L12 One-sample test

- 1. Test using rejection rule
 - (1) Test scheme

For hypotheses on μ in $N(\mu, \Sigma)$, based on a sample of size n there is a 3-step test scheme.

$$H_0: \mu = \mu_0 \text{ vs } H_a: \mu \neq \mu_0$$

Test Statistic: $T^2 = (\overline{X} - \mu_0)' \left(\frac{S}{n}\right)^{-1} (\overline{X} - \mu_0)$
Reject H_0 if $T^2 > T_\alpha^2(p, n-1)$

(2) Significance level

Rejecting H_0 when H_0 is true is Type I error. Accepting H_0 when H_0 is false is Type II error. The largest probability of Type I error is the size of the test.

Statistical test is designed to control the size of the test. If the size is controlled to be $\leq \alpha$, then α is called the significance level of the test. The test is an α -level test.

(3) Test in (1) is an α -level test.

Proof.
$$P(\text{Type I error}) = P(\text{Rejecting } H_0 | H_0 \text{ is true}) = P(T^2 > T_{\alpha}^2(p, n-1) | \mu = \mu_0)$$

= $P(T^2(p, n-1) > T_{\alpha}^2(p, n-1)) = \alpha.$

Ex1: To present a specific test scheme μ_0 must be specified, $T^2_{\alpha}(p, n-1)$ must be specified as well.

For example for testing
$$\mu = \begin{pmatrix} 9\\ 6 \end{pmatrix}$$
 at the level 0.05 based on a sample of size $n = 3$,
 $T_{\alpha}^{2}(p, n-1) = \frac{(n-1)p}{n-p}F_{\alpha}(p, n-p) = \frac{2\times2}{1}F_{0.05}(2, 1) = 4 \times 199.5 = 798$. So
 $H_{0}: \mu = \mu_{0} \text{ vs } H_{a}: \mu \neq \mu_{0} \text{ where } \mu_{0} = \begin{pmatrix} 9\\ 6 \end{pmatrix}$
Test Statistic: $T^{2} = (\overline{X} - \mu_{0})' \left(\frac{S}{3}\right)^{-1} (\overline{X} - \mu_{0})$
Reject H_{0} if $T^{2} > 798$ for $\alpha = 0.05$

- 2. Likelihood ratio test
 - (1) Likelihood ratio test (LRT)
 With likelihood function L(μ, Σ), max[L(μ₀, Σ): Σ]/max[L(μ, Σ): μ, Σ] is the likelihood ratio (LR).
 By intuition H₀ should be rejected for smaller value of LR. A such test is LRT.
 If LR is an increasing (decreasing) function of statistic T, then T can be used as a test statistic and H₀ is rejected for smaller (larger) values of T.
 - (2) Test in (1) of 1 is a LRT (1)

By algebraic manipulation, $\max[L(\mu_0, \Sigma) : \Sigma] = \left(\frac{n}{2\pi e}\right)^{(np)/2} |E_0|^{-n/2} \text{ where } E_0 = \sum_i (X_i - \mu_0)(X_i - \mu_0)'.$ $\max[L(\mu, \Sigma) : \mu, \Sigma] = \left(\frac{n}{2\pi e}\right)^{(np)/2} |E|^{-n/2} \text{ where } E = \text{CSSCP.}$ So $\text{LR} = \left(\frac{|E|}{|E_0|}\right)^{n/2}$ is an increasing function of $\Lambda = \frac{|E|}{|E_0|}$ called Wilks Lambda, and $\Lambda = \left(1 + \frac{T^2}{n-1}\right)^{-1} \text{ is a decreasing function of } T^2 = (\overline{X} - \mu_0)' \left(\frac{S}{n}\right)^{-1} (\overline{X} - \mu_0).$ Thus $H_0: \mu = \mu_0 \text{ versus } H_a: \mu \neq \mu_0$ Test Statistic $\Lambda = \frac{|E|}{|E_0|}$ Reject H_0 if $\Lambda < c_1$ and test in 1 (1) are both LRTs.

(3) Remarks

Two-step implementation: Present calculated value of test statistic and state the conclusion. Two conclusions: (i) Reject H_0 . The error probability is controlled by the significance level. (ii) Fail to reject H_0 . The probability of error called Type II error has not been controlled. Relation $\Lambda = \left(1 + \frac{T^2}{n-1}\right)^{-1} \iff T^2 = \left(\frac{1}{\Lambda} - 1\right)(n-1)$ can be used to get T_{ob}^2 .

Ex2: If $\Lambda = 0.72$ and n = 3, then $T^2 = 0.7778$. So we have the report on the test,

 $H_0: \mu = \mu_0 \text{ vs } H_a: \mu \neq \mu_0 \text{ where } \mu_0 = \begin{pmatrix} 9\\6 \end{pmatrix}$ Test Statistic: $T^2 = (\overline{X} - \mu_0)' \left(\frac{S}{3}\right)^{-1} (\overline{X} - \mu_0)$ Reject H_0 if $T^2 > 798$ for $\alpha = 0.05$ $T_{ob}^2 = 0.7778$ Fail to reject H_0 .

3. Test by *p*-value

(1) *p*-value: Observed significance level

Based on observed T_{ob}^2 , the smallest significance level that allows H_0 to be rejected is called the *p*-value or the observed significance level.

High *p*-value means high error probability if H_0 is rejected. Thus *p*-value is the degree of consistency of data with H_0 .

With *p*-value, the universal rejection rule is to reject H_0 if *p*-vlue < α .

(2) Test scheme using *p*-value has three-steps: Hypotheses, test statistic, and the formula for *p*-value

$$H_0: \mu = \mu_0 \text{ vs } H_a: \mu \neq \mu_0$$

Test statistic: $T^2 = (\overline{X} - \mu_0)' \left(\frac{S}{n}\right)^{-1} (\overline{X} - \mu_0)$
p-value: $P(T^2(p, n-1) > T_{ab}^2)$

(3) Implementation

Implementation still has two steps: Computation and conclusion. Computation includes the computation for T_{ob}^2 and the computation for *p*-value, $P(T^2(p, n-1) > T_{ob}^2) = P\left(\frac{(n-1)p}{n-p}F(p, n-p) > T_{ob}^2\right) = P\left(F(p, n-p) > \frac{n-p}{(n-1)p}T_{ob}^2\right).$

Ex3: For data and hypotheses in Ex2, using p-value

 $H_{0}: \mu = \mu_{0} \text{ versus } H_{a}: \mu \neq \mu_{0} \text{ where } \mu_{0} = \begin{pmatrix} 9\\6 \end{pmatrix}$ Test Statistic $T^{2} = (\overline{X} - \mu_{0})' \left(\frac{S}{n}\right)^{-1} (\overline{X} - \mu_{0})$ *p*-value: $P(T^{2}(2, 2) > T_{ob}^{2})$ $T^{2} = \left(\frac{1}{0.72} - 1\right) \times 2 = 0.7778;$ *p*-value: $P(T^{2}(2, 2) > 0.7778) = P(F(2, 1) > 0.19) = 0.8485$ Fail to reject H_{0}

L13: SAS for one-sample test

1. Data

For one-sample test by rejection region we need to calculate T_{ob}^2 . For one-sample test by *p*-value, besides T_{ob}^2 we also need to calculate *p*-value: $P(T^2(p, n-1) > T_{ob}^2) = P\left(F(p, n-p) > \frac{n-p}{(n-1)p}T_{ob}^2\right)$.

(1) Enter sample into SAS

Suppose based on sample
$$X_1 = \begin{pmatrix} 6\\ 9 \end{pmatrix}$$
, $X_2 = \begin{pmatrix} 10\\ 6 \end{pmatrix}$, $X_3 = \begin{pmatrix} 8\\ 3 \end{pmatrix}$ we want to test $\mu = \mu_0 = \begin{pmatrix} 9\\ 6 \end{pmatrix}$
data a;
input x1 x2 @@;
datalines;
6 9 10 6 8 3
;
or

$$\begin{bmatrix} data a; \\ infile "D://example.txt"; \\ input x1 x2 @@; \end{bmatrix}$$

(2) Modify data

SAS will test $H_0: \mu = 0$. To test $H_0: \mu = \mu_0$, note that $\mu = \mu_0 \iff \mu - \mu_0 = 0$. So we need to convert the population to the one with mean $\mu - \mu_0$. The sample from this new population has sample $X_i - \mu_0$, i = 1, ..., n where X_i , i = 1, ..., n, is the original sample.

<pre>data b; set a; y1=x1-9; y2=x2-6;</pre>	or in one step	<pre>data a; infile "D://example.txt"; input x1 x2 @@; y1=x1-9; y2=x2-6;</pre>
---	----------------	--

- 2. Procedure and output
 - (1) proc reg and its output

Statistics	Value	F-value	Num DF	Den DF	Pr>F
Wilks' Lambda	0.7200	0.19	2	1	0.8485
Pillai's Trace	0.2800	0.19	2	1	0.8485
Hotellig-Lawley Trace	0.3889	0.19	2	1	0.8485
Roy's Greatest Root	0.3889	0.19	2	1	0.8485

 $T_{ob}^2 = \left(\frac{1}{\Lambda} - 1\right)(n-1)$ can be calculated based on Wilk's Lambda, Λ , given in the output. $F_{ob} = \frac{n-p}{(n-1)p}T_{ob}^2$ is given in the output, *p*-value: $P(F(p, n-p) > F_{ob})$ is also given int the output.

(2) Testing on $H_0: \mu = \mu_0$ using rejection region

 $H_0: \mu = \mu_0 \text{ vs } H_a: \mu \neq \mu_0 \text{ where } \mu_0 = \begin{pmatrix} 9\\6 \end{pmatrix}$ Test Statistic: $T^2 = (\overline{X} - \mu_0)' \left(\frac{S}{3}\right)^{-1} (\overline{X} - \mu_0)$ Reject H_0 if $T^2 > 798$ for $\alpha = 0.05$ $T_{ob}^2 = 0.7778$ Fail to reject H_0 . (2) Using p-value

$$H_{0}: \mu = \mu_{0} \text{ versus } H_{a}: \mu \neq \mu_{0} \text{ where } \mu_{0} = \begin{pmatrix} 9\\6 \end{pmatrix}$$

Test Statistic $T^{2} = (\overline{X} - \mu_{0})' \left(\frac{S}{n}\right)^{-1} (\overline{X} - \mu_{0})$
p-value: $P(T^{2}(2, 2) > T_{ob}^{2})$
 $T^{2} = \left(\frac{1}{0.72} - 1\right) \times 2 = 0.7778;$
p-value: $P(T^{2}(2, 2) > 0.7778) = P(F(2, 1) > 0.19) = 0.8485$
Fail to reject H_{0}

3. Four test statistics in SAS output

(1) Wilk's Lambda

$$\Lambda = \frac{|E|}{|E_0|} = \frac{|E|}{|E+H|} \text{ where the error matrix } E = \sum_i (X_i - \overline{X})(X_i - \overline{X})' = \text{CSSCP.}$$

$$E_0 = \sum_i (X_i - \mu_0)(X_i - \mu_0)' = \sum_i (X_i - \overline{X} + \overline{X} - \mu_0)(X_i - \overline{X} - \overline{X} - \mu_0)' = E + n(\overline{X} - \mu_0)(\overline{X} - \mu_0)'$$

$$= E + H \quad \text{where } H = n(\overline{X} - \mu_0)(\overline{X} - \mu_0)'.$$
Recall: $T^2 = (\overline{X} - \mu_0) \left(\frac{S}{n}\right)^{-1} (\overline{X} - \mu_0) = n(n-1)(\overline{X} - \mu_0)'E^{-1}(\overline{X} - \mu_0).$
By formula $\begin{vmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{vmatrix} = |A_{11}| \cdot |A_{22,1}| = |A_{22}| \cdot |A_{11,2}| \text{ where } A_{11,2} = A_{11} - A_{12}A_{22}^{-1}A_{21} \text{ and}$

$$A_{22.1} = A_{22} - A_{21}A_{11}^{-1}A_{12}, \text{ from } \begin{vmatrix} 1 & n(\overline{X} - \mu_0)' \\ -(\overline{X} - \mu_0) & E \end{vmatrix} |,$$

$$|E + n(\overline{X} - \mu_0)(\overline{X} - \mu_0)'| = |E| \left[1 + n(\overline{X} - \mu_0)'E^{-1}(\overline{X} - \mu_0) \right], \text{ i.e., } |E + H| = |E| \left(1 + \frac{T^2}{n-1} \right).$$
So $\Lambda = \left(1 + \frac{T^2}{n-1} \right)^{-1}$. Thus $T^2 = \left(\frac{1}{\Lambda} - 1 \right) (n-1)$.

- (2) Hotelling-Lawley trace H-L trace $\stackrel{def}{=}$ tr (HE^{-1}) = tr $[n(\overline{X} - \mu_0)(\overline{X} - \mu_0)'E^{-1}] = n(\overline{X} - \mu_0)'E^{-1}(\overline{X} - \mu_0) = \frac{T^2}{n-1}$. So $T^2 = (n-1)$ H-L trace.
- (3) Roy's greatest root

Roy's greatest root Roy's greatest root is the largest eighenvalue of $E^{-1/2}HE^{-1/2}$. Let $E^{-1/2}HE^{-1/2} = Q\Gamma Q'$ be the EVD where $\Gamma = \text{diag}(\gamma_1, .., \gamma_p), \gamma_1 \ge \cdots \ge \gamma_p$. Then Roy's greatest root is γ_1 . But rank $(E^{-1/2}HE^{-1/2}) = \text{rank}(H) = \text{rank} [n(\overline{X} - \mu_0)(\overline{X} - \mu_0)'] = 1$. Thus $E^{-1/2}HE^{-1/2}$ has only one non-zero eigenvalue γ_1 . So

Roy's greatest root =
$$\gamma_1 = \gamma_1 + \dots + \gamma_p = \operatorname{tr} \left(E^{-1/2} H E^{-1/2} \right) = \operatorname{tr} \left(H E^{-1} \right)$$

= H-L trace = $\frac{T^2}{n-1}$.

(4) Pillai's trace

Comment: Wilk Lambda + Pillai trace= 1 Hotelling-Lawley trace= Roy's greatest root.