L14 Relation of test and confidence region

- 1. Confidence region and tests Consider a population $N(\mu, \Sigma)$.
 - (1) Confidence region $1 - \alpha$ confidence region for $\mu \in \mathbb{R}^p$ is the collection of all $\mu \in \mathbb{R}^p$ satisfying

$$(\mu - \overline{X})' \left(\frac{S}{n}\right)^{-1} (\mu - \overline{X}) \le T_{\alpha}^{2}(p, n-1)$$

- (2) α -level Test
- $H_0: \mu = \mu_0 \text{ vs } H_a: \mu \neq \mu_0$ Test Statistic: $T^2 = (\overline{X} - \mu_0)' \left(\frac{S}{n}\right)^{-1} (\overline{X} - \mu_0)$ Reject H_0 if $T^2 > T_\alpha^2(p, n-1)$
- (3) Test by p-value

$$H_0: \mu = \mu_0 \text{ versus } H_a: \mu \neq \mu_0$$

Test Statistic $T^2 = (\overline{X} - \mu_0)' \left(\frac{S}{n}\right)^{-1} (\overline{X} - \mu_0)$
p-value: $P(T^2(p, n-1) > T_{ob}^2)$

2. Relations

(1) Determing if μ_0 in the $1 - \alpha$ confidence region for μ

$$\mu_{0} \text{ is in a } 1 - \alpha \text{ confidence region for } \mu$$

$$\iff \mu = \mu_{0} \text{ satisfies } (\mu - \overline{X})' \left(\frac{S}{n}\right)^{-1} (\mu - \overline{X}) \leq T_{\alpha}^{2}(p, n - 1)$$

$$\iff T^{2} = (\overline{X} - \mu_{0})' \left(\frac{S}{n}\right)^{-1} (\overline{X} - \mu_{0}) \leq T_{\alpha}(p, n - 1)$$

$$\iff \alpha \text{-level test fails to reject } H_{0} : \mu = \mu_{0}$$

$$\iff p \text{-value} > \alpha$$

Ex1: To test $H_0: \mu = \begin{pmatrix} 6\\ 9 \end{pmatrix}$ one ran SAS and obtained

Statistics	Value	F-value	Num DF	Den DF	Pr>F
Wilks' Lambda	0.7200	0.19	2	1	0.8485

Is $\begin{pmatrix} 9\\ 6 \end{pmatrix}$ in an 80% confidence region for μ ? Note that $\begin{pmatrix} 6\\ 9 \end{pmatrix}$ is in an 80% confidence region for $\mu \iff p$ -value > 0.20 But *p*-value= 0.8485 > 0.20. So yes. $\begin{pmatrix} 6\\ 9 \end{pmatrix}$ is in the 80% confidence region for μ .

(2) Find smallest confidence coefficient such that μ_0 is in the confidence region

Ex2: In Ex1 find the smallest confidence coefficient such that $\begin{pmatrix} 6\\ 9 \end{pmatrix}$ is in the confidence region. With *p*-value= 0.8485,

 μ_0 is in a $1 - \alpha$ confidence region for $\mu \iff p$ -value > α $\iff 1 - \alpha > 1 - (p$ -value) = 0.1515 = 15.15% The smallest confidence coefficient such that $\binom{6}{9}$ is in the confidence region is 15.15%.

3. Univariate two-sample problems

 Populations, samples and basic statistics Populations: N(μ₁, σ²) and N(μ₂, σ²). Samples: X₁,...,X_{n₁} from Populations and Y₁,..,Y_{n₂} from population 2 Basic statistics: n₁, X̄, CSS₁ = Σ_i(X_i - X̄)² and s₁² = CSS₁/n₁-1 n₂, Ȳ, CSS₂ = Σ_i(Y_i - Ȳ)² and s₂² = CSS₂/n₂-1 n = n₁ + n₂, CSS = CSS₁ + CSS₂, s_p² = CSS₁/n-2 = n₁-1/n-2 s₁² + n₂-1/n-2 s₂².
 Point estimators and confidence intervals μ₁ has MLE X̄ that is an UE; μ₂ has MLE Ȳ that is an UE; σ² has MLE CSS_n and UE s_p².
 (CSS₁ - CSS_n) is a 1 - α CL for σ²

$$\left(\frac{\chi^2_{\alpha/2}(n-2)}{\chi^2_{\alpha/2}(n-2)}\right) \text{ is a } 1 - \alpha \text{ CI for } \sigma^2$$

$$\overline{X} - \overline{Y} \pm t_{\alpha/2}(n-2)\sqrt{s_p^2\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \text{ is a } 1 - \alpha \text{ CI for } \mu_1 - \mu_2$$

(3) Tests

$$\begin{array}{|c|c|c|} \hline H_0: \mu_1 - \mu_2 = \delta_0 \text{ vs } H_a: \mu_1 - \mu_2 \neq \delta_0 \\ \hline \text{Test statistic: } f = \frac{\overline{X - Y - \delta_0}}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \\ \text{Reject } H_0 \text{ if } t < -t_{\alpha/2}(n-2) \text{ or } t > t_{\alpha/2}(n-2) \\ \hline H_0: \mu_1 - \mu_2 = \delta_0 \text{ vs } H_a: \mu_1 - \mu_2 \neq \delta_0 \\ \hline \text{Test statistic: } f = \frac{\overline{X - Y - \delta_0}}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \\ p\text{-value: } 2P(t(n-2) > |t_{ob}|) \\ \end{array}$$

(4) Two multivariate populations

Two populations $N_p(\mu_x, \Sigma)$ and $N_p(\mu_y, \Sigma)$ can be expressed as

$$N_{p \times 2}(\mu, \Sigma, I_2)$$
 where $\mu = (\mu_x, \mu_y) \in \mathbb{R}^{p \times 2}$
which is equivalent to $N\left(\begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix}, \begin{pmatrix} \Sigma & 0 \\ 0 & \Sigma \end{pmatrix}\right)$.

Two samples $X \in \mathbb{R}^{p \times n_1}$ from $N_p(\mu_x, \Sigma)$ and $Y \sim \mathbb{R}^{p \times n_2}$ from $N_p(\mu_y, \Sigma)$ can be individually expressed as

$$X \sim N_{p \times n_1}(\mu_x 1'_{n_1}, \Sigma, I_{n_1})$$
 and $Y \sim N_{p \times n_2}(\mu_y 1'_{n_1}, \Sigma, I_{n_2})$

or expressed together by

$$(X, Y) \sim N_{p \times n}(\mu J', \Sigma, I_n)$$

where $n = n_1 + n_2$, $\mu = (\mu_x, \mu_y) \in \mathbb{R}^{p \times 2}$ and $J = \begin{pmatrix} 1_{n_1} & 0\\ 0 & 1_{n_2} \end{pmatrix}$. The expression is equivalent to

$$\begin{pmatrix} X_1 \\ \vdots \\ X_{n_1} \\ Y_1 \\ \vdots \\ Y_{n_2} \end{pmatrix} \sim N \begin{pmatrix} \mu_x \\ \vdots \\ \mu_y \\ \vdots \\ \mu_y \\ \vdots \\ \mu_y \end{pmatrix}, \begin{pmatrix} \Sigma & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \Sigma \end{pmatrix}$$