ŷ and Y − Ŷ .

proc reg;

model y1 y2=x1 x2/p;

run;

The first row of Ŷ and the first row of Y − Ŷ are in the output for the model for y1. The second
rows of Ŷ and Y − Ŷ are in the output for the model for y2.

(4) Find ŷ(3, 2)

ŷ(3, 2) = β̂

1
3
2

 = β̂0 + β̂1 · 3 + β̂2 · 2 ∈ R2 is the value of estimated regression function when

x1 = 3 and x2 = 2. It is the estimated E[y(3, 2)].

data b;

input y1 y2 x1 x2;

datalines;

. . 3 2

;

data c;

set a b;

proc reg;

model y1 y2=x1 x2/p;

run;

The first component of ŷ(3, 2) is in the output for model for y1. The second component of ŷ(3, 2)
is in that for y2.

Comments: In the output for (4) one can find β̂, Ŷ , Y − Ŷ and ŷ(3, 2). While E = (Y − Ŷ )(Y − Ŷ )′

can be calculated from Y − Ŷ , we will see how to ask SAS to display E.
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