L22: Multivariate multiple linear regression model

1. Multivariate multiple liner regression model and samples

(1) Model
Y1 Bio Pu o Prg—1 1 €1
Y2 Bao Bar - Bo, q—1 I €2
Lety=1| . |, 8=] . . . , T = . ande= | . [ ~N(0, ¥). Then
Yp 6;00 5p1 s 5p,q—1 Tg—1 €p

(2)

y = Bx + € is a multivariate multiple linear regression model.

It is multivariate because the dependent response y € RP with p > 1; it is multiple because the
independent predictor € R? with ¢ > 2; it is linear because the regression function E(y) = Sx
is a linear function of unknown parameter matrix 5 € RP*4.

p univariate multiple linear regression models
The multivariate multiple linear regression implies p univariate multiple linear regressions,

Y = Bio + Binx1 + - + Pig—12¢—1 + € with ¢ ~ N (0, Jiz)

for i = 1,...,p. These p univariate models share the same predictor vector x.
The p univariate models do not imply the original multivariate model since the specifications of
cov(y;, y;) = o045 for ¢ # j in the original model are not specified by the group of p univariate
models.
Samples
Let the columns of X € R?*™ be n observed values of the predictor vector x € R, and the columns
of Y € RP*™ be n corresponding observed response y € RP. Then vec(Y) ~ N (vec(5X), I, ® X).
Thus

Y ~ Npun(BX, 2, I,,) represents data from y = Sz + e.

Samples from the univariate models
The elements of the ith row of Y, (y;1, ..., Yin) are the observed y; = Bio+Biaz1+- -+ Pig—1Tq—1+€;

when x assume the values of the columns of X. Thus
Yil Bio
| ~NX |, et
Yin ﬂiqfl

represents data from y; = B0 + Bz + - + Big—1Tq—1 + €, 1 =1,...,p.

2. Least square estimator for parameter matrix 8 € RP*Y

(1)

(2)

Definition of LSE for g
Based on Y ~ N,», (X, 2, I,,), E(Y) = Bz. If

Q) = IIY = E(YV)IIP = [[Y = BX|” = tx[(Y — BX)(Y — BX)'] = Q(B) for all 5,
then 3 is called a least square estimator (LSE) for 5.
Definition of LSE for the ¢th row of j.
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for all , then is the LSE for ,i=1,...,p.
Big—1 Eiq_l Big—1
Based on the study on univariate regression, it has been known that the LSE of the ith row of
B\io Yi1
is | 0 | =(xx)7ix | | Thus (Bios ooy Big—1) = Wity oo yin) X (X X)L,
Biq—l Yin

(3) Formula for LSE of g8
Let § = (Bij) with the ith row (Big, ..., Biq_1) = (Yi1, s yin) X' (XX')~L. Then § = Y X' (XX")~1.
pXq
This g is LSE for 5.
2

Yi1 Bio
Proof. Q(8) = ul(Y -pX)(Y - x| =" || : | -x'| :
Yin [31',(1—1
Yi1 Bio
> X X = trl(Y - BX)(Y - BX)'] = Q(B).
Yin Biqfl

Comment: To get LSE of 3, get LSE for each row of § in the univariate regression.

1
Ex: Consider model (yl) = <ﬁ10 b ”312> z1 | + <61>. In the output of SAS code

Y2 P20 Bo1 Pas €2
L2
data a; roc reg:
infile "C:\data.txt"; P &
input vi v2 x1 x2: model yl1 y2=x1 x2;
put ¥y ’ run;
run;
For y1 For y2
parameter value parameter value
there are| intercept 1.111 intercept -1.111 Thus B: ( 1.111 2.222 3.333 )
%1 2.999 <1 -9.999 —-1.111 —-2.222 —-3.333
x2 3.333 x2 -3.333

3. LSE of § related statistics

(1) Estimated regression function
The regression function Ely(x)] = Sz is estimated by y(z) = Pz also called the prediction
equation. If z is given, y(x) gives the estimated mean of y.

(2) Fitted value matrix and residual matrix
With data E(Y) = BX is estimated by the fitted value matrix Y = X = Y X/(XX’)"!X. Here
X'(XX")X = XTX = H is called the hat matrix. Y —Y = Y[l — X’(XX')~1X] is the residual
matrix.

(3) Error matrix E
E=Y-Y)(Y-Y)=Y[I - X' (XX")"1X]Y" is the error matrix.



L23 UEs and MLEs

1. Sampling distributions

(1) Normal distributions
() 5~ NpsglB, 5, (XX)) (i) 9(2) ~ N(Ba, 2/(XX') 1z
(iii) ¥ ~ Npwn(BX, B, X'(XX')"1X) (V) Y =¥ ~ Npun(0, 2, T — X'(XX')"1X).
Proof. Tool: X ~ Npyn(M, 3, ¥) = AXB + C ~ Nyym(AMB + C, ASA', B'UB).
Note that Y ~ prn(ﬁX X, In).
(1) B=YX'(XX)7 ~ Npxg(B, Z, (XX)7H)
(i) ¥(x) = Bz = Npx1(Bz, &, /(X X")"1z) = N(Bz, /(X X')"12X).
(iii) ¥ = BX ~ Npun(BX, T, X'(XX')71X).
(iv) Y — Y = Y(I—H)~ Npsn(BX(I—H), S, I —H) = Npxyn,(0, &, — X'(XX')71X).
(2) Wishart distribution: E ~Wyxp(n—g, ).
Proof. Tool: X ~ Nyyn(M, B, 1), A2 = A= A" = XAX' ~ Wy, (MAM', tr(A), X).
Note that ¥ ~ Nan(ﬁX S, 1) and (I - H)?=1-H=(I—-H). So
E=Y({I-H)Y' ~ Wpp((BX)I = H)(BX)', tr(I = H), X) = Wpxp(0, n — ¢, %)
= Wp p(n —q, X).
(3) B and E are independent.
Proof. Tool: Under X ~ Npy,(M, £, ),
A1 X By and A3 X By are independent <= 41X A, =0 or B{UBy = 0.
So =YX (XX')"'and Y —Y =Y (I — H) are independent since Y ~ Ny, (8X, X, I) and
[X'(XX')"YI,(I-H)=0. Consequently 3 and E =Y (I — H)[Y (I — H)]' are independent.
Ex1: Suppose X € R?*" has full row rank q. Then
LSE of 3, j, is an UE for 8 since E(3) = E| Npxg(B, Z, (XX)™H] = B.a
—£_is an UE for ¥ since E (H) =-LEBEE)=-LEW,y(n—¢X)]=-"2(n-—qZ=1.

q n—q n—q n—q
2. MLEs of # and ¥
(1) Maximizing the likelihood function: Step I~ R
With LSE § = YX/(XX)"! and E = (Y — BX)(Y — BX)', from Y ~ Nyxn(8X, 2, I,),
LB, %) = W exp {—%tr [(Y - BX)S7HY - BX)’]}
= S exp {— L [STVA(Y - BX)(Y - BX)'S2])

But (Y — 8X)(Y — 8X) = E + (BX — BX)(BX — BX). So
LB, %) = Bl e [l 2En12)] exp { -1t [R12(BX - pX)(BX — pX)® 2]}

1/2 1/2\n/2 ~
By exp [~ tr(E712EE1/?)] = L(B, ©).

IN

(2) Maximizing the likelihood function: Step II
Let X~Y/2E% -2 = PAP’ be the EVD. Then
o~ 1 n/2 1o »
L(B? E) = (2(7.?\)np/)\2|)E|n/2 eXp (A ot

= @ e fO )

where f(\;) = )\"/2 ~% is maximized when Ai =mn, le,
N-12ER-1/2 = Ppl, P = nl, < ¥ = £ Hence

~ ~ np/2
LB )<L (ﬂ, 5= (o)™ B




(3) Conclusions

B is MLE for 8, £ is MLE for ¥, and max[L(8, ) : 8, 5] = ()" - |E["/2.
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We need to find B, Y and Y — Y. Based on the result we can calculate E.

3. Computations

Consider (yl) — (510 B11
Y2 B20

Ba1

P12
Boz

(1) Enter data

me

Y1 5 3 4

. Y2 3 -1 -1
> with data e l2 1 0
i) 3 4 2

o= NN

TN W

5-3-23
data a; 3 -1-14
}nflle D:\\Example.txt Data file: | 4 -1 0 2
input yl1 y2 x1 x2; 2911

1325

(2) Find B

proc reg;

run;

model yl1 y2=x1 x2;

In the parameter table for the univariate model for yi, the first row of E, 310, 311 and 312 are
displayed. In the output for yo, the second row of [ is displayed.

(3) FindY and Y — Y.

proc reg;

run;

model yl1 y2=x1 x2/p;

The first row of Y and the first row of ¥ — Y are in the output for the model for y;. The second
rows of Y and Y — Y are in the output for the model for ys.

(4) Find §(3,2)

x1 =3 and x2 = 2. It is the estimated E[y(3,2)].

1
¥(3,2) =p13
2
data b;
datalines;
.32

input yl1 y2 x1 x2;

data c;
set a b;

proc reg;
model yl1 y2=x1 x2/p;
run;

= BO + 31 -3+ 32 -2 € R? is the value of estimated regression function when

The first component of %(3,2) is in the output for model for y;. The second component of (3, 2)

is in that for ys.

Comments: In the output for (4) one can find B,Y,Y —Y and 7(3,2). While E= (Y =Y)(Y =Y

A~

can be calculated from Y — Y, we will see how to ask SAS to display F.
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