L15 Two-sample estimations

1. Sampling distributions
(1) Populations, samples and basic statistics

Populations: $\quad N\left(\mu_{x}, \Sigma\right)$ and $N\left(\mu_{y}, \Sigma\right)$.
Samples: $\quad(X, Y) \sim N_{p \times n}\left(\mu J^{\prime}, \Sigma, I_{n}\right)$ where $n=n_{1}+n_{2}, \mu=\left(\mu_{x}, \mu_{y}\right) \in R^{p \times 2}$

$$
J=\left(\begin{array}{cc}
1_{n_{1}} & 0 \\
0 & 1_{n_{2}}
\end{array}\right) \in R^{n \times 2} \text { so } \mu J^{\prime}=\left(\mu_{x} 1_{n_{1}}^{\prime}, \mu_{y} 1_{n_{2}}^{\prime}\right)
$$

Sample sizes: $\quad n=n_{1}+n_{2}$
Sample means: $\quad(\bar{X}, \bar{Y})=(X, Y)\left(\begin{array}{cc}1_{n_{1}} / n_{1} & 0 \\ 0 & 1_{n_{2}} / n_{2}\end{array}\right)=(X, Y) J\left(J^{\prime} J\right)^{-1}$
CSSCP

$$
\operatorname{CSSCP}_{x}+\operatorname{CSCP}_{y}=X\left(I_{n_{1}}-11^{+}\right) X^{\prime}+Y\left(I_{n_{2}}-11^{+}\right) Y^{\prime}
$$

$$
=(X, Y)\left(I_{n}-J J^{+}\right)(X, Y)^{\prime}
$$

(2) Sampling distribution: $\binom{\bar{X}}{\bar{Y}} \sim N\left(\binom{\mu_{x}}{\mu_{y}},\left(\begin{array}{cc}\frac{\Sigma}{n_{1}} & 0 \\ 0 & \frac{\Sigma}{n_{2}}\end{array}\right)\right)$

Proof. Recall: $X \sim N_{p \times n}(M, \Sigma, \Psi)$ and $A \in R^{n \times m} \Longrightarrow X A \sim N_{p \times m}\left(M A, \Sigma, A^{\prime} \Psi A\right)$.

$$
\text { With }(X, Y) \sim N_{p \times n}\left(\mu J^{\prime}, \Sigma, I_{n}\right), J\left(J^{\prime} J\right)^{-1} \in R^{n \times 2}
$$

$$
\begin{aligned}
& \left.\quad \begin{array}{ll}
(\bar{X}, \bar{Y})=(X, Y) J\left(J^{\prime} J\right)^{-1} & \sim N_{p \times 2}\left(\mu J^{\prime} J\left(J^{\prime} J\right)^{-1}, \Sigma,\left(J^{\prime} J\right)^{-1} J^{\prime} J\left(J^{\prime} J\right)^{-1}\right) \\
& =N_{p \times 2}\left(\mu, \Sigma,\left(\begin{array}{cc}
\frac{1}{n_{1}} & 0 \\
0 & \frac{1}{n_{2}}
\end{array}\right)\right) . \\
\text { So }(\bar{X} \\
\bar{Y}
\end{array}\right) \sim N\left(\binom{\mu_{x}}{\mu_{y}},\left(\begin{array}{cc}
\frac{\Sigma}{n_{1}} & 0 \\
0 & \frac{\Sigma}{n_{2}}
\end{array}\right)\right) .
\end{aligned}
$$

(3) Sampling distribution: CSSCP $\sim W_{p \times p}(n-2, \Sigma)$.

Proof. Recall: $X \sim N_{p \times n}(M, \Sigma, I), A^{\prime}=A^{2}=A$ has rank $r \Longrightarrow X A X^{\prime} \sim W_{p \times p}\left(M A M^{\prime}, r, \Sigma\right)$. With $(X, Y) \sim N_{p \times n}\left(\mu J^{\prime}, \Sigma, I_{n}\right)$ and CSSCP $=(X, Y)\left(I_{n}-J J^{+}\right)(X, Y)^{\prime}$, where $I-J J^{+}$ is symmetric and idempotent with $\operatorname{rank}\left(I-J J^{+}\right)=\operatorname{tr}\left(I_{n}-J J^{+}\right)=n-2$. Note that $\mu J^{\prime}\left(I-J J^{+}\right)\left(\mu J^{\prime}\right)^{\prime}=0$. So ,

$$
\operatorname{CSSCP}=(X, Y)\left(I-J J^{+}\right)(X, Y) \sim W_{p \times p}(0, n-1, \Sigma)=W_{p \times p}(n-2, \Sigma)
$$

Ex1: (\bar{X}, \bar{Y}) and CSSCP are independent.
Recall: $X \sim N_{p \times n}(M, \Sigma, \Psi), B^{\prime}=B$ and $A^{\prime} \Psi B=0 \Longrightarrow X A$ and $X B X^{\prime}$ are independent.
With $(X, Y) \sim N_{p \times n}\left(\mu J^{\prime}, \Sigma, I_{n}\right),(\bar{X}, \bar{Y})=(X, Y) A$ and CSSCP $=(X, Y) B(X, Y)^{\prime}$ where $A=J\left(J^{\prime} J\right)^{-1}$ and $B=I-J J^{+}$,

$$
\left[J\left(J^{\prime} J\right)^{-1}\right]^{\prime}\left(I-J J^{+}\right)=\left[\left(J^{\prime} J\right)^{-1} J^{\prime}\right]\left(I-J J^{+}\right)=J^{+}\left(I-J J^{+}\right)=0
$$

Thus (\bar{X}, \bar{Y}) and CSSCP are independent.
2. Point estimators
(1) Unbiased estimators

$$
\begin{aligned}
& \bar{X} \sim N\left(\mu_{x}, \frac{\Sigma}{n_{1}}\right) \Longrightarrow \bar{X} \text { is an UE for } \mu_{x} \\
& \bar{Y} \sim N\left(\mu_{y}, \frac{\Sigma}{n_{2}}\right) \Longrightarrow \bar{Y} \text { is an UE for } \mu_{y} \\
& \begin{aligned}
a \bar{X}+b \bar{Y}=(a I, b I)\left(\frac{\bar{X}}{\bar{Y}}\right) & \sim N\left((a I, b I)\binom{\mu_{x}}{\mu_{y}},(a I, b I)\left(\begin{array}{cc}
\frac{\Sigma}{n_{1}} & 0 \\
0 & \frac{\Sigma}{n_{2}}
\end{array}\right)\binom{a I}{b I}\right) \\
& =N\left(a \mu_{x}+b \mu_{y},\left(\frac{a^{2}}{n_{1}}+\frac{b^{2}}{n_{2}}\right) \Sigma\right)
\end{aligned} \\
& \quad-\quad-\quad N \text {. }
\end{aligned}
$$

$\Longrightarrow a \bar{X}+b \bar{Y}$ is an UE for $a \mu_{x}+b \mu_{y}$.
$\operatorname{CSSCP}_{x} \sim W_{p \times p}\left(n_{1}-1, \Sigma\right) \Longrightarrow E\left(\frac{\mathrm{CSSCP}_{x}}{n_{1}-1}\right)=\Sigma \Longrightarrow S_{x}=\frac{\mathrm{CSSCP}_{x}}{n_{1}-1}$ is an UE for Σ.
$\operatorname{CSSCP}_{y} \sim W_{p \times p}\left(n_{2}-1, \Sigma\right) \Longrightarrow E\left(\frac{\mathrm{CSSCP}_{y}}{n_{2}-1}\right)=\Sigma \Longrightarrow S_{y}=\frac{\mathrm{CSSCP}_{y}}{n_{2}-1}$ is an UE for Σ.
CSSCP $\sim W_{p \times p}(n-2, \Sigma) \Longrightarrow E\left(\frac{\mathrm{CSSCP}}{n-2}\right)=\Sigma \Longrightarrow S_{p}=\frac{\mathrm{CSSCP}}{n-2}$ is an UE for Σ.
Ex2: $S_{p}=\frac{\mathrm{CSSCP}}{n-2}=\frac{\mathrm{CSSCP}_{x}+\mathrm{CSSCP}_{y}}{n-2}=\frac{\left(n_{1}-1\right) S_{x}+\left(n_{2}-1\right) S_{y}}{n-2}=\frac{n_{1}-1}{n_{1}+n_{2}-2} S_{x}+\frac{n_{2}-1}{n_{1}+n_{2}-2} S_{y}$ is a weighted average of S_{x} and S_{y} with weights $n_{1}-1$ and $n_{2}-1$.
(2) Maximum likelihood estimators
\bar{X} is MLE for μ_{x}, \bar{Y} is MLE for $\mu_{y}, \frac{\text { CSSCP }}{n}$ is MLE for Σ.
$L\left(\bar{X}, \bar{Y}, \frac{\mathrm{CSSCP}}{n}\right)=\left(\frac{n}{2 \pi e}\right)^{n p / 2}|\mathrm{CSSCP}|^{-n / 2}$.
Proof. Let $L\left(\mu_{x}, \mu_{y}, \Sigma\right)$ be the likelihood function. Then

$$
\begin{aligned}
L\left(\mu_{x}, \mu_{y}, \Sigma\right)= & \frac{1}{(2 \pi)^{n p / 2}|\Sigma|^{n / 2}} \exp \left[\frac{1}{-2} \operatorname{tr}\left(\Sigma^{-1 / 2} \operatorname{CSSCP} \Sigma^{-1 / 2}\right)\right] \\
& \exp \left[\frac{n_{1}}{-2}\left(\bar{X}-\mu_{x}\right)^{\prime} \Sigma^{-1}\left(\bar{X}-\mu_{x}\right)\right] \exp \left[\frac{n_{2}}{-2}\left(\bar{Y}-\mu_{y}\right)^{\prime} \Sigma^{-1}\left(\bar{Y}-\mu_{y}\right)\right] \\
\leq & L(\bar{X}, \bar{Y}, \Sigma) \\
= & \frac{\left|\Sigma^{-1 / 2} \operatorname{CSSCP} \Sigma^{-1 / 2}\right|^{n / 2}}{(2 \pi)^{n p / 2}|\operatorname{CSSCP}|^{n / 2}} \exp \left[\frac{1}{-2} \operatorname{tr}\left(\Sigma^{-1 / 2} \operatorname{CSSCP} \Sigma^{-1 / 2}\right)\right] \\
\leq & L\left(\bar{X}, \bar{Y}, \frac{\mathrm{CSSCP}}{n}\right)=\left(\frac{n}{2 \pi e}\right)^{n p / 2}|\mathrm{CSSCP}|^{-n / 2} .
\end{aligned}
$$

Conclusion follows.
Ex3: $a \bar{X}+b \bar{Y}$ is MLE for $a \mu_{x}+b \mu_{y}$.
3. SAS
for $\bar{X}, \bar{Y}, \operatorname{CSSCP}_{x}$ and CSSCP_{y}
(1) Data

File ex.txt contains $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3$, sid and sname where $\operatorname{sid}=\left\{\begin{array}{ll}6 & \text { Sample 1 } \\ -7 & \text { Sample 2 }\end{array}\right.$ and sname $=\left\{\begin{array}{ll}\text { good } & \text { Sample 1 } \\ \text { bad } & \text { Sample 2 }\end{array}\right.$.

```
data a;
    infile "D\ex.txt";
    input x1 x2 x3 sid sname $ @@;
```

(2) Procedures

```
proc sort;
    by sid;
    run;
    proc corr nocorr CSSCP;
    var x1 x2 x3;
    by sid;
    run;
proc sort;
    by sname;
    run;
    proc corr nocorr CSSCP;
        var x1 x2 x3;
        by sname;
        run;
```


L16 Two-sample confidence regions

1. Pivotal quantities
(1) Analysis

$$
\begin{array}{ll}
\binom{\bar{X}}{\bar{Y}} \sim N\left(\binom{\mu_{x}}{\mu_{y}},\left(\begin{array}{cc}
\frac{\Sigma}{n_{1}} & 0 \\
0 & \frac{\Sigma}{n_{2}}
\end{array}\right)\right) & \Longrightarrow \bar{X}-\bar{Y} \sim N\left(\mu_{x}-\mu_{y},\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right) \Sigma\right) \\
& \Longrightarrow \sqrt{\frac{n_{1} n_{2}}{n}} H\left[(\bar{X}-\bar{Y})-\left(\mu_{x}-\mu_{y}\right)\right] \sim N\left(0, H \Sigma H^{\prime}\right), \\
\operatorname{CSSCP} \sim W_{p \times p}(n-2, \Sigma) & \Longrightarrow H \operatorname{CSSCP} H^{\prime} \sim W_{q \times q}\left(n-2, H \Sigma H^{\prime}\right) .
\end{array}
$$

But $\bar{X}-\bar{Y}$ and CSSCP are independent. So random variable below has distribution $T^{2}(q, n-2)$

$$
\sqrt{\frac{n_{1} n_{2}}{n}}\left[H(\bar{X}-\bar{Y})-H\left(\mu_{x}-\mu_{y}\right)\right]^{\prime}\left(\frac{H \mathrm{CSSCP}_{H^{\prime}}}{n-2}\right)^{-1} \sqrt{\frac{n_{1} n_{2}}{n}}\left[H(\bar{X}-\bar{Y})-H\left(\mu_{x}-\mu_{y}\right)\right]
$$

(2) Conslusions

Let $\theta=H\left(\mu_{x}-\mu_{y}\right) \in R^{q}$. Then

$$
[\theta-H(\bar{X}-\bar{Y})]^{\prime}\left(\frac{n}{n_{1} n_{2}} H S_{p} H^{\prime}\right)^{-1}[\theta-H(\bar{X}-\bar{Y})] \sim T^{2}(q, n-2)
$$

With $H=I_{p}$ and $\delta=\mu_{x}-\mu_{y}$,

$$
[\delta-(\bar{X}-\bar{Y})]^{\prime}\left(\frac{n}{n_{1} n_{2}} S_{p}\right)^{-1}[\delta-(\bar{X}-\bar{Y})] \sim T^{2}(p, n-2)
$$

Proof. $\bar{X}-\bar{Y} \sim N\left(\mu_{x}-\mu_{y}, \frac{n}{n_{1} n_{2}} \Sigma\right) \Longrightarrow l^{\prime}(\bar{X}-\bar{Y}) \sim N\left(l^{\prime}\left(\mu_{x}-\mu_{y}\right), \frac{n}{n_{1} n_{2}} l^{\prime} \Sigma l\right)$.
So $l^{\prime}(\bar{X}-\bar{Y})$ has variance estimated by $S_{l^{\prime}(\bar{X}-\bar{Y})}^{2}=\frac{n}{n_{1} n_{2}} l^{\prime} S_{p} l$.
In (1) with $H=l^{\prime}$ such that $l^{\prime}(\bar{X}-\bar{Y}) \in R$,

$$
\frac{\left[l^{\prime}(\bar{X}-\bar{Y})-l^{\prime}\left(\mu_{x}-\mu_{y}\right)\right]^{2}}{\frac{n}{n_{1} n_{2}} l^{\prime} S_{p} l}=\left[\frac{l^{\prime}(\bar{X}-\bar{Y})-l^{\prime}\left(\mu_{x}-\mu_{y}\right)}{S_{l^{\prime}(\bar{X}-\bar{Y})}}\right]^{2} \sim T^{2}(1, n-2)=F(1, n-2)=[t(n-2)]^{2} .
$$

Thus $\frac{l^{\prime}(\bar{X}-\bar{Y})-l^{\prime}\left(\mu_{x}-\mu_{y}\right)}{S_{l^{\prime}}(\bar{X}-\bar{Y})} \sim t(n-2)$.
Comments: $\mathrm{CSSCP}=\sum_{i}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)^{\prime}+\sum_{j}\left(Y_{j}-\bar{Y}\right)\left(Y_{j}-\bar{Y}\right)^{\prime}$ is also called the error matrix denoted by E.
2. Confidence regions
(1) Confidence region for $\theta=H\left(\mu_{x}-\mu_{y}\right) \in R^{q}$

The collection of all $\theta \in R^{q}$ satisfying

$$
\left[\theta-H(\bar{X}-\bar{Y}]^{\prime}\left(\frac{n}{n_{1} n_{2}} H S_{p} H^{\prime}\right)^{-1}\left[\theta-H(\bar{X}-\bar{Y}] \leq T_{\alpha}(q, n-2)\right.\right.
$$

is a $1-\alpha$ confidence region for $\theta=H\left(\mu_{x}-\mu_{y}\right)$.
Proof. $P\left(\left[\theta-H(\bar{X}-\bar{Y}]^{\prime}\left(\frac{n}{n_{1} n_{2}} H S_{p} H^{\prime}\right)^{-1}\left[\theta-H(\bar{X}-\bar{Y}] \leq T_{\alpha}(q, n-2)\right)\right.\right.$

$$
=P\left(T^{2}(q, n-2)<T_{\alpha}^{2}(q, n-2)\right)=1-\alpha .
$$

(2) Confidence region for $\delta=\mu_{x}-\mu_{y}$

The collection of all $\delta \in R^{p}$ satisfying

$$
\left[\delta-(\bar{X}-\bar{Y}]^{\prime}\left(\frac{n}{n_{1} n_{2}} S_{p}\right)^{-1}\left[\delta-(\bar{X}-\bar{Y}] \leq T_{\alpha}(p, n-2)\right.\right.
$$

is a $1-\alpha$ confidence region for $\delta=\mu_{x}-\mu_{y}$.
Proof. Conclusion follows from (1) with $H=I_{p}$.
(3) Confidence interval for $\theta=l^{\prime}\left(\mu_{x}-\mu_{y}\right) \in R$
$l^{\prime}\left(\mu_{x}-\mu_{y}\right) \in l^{\prime}(\bar{X}-\bar{Y}) \pm t_{\alpha / 2}(n-2) S_{l^{\prime}(\bar{X}-\bar{Y})}$ is a $1-\alpha$ confidence interval for $l^{\prime}\left(\mu_{x}-\mu_{y}\right)$
Proof. $1-\alpha=P\left(-t_{\alpha / 2}(n-2)<t(n-2)<t_{\alpha / 2}(n-2)\right)$

$$
\begin{aligned}
& =P\left(-t_{\alpha / 2}(n-2)<\frac{l^{\prime}\left(\mu_{x}-\mu_{y}\right)-l^{\prime}(\bar{X}-\bar{Y})}{S_{l^{\prime}(\bar{X}-\bar{Y})}}<t_{\alpha / 2}(n-2)\right) \\
& =P\left(l^{\prime}(\bar{X}-\bar{Y})-t_{\alpha / 2}(n-2)<l^{\prime}\left(\mu_{x}-\mu_{y}\right)<l^{\prime}(\bar{X}-\bar{Y})+t_{\alpha / 2}(n-2) S_{l^{\prime}(\bar{X}-\bar{Y})}\right) .
\end{aligned}
$$

Comments: $T^{2}(p, k)=\frac{k p}{k-p+1} F(p, k-p+1) \Longrightarrow T_{\alpha}^{2}(p, k)=\frac{k p}{k-p+1} F_{\alpha}(p, k-p+1)$.
So $T_{\alpha}^{2}(q, n-2)=\frac{(n-2) q}{n-q-1} F_{\alpha}(q, n-q-1)$ and $T_{\alpha}^{2}(p, n-2)=\frac{(n-2) p}{n-p-1} F_{\alpha}(p, n-p-1)$.
3. Simultaneous confidence regions
(1) Bonferroni intervals for $l_{i}^{\prime}\left(\mu_{x}-\mu_{y}\right), i=1, \ldots, k$

$$
l_{i}^{\prime}\left(\mu_{x}-\mu_{y}\right) \in l_{i}^{\prime}(\bar{X}-\bar{Y}) \pm t_{\alpha /(2 k)}(n-2) S_{l_{i}^{\prime}(\bar{X}-\bar{Y})}, i=1, \ldots, k
$$

are simultaneous confidence intervals for $l_{i}^{\prime}\left(\mu_{x}-\mu_{y}\right), i=1, \ldots, k$, with overall confidence coefficient $1-\alpha$.
(2) Scheffe's intervals for $l_{i}^{\prime}\left(\mu_{x}-\mu_{y}\right), i=1,2, \cdots$

$$
l_{i}^{\prime}\left(\mu_{x}-\mu_{y}\right) \in l_{i}^{\prime}(\bar{X}-\bar{Y}) \pm \sqrt{T_{q}^{2}(p, n-2)} S_{l_{i}^{\prime}(\bar{X}-\bar{Y})}, i=1,2, \cdots
$$

are simultaneous confidence intervals for $l_{i}^{\prime}\left(\mu_{x}-\mu_{y}\right), i=1,2, \cdots$, with overall confidence coefficient $1-\alpha$.

Ex: Example 6.4 on page 289
Consider $\binom{$ on-peak electric consumption }{ off-peak electric consumption } in July in Wisconsin for homes with and without air conditioning. For mean vectors $\mu_{x}=\binom{\mu_{x 1}}{\mu_{x 2}}$ and $\mu_{y}=\binom{\mu_{y 1}}{\mu_{y 2}}$, construct confidence intervals for $\mu_{x i}-\mu_{y i}, i=1,2$, with overall confidence coefficient 95% by Scheffe's method.

```
proc sort;
    by AC;
    run;
proc corr nocorr COV; \Longrightarrow
    var x1 x2;
    by AC;
    run;
```

Formula: $\mu_{x i}-\mu_{y i} \in \bar{X}_{i}-\bar{Y}_{i} \pm \sqrt{T_{\alpha}^{2}(p, n-2)} S_{\bar{X}_{i}-\bar{Y}_{i}}$
$T_{0.05}^{2}(2,98)=\frac{2 \times 98}{97} F_{0.05}(2,97)=2.02 \times 3.1=6.26$
$S_{p}=\frac{n_{1}-1}{n-2} S_{1}+\frac{n_{2}-1}{n-2} S_{2}=\frac{44}{98} S_{1}+\frac{54}{98} S_{2}=\left(\begin{array}{ll}10963.7 & 21505.5 \\ 21505.5 & 63661.3\end{array}\right)$
$S_{\bar{X}_{1}-\bar{Y}_{1}}^{2}=\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)\left(S_{p}\right)_{11}=\frac{100}{45 \times 55} \times 10963.7=21.047^{2}$
$S_{\bar{X}_{2}-\bar{Y}_{2}}^{2}=\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)\left(S_{p}\right)_{22}=\frac{100}{45 \times 55} \times 63661.3=50.717^{2}$
$\mu_{x 1}-\mu_{y 1} \in \bar{X}_{1}-\bar{Y}_{1} \pm \sqrt{6.26} 21.047=74.4 \pm 52.66=(21.7,127.1)$
$\mu_{x 2}-\mu_{y 2} \in \bar{X}_{2}-\bar{Y}_{2} \pm \sqrt{6.26} 50.717=201.6 \pm 126.89=(74.7,328.5)$
are Sheffe's CIs with overall CC 95%.

