L21: Orthogonal factor models

1. Orthogonal factor models
(1) Definition and iff conditions

Factor model $X-\mu=L F+\epsilon$ is an orthogonal model if the columns of the loading matrix L is orthogonal, i.e., $L^{\prime} L \in R^{q \times q}$ is an diagonal matrix. Thus

$$
\begin{aligned}
X-\mu=L F+\epsilon \text { is an orthgonal model } & \Longleftrightarrow L^{\prime} L \text { is a diagonal matrix } \\
& \Longleftrightarrow L^{\prime} L=\operatorname{diag}\left(f_{1}^{2}, \ldots, f_{q}^{2}\right) .
\end{aligned}
$$

(2) An orthogonal model

If L in factor model $X-\mu=L F+\epsilon$ is estimated by $\widehat{L}=P_{I} \Lambda_{I}^{1 / 2}$ where $P_{I} \in R^{p \times q}$ and $\Lambda_{I} \in R^{q \times q}$ are from the EVD $S=P \Lambda P^{\prime}=\left(P_{I}, P_{I I}\right)\left(\begin{array}{cc}\Lambda_{I} & 0 \\ 0 & \Lambda_{I I}\end{array}\right)\left(P_{I}, P_{I I}\right)^{\prime}=P_{I} \Lambda_{I} P_{I}^{\prime}+P_{I I} \Lambda_{I I} P_{I I}^{\prime}$, then $\widehat{L}^{\prime} \widehat{L}=\Lambda^{1 / 2} P_{I} P_{I}^{\prime} \Lambda_{I}=\Lambda_{I}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{q}\right)$. So $X-\mu=L F+\epsilon$ is treated as an orthogonal model and $\widehat{f}_{i}^{2}=\lambda_{i}, i=1, \ldots, q$.
(3) Distribution of estimated total variances in X

The estimated total variances in X is

$$
s_{1}^{2}+\cdots+s_{p}^{2}=\operatorname{tr}(S)=\lambda_{1}+\cdots+\lambda_{p}
$$

The total contribution from F is

$$
\sum_{i=1}^{p} \widehat{h}_{i}^{2}=\sum_{j=1}^{q} \widehat{f}_{j}^{2}=\operatorname{tr}\left(\widehat{L} \widehat{L}^{\prime}\right)=\operatorname{tr}\left(\widehat{L}^{\prime} \widehat{L}\right)=\lambda_{1}+\cdots+\lambda_{q}
$$

The total contribution from ϵ is

$$
\sum_{i=1}^{p} \widehat{\psi}_{i}=\sum_{i=1}^{p}\left(s_{i}^{2}-\widehat{h}_{i}^{2}\right)=\left(\lambda_{1}+\cdots+\lambda_{p}\right)-\left(\lambda_{1}+\cdots+\lambda_{q}\right)=\lambda_{q+1}+\cdots+\lambda_{p}
$$

Ex1: Suppose $X-\mu=L F+\epsilon$ is an orthogonal model. Convert this model to that for standardized $X, Z=V^{-1 / 2}(X-\mu)=\left(V^{-1 / 2} L\right) F+\left(V^{-1 / 2} \epsilon\right)=L_{z} F+\epsilon_{z}$.
Here $L_{z}=V^{-1 / 2} L$. So $L_{z}^{\prime} L_{z}=L^{\prime} V^{-1 / 2} V^{-1 / 2} L=L^{\prime} V^{-1} L$ may not be an diagonal matrix. Thus $Z=L_{z} F+\epsilon_{z}$ may not be an orthogonal model.
2. Orthogonal factor model for Z
(1) Orthogonal factor model for Z

If $Z=V^{-1 / 2}(X-\mu)=L_{z} F+\epsilon_{z}$ is an orthogonal factor model, then $\operatorname{Cov}(Z)=\rho=L_{z} L_{z}^{\prime}+\Psi_{z}$.
Here ρ is the correlation matrix of $X, \Psi_{z}=\operatorname{diag}\left(\psi_{z 1}, . ., \psi_{z p}\right)$ and $L_{z}^{\prime} L_{z}=\operatorname{diag}\left(f_{1 z}^{2}, \ldots, f_{q z}^{2}\right)$.
(2) Estimation

Initially estimate ρ by R, the sample correlation matrix for $X . \rho_{i i}=1=r_{i i}, i=1, \ldots, p$.
By EVD $R=P \Lambda P^{\prime}=\left(P_{I}, P_{I I}\right)\left(\begin{array}{cc}\Lambda_{I} & 0 \\ 0 & \Lambda_{I I}\end{array}\right)\left(P_{I}, P_{I I}\right)^{\prime}=P_{I} \Lambda_{I} P_{I}^{\prime}+P_{I I} \Lambda_{I I} P_{I I}^{\prime}$.
Estimate the main part of $\rho=L_{z} L_{z}^{\prime}+\Psi_{z}, L_{z} L_{z}^{\prime}$, by the main part of $R, P_{I} \Lambda P_{I}^{\prime}$, i.e., L_{z} is estimated by $P_{I} \Lambda_{I}^{1 / 2}$. Consequently $\widehat{h}_{z i}^{2}=\widehat{l}_{i 1}^{2}+\cdots+\widehat{l}_{i q}^{2}, i=1, \ldots, p$, are obtained.
Estimated $\psi_{z}=1-h_{z i}^{2}$ by $\widehat{\psi}_{z i}=1-\widehat{h}_{z i}^{2}, i=1, \ldots, p$.
$\widehat{L}_{z}^{\prime} \widehat{L}_{z}=\Lambda^{1 / 2} P_{I}^{\prime} P_{I} \Lambda_{I}^{1 / 2}=\Lambda_{I}$. So $\widehat{f}_{j z}^{2}=\lambda_{j}, j=1, \ldots, q$.
(3) Distribution of estimated total variances in Z

The estimated total variances in Z is

$$
r_{11}+\cdots+r_{p p}=p=\operatorname{tr}(R)=\lambda_{1}+\cdots+\lambda_{p}=p
$$

The total contribution from F is

$$
\sum_{i=1}^{p} \widehat{h}_{z i}^{2}=\sum_{j=1}^{q} \widehat{f}_{j z}^{2}=\operatorname{tr}\left(\widehat{L}_{z} \widehat{L}_{z}^{\prime}\right)=\operatorname{tr}\left(\widehat{L}_{z}^{\prime} \widehat{L}_{z}\right)=\lambda_{1}+\cdots+\lambda_{q}
$$

The total contribution from ϵ is

$$
\sum_{i=1}^{p} \widehat{\psi}_{z i}=\sum_{i=1}^{p}\left(1-\widehat{h}_{z i}^{2}\right)=\left(\lambda_{1}+\cdots+\lambda_{p}\right)-\left(\lambda_{1}+\cdots+\lambda_{q}\right)=\lambda_{q+1}+\cdots+\lambda_{p}
$$

Ex2: Suppose $Z=V^{-1 / 2}(X-\mu)=L_{z} F+\epsilon_{z}$ is an orthogonal model.
Convert this model to that for $X,(X-\mu)=V^{1 / 2} Z=\left(V^{1 / 2} L_{z}\right) F+\left(V^{1 / 2} \epsilon_{z}\right)=L F+\epsilon$. Here $L=V^{1 / 2} L_{z}$. So $L^{\prime} L=L_{z}^{\prime} V^{1 / 2} V^{1 / 2} L_{z}=L_{z}^{\prime} V^{-1} L_{z}$ may not be an diagonal matrix. Thus $X-\mu=L F+\epsilon$ may not be an orthogonal model.
3. Computations
(1) Analysis on orthogonal factor model for Z

```
data a;
    infile "D:\ex.txt";
    input x1 x2 x3 x4;
proc factor nfactor=2;
    var x1 x2 x3 x4;
    run;
```

Four parts of output
(i) Eigenvalues of correlation matrix of $X . \lambda_{i}, i=1, . ., 4 . \lambda_{1}+\cdots+\lambda_{4}=4$.
(ii) Factor pattern $\left(\widehat{L}_{z}=\left(P_{1} \sqrt{\lambda_{1}}, P_{2} \sqrt{\lambda_{2}}\right) \in R^{4 \times 2}\right)$.
(iii) Variation explained by each factors $\left(\widehat{f}_{1 z}^{2}=\lambda_{1}\right.$ and $\left.\widehat{f}_{2 z}^{2}=\lambda_{2}\right)$.
(iv) Communality ($\widehat{h}_{z i}^{2}, i=1, . ., 4 . \sum_{i} \widehat{h}_{z i}^{2}=\sum_{j} \widehat{f}_{j z}^{2}=\lambda_{1}+\lambda_{2}$.
(2) Directly entering S

In 9.8 on p531 $S=\left(\begin{array}{ccc}1 & 0.4 & 0.9 \\ 0.4 & 1 & 0.7 \\ 0.9 & 0.7 & 1\end{array}\right)$
(i) Entering S

```data a (type='cov'); _TYPE_='COV'; input _NAME_ $ x1 x2 x3; datalines;```	$\begin{array}{lll} \text { x1 } & 1 & 0.4 \\ \text { x2 } & 0.4 & 1 \\ \text { x3 } & 0.9 & 0.7 \\ ; & & \\ \hline \end{array}$	$\begin{gathered} 0.9 \\ 0.7 \\ 1 \end{gathered}$
```data a (type='cov'); _TYPE_='COV'; input _NAME_ $ x1 x2 x3; datalines;```	$\begin{array}{lll} \text { x1 } & 1 & 0.4 \\ \text { x2 } & \cdot & 1 \\ \text { x3 } & \cdot & \cdot \\ ; & & \\ \hline \end{array}$	$\begin{aligned} & 0.9 \\ & 0.7 \\ & 1 \end{aligned}$
```data a (type='cov'); _TYPE_='COV'; input _NAME_ $ x1 x2 x3; datalines;```	$\begin{array}{lll} \text { x1 } & 1 & . \\ \text { x2 } & 0.4 & 1 \\ \text { x3 } & 0.9 & 0.7 \end{array}$	1

(ii) Analysis on orthogonal model for $X$

```
proc factor nfactor=1 cov;
 var x1 x2 x3;
 run;
```

(iii) Analysis on orthogonal factor model for $Z$

```
proc factor nfactor=1;
 var x1 x2 x3;
 run;
```

