L21: Orthogonal factor models

1. Orthogonal factor models

(1) Definition and iff conditions

Factor model $X - \mu = LF + \epsilon$ is an orthogonal model if the columns of the loading matrix L is orthogonal, i.e., $L'L \in \mathbb{R}^{q \times q}$ is an diagonal matrix. Thus

$$X - \mu = LF + \epsilon$$
 is an orthogral model $\iff L'L$ is a diagonal matrix $\iff L'L = \operatorname{diag}(f_1^2, ..., f_q^2).$

(2) An orthogonal model

If L in factor model $X - \mu = LF + \epsilon$ is estimated by $\widehat{L} = P_I \Lambda_I^{1/2}$ where $P_I \in \mathbb{R}^{p \times q}$ and $\Lambda_I \in \mathbb{R}^{q \times q}$ are from the EVD $S = P\Lambda P' = (P_I, P_{II}) \begin{pmatrix} \Lambda_I & 0 \\ 0 & \Lambda_{II} \end{pmatrix} (P_I, P_{II})' = P_I \Lambda_I P'_I + P_{II} \Lambda_{II} P'_{II}$, then $\widehat{L}'\widehat{L} = \Lambda^{1/2}P_IP_I'\Lambda_I = \Lambda_I = \operatorname{diag}(\lambda_1, ..., \lambda_q).$ So $X - \mu = LF + \epsilon$ is treated as an orthogonal model and $\hat{f}_{i}^{2} = \lambda_{i}, i = 1, ..., q.$

(3) Distribution of estimated total variances in X

The estimated total variances in X is

 $s_1^2 + \dots + s_p^2 = \operatorname{tr}(S) = \lambda_1 + \dots + \lambda_p.$ The total contribution from F is $\sum_{i=1}^p \hat{h}_i^2 = \sum_{j=1}^q \hat{f}_j^2 = \operatorname{tr}(\hat{L}\hat{L}') = \operatorname{tr}(\hat{L}'\hat{L}) = \lambda_1 + \dots + \lambda_q.$ The total contribution from ϵ is

 $\sum_{i=1}^{p} \widehat{\psi}_i = \sum_{i=1}^{p} (s_i^2 - \widehat{h}_i^2) = (\lambda_1 + \dots + \lambda_p) - (\lambda_1 + \dots + \lambda_q) = \lambda_{q+1} + \dots + \lambda_p.$ **Ex1:** Suppose $X - \mu = LF + \epsilon$ is an orthogonal model. Convert this model to that for standardized $\begin{array}{l} X, \ Z = V^{-1/2} (X - \mu) = (V^{-1/2} L) F + (V^{-1/2} \epsilon) = L_z F + \epsilon_z. \\ \text{Here } L_z = V^{-1/2} L. \ \text{So } L'_z L_z = L' V^{-1/2} V^{-1/2} L = L' V^{-1} L \text{ may not be an diagonal matrix.} \end{array}$

Thus $Z = L_z F + \epsilon_z$ may not be an orthogonal model.

- 2. Orthogonal factor model for Z
 - (1) Orthogonal factor model for ZIf $Z = V^{-1/2}(X - \mu) = L_z F + \epsilon_z$ is an orthogonal factor model, then $\text{Cov}(Z) = \rho = L_z L'_z + \Psi_z$. Here ρ is the correlation matrix of X, $\Psi_z = \text{diag}(\psi_{z1}, ..., \psi_{zp})$ and $L'_z L_z = \text{diag}(f_{1z}^2, ..., f_{qz}^2)$.
 - (2) Estimation

Initially estimate ρ by R, the sample correlation matrix for X. $\rho_{ii} = 1 = r_{ii}, i = 1, ..., p$. By EVD $R = P\Lambda P' = (P_I, P_{II}) \begin{pmatrix} \Lambda_I & 0 \\ 0 & \Lambda_{II} \end{pmatrix} (P_I, P_{II})' = P_I \Lambda_I P'_I + P_{II} \Lambda_{II} P'_{II}.$ Estimate the main part of $\rho = L_z L'_z + \Psi_z$, $L_z L'_z$, by the main part of R, $P_I \Lambda P'_I$, i.e., L_z is estimated by $P_I \Lambda_I^{1/2}$. Consequently $\hat{h}_{zi}^2 = \hat{l}_{i1}^2 + \cdots + \hat{l}_{iq}^2$, i = 1, ..., p, are obtained. Estimated $\psi_z = 1 - h_{zi}^2$ by $\hat{\psi}_{zi} = 1 - \hat{h}_{zi}^2$, i = 1, ..., p. $\hat{L}'_z \hat{L}_z = \Lambda^{1/2} P'_I P_I \Lambda_I^{1/2} = \Lambda_I$. So $\hat{f}_{jz}^2 = \lambda_j$, j = 1, ..., q.

(3) Distribution of estimated total variances in ZThe estimated total variances in Z is

 $r_{11} + \dots + r_{pp} = p = \operatorname{tr}(R) = \lambda_1 + \dots + \lambda_p = p.$ The total contribution from F is $\sum_{i=1}^{p} \hat{h}_{zi}^{2} = \sum_{j=1}^{q} \hat{f}_{jz}^{2} = \operatorname{tr}(\hat{L}_{z}\hat{L}'_{z}) = \operatorname{tr}(\hat{L}'_{z}\hat{L}_{z}) = \lambda_{1} + \dots + \lambda_{q}.$ The total contribution from ϵ is $\sum_{i=1}^{p} \widehat{\psi}_{zi} = \sum_{i=1}^{p} (1 - \widehat{h}_{zi}^2) = (\lambda_1 + \dots + \lambda_p) - (\lambda_1 + \dots + \lambda_q) = \lambda_{q+1} + \dots + \lambda_p.$ **Ex2:** Suppose $Z = V^{-1/2}(X - \mu) = L_z F + \epsilon_z$ is an orthogonal model.

Convert this model to that for X, $(X - \mu) = V^{1/2}Z = (V^{1/2}L_z)F + (V^{1/2}\epsilon_z) = LF + \epsilon$. Here $L = V^{1/2}L_z$. So $L'L = L'_z V^{1/2} V^{1/2}L_z = L'_z V^{-1}L_z$ may not be an diagonal matrix. Thus $X - \mu = LF + \epsilon$ may not be an orthogonal model.

3. Computations

(1) Analysis on orthogonal factor model for Z

```
data a;
   infile "D:\ex.txt";
   input x1 x2 x3 x4;
proc factor nfactor=2;
   var x1 x2 x3 x4;
   run;
```

Four parts of output

- (i) Eigenvalues of correlation matrix of X. λ_i , i = 1, ..., 4. $\lambda_1 + \cdots + \lambda_4 = 4$.
- (ii) Factor pattern $(\hat{L}_z = (P_1\sqrt{\lambda_1}, P_2\sqrt{\lambda_2}) \in \mathbb{R}^{4\times 2}).$
- (iii) Variation explained by each factors $(\hat{f}_{1z}^2 = \lambda_1 \text{ and } \hat{f}_{2z}^2 = \lambda_2)$. (iv) Communality $(\hat{h}_{zi}^2, i = 1, ..., 4. \sum_i \hat{h}_{zi}^2 = \sum_j \hat{f}_{jz}^2 = \lambda_1 + \lambda_2$.
- (2) Directly entering S

In 9.8 on p531
$$S = \begin{pmatrix} 1 & 0.4 & 0.9 \\ 0.4 & 1 & 0.7 \\ 0.9 & 0.7 & 1 \end{pmatrix}$$

(i) Entering S

<pre>data a (type='cov'); _TYPE_='COV'; input _NAME_ \$ x1 x2 x3; datalines;</pre>	x1 1 0.4 0.9 x2 0.4 1 0.7 x3 0.9 0.7 1 ;
<pre>data a (type='cov'); _TYPE_='COV'; input _NAME_ \$ x1 x2 x3; datalines;</pre>	x1 1 0.4 0.9 x2 . 1 0.7 x3 1 ;
<pre>data a (type='cov'); _TYPE_='COV'; input _NAME_ \$ x1 x2 x3; datalines;</pre>	x1 1 x2 0.4 1 . x3 0.9 0.7 1 ;

(ii) Analysis on orthogonal model for X

proc factor nfactor=1	cov;
var x1 x2 x3;	
run;	

(iii) Analysis on orthogonal factor model for Z

<pre>proc factor nfactor=1;</pre>		
var x1 x2 x3;		
run;		