L17 Two-sample tests

1. Three matrices

(1) Model error matrix EIn the two-sample problem μ_x and μ_y are estimated by \overline{X} and \overline{Y} . Thus

$$\mathrm{CSSCP}_x + \mathrm{CSSCP}_y = \sum_{i=1}^{n_1} (X_i - \overline{X})(X_i - \overline{X})' + \sum_{j=1}^{n_2} (Y_j - \overline{Y})(Y_j - \overline{Y})'$$

measures the model error and is denoted by E.

(2) Reduced model error matrix E_0

Under $H_0: \mu_x - \mu_y = \delta_0, \ \mu_x = \mu_y + \delta_0$. Thus $(X - \delta_0 1'_{n_1}, Y) \in \mathbb{R}^{p \times n}$ is a r. s. from $N(\mu_y, \Sigma)$ and μ_y is estimated by $\hat{\mu}_y = \frac{(\overline{X} - \delta_0)n_1}{n} + \frac{\overline{Y}n_2}{n} = \overline{Y} + \frac{n_1}{n}(\overline{X} - \overline{Y} - \delta_0)$. Let $h = \overline{X} - \overline{Y} - \delta_0$. Then

$$\begin{cases} \widehat{\mu}_y = \overline{Y} + \frac{n_1}{n}h\\ \widehat{\mu}_x = \widehat{\mu}_y + \delta_0 = \overline{Y} + \frac{n - n_2}{n}(\overline{X} - \overline{Y} - \delta_0) + \delta_0 = \overline{X} - \frac{n_2}{n}h. \end{cases}$$

Thus for the model reduced by H_0 , the error matrix is

$$\begin{split} E_0 &= \sum_{i=1}^{n_1} (X_i - \widehat{\mu}_x) (X_i - \widehat{\mu}_x)' + \sum_{j=1}^{n_2} (Y_j - \widehat{\mu}_y) (Y_j - \widehat{\mu}_y)' \\ &= \sum_{i=1}^{n_1} \left[(X_i - \overline{X}) + \frac{n_2}{n} h \right] \left[(X_i - \overline{X}) + \frac{n_2}{n} h \right]' + \sum_{j=1}^{n_2} \left[(Y_j - \overline{Y}) - \frac{n_1}{n} h \right] \left[(Y_j - \overline{Y}) - \frac{n_1}{n} h \right]' \\ &= E + \frac{n_1 n_2^2}{n^2} h h' + \frac{n_2 n_1^2}{n^2} h h' = E + \frac{n_1 n_2}{n} h h'. \end{split}$$

(3) Matrix H

The difference between E and E_0 is caused by the hypothesis $H_0: \mu_x - \mu_y = \delta_0$. So we write $E_0 = E + H$ where

$$H = \frac{n_1 n_2}{n} (\overline{X} - \overline{Y} - \delta_0) (\overline{X} - \overline{Y} - \delta_0)'.$$

- 2. Likelihood ratio tests
 - (1) Likelihood ratio

It has been shown the max $[L(\mu_x, \mu_y, \Sigma) : \mu_x, \mu_y, \Sigma] = \left(\frac{n}{2\pi e}\right)^{np/2} |E|^{-n/2}$. So under $H_0 : \mu_x - \mu_y = \delta_0$, max $[L(\mu_x, \mu_y, \Sigma) : H_0] = \left(\frac{n}{2\pi e}\right)^{np/2} |E_0|^{-n/2}$. Thus the likelihood ratio

$$LR = \frac{\max[L(\mu_x, \,\mu_y, \,\Sigma) : \,H_0]}{\max[L(\mu_x, \,\mu_y, \,\Sigma) : \,\mu_x, \,\mu_y, \,\Sigma]} = \left(\frac{|E|}{|E_0|}\right)^{n/2}$$

is an increasing function of $\Lambda = \frac{|E|}{|E_0|}$ called Wilks Lambda.

(2) Likelihood ratio tests

By intuition one would reject H_0 when LR is small, equivalently when Λ is small. Therefore, the followings are likelihood ratio tests.

$$H_0: \mu_x - \mu_y = \delta_0 \text{ vs } H_a: \mu_x - \mu_y \neq \delta_0$$

Test statistic: $\text{LR} = \left(\frac{|E|}{|E_0|}\right)^{n/2}$
Reject H_0 if $\text{LR} < c_1$.

$$H_0: \mu_x - \mu_y = \delta_0 \text{ vs } H_a: \mu_x - \mu_y \neq \delta_0$$

Test statistic: $\Lambda = \frac{|E|}{|E_0|}$
Reject H_0 if $\Lambda < c_2$.

(3) Comments

To make the above tests α -level tests, c_1 and c_2 must be selected such that

 $P(LR < c_1|H_0) \le \alpha \text{ and } P(\Lambda < \Lambda_{ob}|H_0) \le \alpha.$

For doing so we have to know the distributions of the test statistics under H_0 , called the null distributions.

3. α -level LRT

(1) T^2 with known null distribution

For
$$H_0$$
: $\mu_x - \mu_y = \delta_0$, let $T^2 = (\overline{X} - \overline{Y} - \delta_0)' \left(\frac{n}{n_1 n_2} S_p\right)^{-1} (\overline{X} - \overline{Y} - \delta_0).$
By 1 (2) in L16, under H_0 , $T^2 \sim T^2(p, n-2).$

(2) Λ is a decreasing function of T^2

Note that
$$\begin{vmatrix} 1 & -\frac{n_1 n_2}{n} h' \\ h & E \end{vmatrix} = 1 \cdot \left| E + \frac{n_1 n_2}{n} hh' \right| = |E + H| = |E_0|$$
. But we also
 $\begin{vmatrix} 1 & -\frac{n_1 n_2}{n} h' \\ h & E \end{vmatrix} = |E| \cdot \left(1 + \frac{n_1 n_2}{n} h' E^{-1} h \right) = |E| \left(1 + \frac{h' \left(\frac{n}{n_1 n_2} S_p \right)^{-1} h}{n-2} \right) = |E| \left(1 + \frac{T^2}{n-2} \right)$
Thus $|E + H| = |E| \left(1 + \frac{T^2}{n-2} \right)$.

So
$$\Lambda = \frac{|E|}{|E+H|} = \left(1 + \frac{T^2}{n-2}\right)^{-1} \iff T^2 = \left(\frac{1}{\Lambda} - 1\right)(n-2)$$

are decreasing functions each other. Thus T^2 can be used as a LRT statistic.

(3) α -level LRT

$$H_0: \ \mu_x - \mu_y = \delta_0 \text{ vs } H_a: \ \mu_x - \mu_y \neq \delta_0$$

Test statistic:
$$T^2 = (\overline{X} - \overline{Y} - \delta_0)' \left(\frac{n}{n_1 n_2} S_p\right)^{-1} (\overline{X} - \overline{Y} - \delta_0)$$

Reject H_0 if $T^2 > T^2_{\alpha}(p, n-2).$

If Λ_{ob} is given, then $T_{ob}^2 = \left(\frac{1}{\Lambda_{ob}} - 1\right)(n-2).$ Since under H_0 , $T^2 \sim T^2(p, n-2) = \frac{(n-2)p}{n-p-1}F(p, n-p-1),$

$$T_{\alpha}^{2}(p, n-2) = \frac{(n-2)p}{n-p-1}F_{\alpha}(p, n-p-1).$$

(4) Test by p-value

$$H_0: \mu_x - \mu_y = \delta_0 \text{ vs } H_a: \mu_x - \mu_y \neq \delta_0$$

Test statistic: $T^2 = (\overline{X} - \overline{Y} - \delta_0)' \left(\frac{n}{n_1 n_2} S_p\right)^{-1} (\overline{X} - \overline{Y} - \delta_0)$
p-value: $P(T^2(p, n-2) > T_{ob}^2).$

Since under $H_0, T^2 \sim T^2(p, n-2) = \frac{(n-2)p}{n-p-1}F(p, n-p-1),$

$$F_{ob} = \frac{n-p-1}{(n-2)p}T_{ob}^2$$
 and $P(T^2(p, n-2) > T_{ob}^2) = P(F(p, n-p-1) > F_{ob}).$

L18 Two-sample test implementation

- 1. Two-sample tests
 - $N(\mu_x, \Sigma)$ and $N(\mu_y, \Sigma)$ are two populations.
 - (1) Testing on $\mu_x \mu_y \in \mathbb{R}^p$

$$H_0: \mu_x - \mu_y = \delta_0 \text{ vs } H_a: \mu_x - \mu_y \neq \delta_0$$

Test statistic: $T^2 = (\overline{X} - \overline{Y} - \delta_0)' \left(\frac{n}{n_1 n_2} S_p\right)^{-1} (\overline{X} - \overline{Y} - \delta_0)$
Reject H_0 if $T^2 > T_{\alpha}^2(p, n-2)$.

$$H_0: \mu_x - \mu_y = \delta_0 \text{ vs } H_a: \mu_x - \mu_y \neq \delta_0$$

Test statistic: $T^2 = (\overline{X} - \overline{Y} - \delta_0)' \left(\frac{n}{n_1 n_2} S_p\right)^{-1} (\overline{X} - \overline{Y} - \delta_0)$
p-value: $P(T^2(p, n-2) > T_{ob}^2).$

(2) Testing on $L(\mu_x - \mu_y) \in \mathbb{R}^q$

Transformed populations $LN(\mu_x, \Sigma) = N(L\mu_x, L\Sigma L')$ and $LN(\mu_y, \Sigma) = N(L\mu_y, L\Sigma L')$ have transformed samples $L(X, Y) = (LX, LY) \in \mathbb{R}^{q \times n}$ with means $L\overline{X}$ and $L\overline{Y}$; and pooled estimator for $L\Sigma L', LS_pL'$. So

$$\begin{split} H_0: \ L(\mu_x - \mu_y) &= \delta_0 \text{ vs } H_a: \ L(\mu_x - \mu_y) \neq \delta_0\\ \text{Test statistic: } T^2 &= [L(\overline{X} - \overline{Y}) - \delta_0]' \left(\frac{n}{n_1 n_2} LS_p L'\right)^{-1} [L(\overline{X} - \overline{Y}) - \delta_0]\\ \text{Reject } H_0 \text{ if } T^2 &> T_\alpha^2(q, n-2). \end{split}$$

$$H_0: L(\mu_x - \mu_y) = \delta_0 \text{ vs } H_a: L(\mu_x - \mu_y) \neq \delta_0$$

Test statistic: $T^2 = [L(\overline{X} - \overline{Y}) - \delta_0]' \left(\frac{n}{n_1 n_2} LS_p L'\right)^{-1} [L(\overline{X} - \overline{Y}) - \delta_0]$
p-value: $P(T^2(q, n-2) > T_{ob}^2).$

- 2. Data modification
 - (1) proc anova

SAS procedure proc anova with entered two samples from $N(\mu_x, \Sigma)$ and $N(\mu_y, \Sigma)$ can produce information on the testing on $H_0: \mu_x = \mu_y$.

(2) Data modification for H₀: μ_x - μ_y = δ₀ Note that H₀: μ_x - μ_y = δ₀ ⇔ μ_x = μ_y + δ₀. Thus we can keep the sample from N(μ_x, Σ), but modify the sample from N(μ_y, Σ) to that from N(μ_y + δ₀, Σ).

Ex1: Suppose file ex.txt contains four variables x1, x2, x3 and sname= $\begin{cases} AB & First sample \\ CD & Second sample \end{cases}$

For $H_0: \mu_x - \mu_y = \begin{pmatrix} -1 \\ 2 \\ -3 \end{pmatrix}$. data a; infile "D\ex.txt"; input x1 x2 x3 sname \$ @@; if sname='CD' then do; x1=x1-1; x2=x2+2; x3=x3-3; end; (3) Data modification for H_0 : $L(\mu_x - \mu_y) = \delta_0$ First transform the two samples from $N(\mu_x, \Sigma)$ and $N(\mu_y, \Sigma)$ to that from $LN(\mu_x, \Sigma)$ and $LN(\mu_y, \Sigma)$. Then according to $H_0: L(\mu_x - \mu_y) = \delta_0 \iff L\mu_x = L\mu_y + \delta_0$ modify the second transformed sample accordingly.

Ex2: For
$$H_0: \begin{pmatrix} \mu_{x1} - \mu_{x_2} \\ \mu_{x2} + \mu_{x3} \end{pmatrix} - \begin{pmatrix} \mu_{y1} - \mu_{y2} \\ \mu_{y2} + \mu_{y3} \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \iff L\mu_x = L\mu_y + \delta_0 \text{ where } L = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

and $\delta_0 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$,
$$\begin{bmatrix} \text{data a;} \\ \text{infile "D\ex.txt";} \\ \text{input x1 x2 x3 sname $ @0; } \end{bmatrix}$$

y1=x1-x2; y2=x2+x3; if sname="CD" then do; y1=y1+1; y2=y2+2;

3. Use SAS

(1) SAS procedure and output

	<pre>proc anova; class sname; model x1 x2 x3=sname/nouni; manova h=sname; run;</pre>				
Statistics	Value	F-value	Num DF	Den DF	Pr>F
Wilks' Lambda	0.7200	0.19	2	1	0.8485
Pillai's Trace	0.2800	0.19	2	1	0.8485
Hotellig-Lawley Trace	0.3889	0.19	2	1	0.8485
Roy's Greatest Root	0.3889	0.19	2	1	0.8485

(2) T_{ob}^2 and *p*-value Recall: $T^2 = (\frac{1}{\Lambda} - 1)(n-2)$. Λ is displayed in the output. *p*-value: $P(T^2(q, n-2) > T_{ob}^2) = P(F(q, n-q-1) > \frac{n-q-1}{(n-2)q}T_{ob}^2) = P(F(q, n-q-1) > F_{ob})$. SAS displays Numerator DF, Denominator DF, F_{ob} and *p*-value.

(3) Four statistics

The same information can be derived from other three statistics because of the relation of them in two-sample case.

Let $E^{-1/2}HE^{-1/2} = Q\Gamma Q'$ be EVD where $\Gamma = \text{diag}(\gamma_1, .., \gamma_p)$ with $\gamma_1 \ge \cdots \ge \gamma_p > 0$. Then