L12 One-sample test

1. Test using rejection rule
(1) Test scheme

For hypotheses on μ in $N(\mu, \Sigma)$, based on a sample of size n there is a 3 -step test scheme.

$$
\begin{aligned}
& H_{0}: \mu=\mu_{0} \text { vs } H_{a}: \mu \neq \mu_{0} \\
& \text { Test Statistic: } T^{2}=\left(\bar{X}-\mu_{0}\right)^{\prime}\left(\frac{S}{n}\right)^{-1}\left(\bar{X}-\mu_{0}\right) \\
& \text { Reject } H_{0} \text { if } T^{2}>T_{\alpha}^{2}(p, n-1)
\end{aligned}
$$

(2) Significance level

Rejecting H_{0} when H_{0} is true is Type I error. Accepting H_{0} when H_{0} is false is Type II error.
The largest probability of Type I error is the size of the test.
Statistical test is designed to control the size of the test. If the size is controlled to be $\leq \alpha$, then α is called the significance level of the test. The test is an α-level test.
(3) Test in (1) is an α-level test.

$$
\text { Proof. } \begin{aligned}
P(\text { Type I error }) & =P\left(\text { Rejecting } H_{0} \mid H_{0} \text { is true }\right)=P\left(T^{2}>T_{\alpha}^{2}(p, n-1) \mid \mu=\mu_{0}\right) \\
& =P\left(T^{2}(p, n-1)>T_{\alpha}^{2}(p, n-1)\right)=\alpha .
\end{aligned}
$$

Ex1: To present a specific test scheme μ_{0} must be specified, $T_{\alpha}^{2}(p, n-1)$ must be specified as well.
For example for testing $\mu=\binom{9}{6}$ at the level 0.05 based on a sample of size $n=3$,
$T_{\alpha}^{2}(p, n-1)=\frac{(n-1) p}{n-p} F_{\alpha}(p, n-p)=\frac{2 \times 2}{1} F_{0.05}(2,1)=4 \times 199.5=798$. So

$$
H_{0}: \mu=\mu_{0} \text { vs } H_{a}: \mu \neq \mu_{0} \text { where } \mu_{0}=\binom{9}{6}
$$

Test Statistic: $T^{2}=\left(\bar{X}-\mu_{0}\right)^{\prime}\left(\frac{S}{3}\right)^{-1}\left(\bar{X}-\mu_{0}\right)$
Reject H_{0} if $T^{2}>798$ for $\alpha=0.05$
2. Likelihood ratio test
(1) Likelihood ratio test (LRT)

With likelihood function $L(\mu, \Sigma), \frac{\max \left[L\left(\mu_{0}, \Sigma\right): \Sigma\right]}{\max [L(\mu, \Sigma): \mu, \Sigma]}$ is the likelihood ratio (LR).
By intuition H_{0} should be rejected for smaller value of LR. A such test is LRT.
If LR is an increasing (decreasing) function of statistic T, then T can be used as a test statistic and H_{0} is rejected for smaller (larger) values of T.
(2) Test in (1) of 1 is a LRT

By algebraic manipulation,
$\max \left[L\left(\mu_{0}, \Sigma\right): \Sigma\right]=\left(\frac{n}{2 \pi e}\right)^{(n p) / 2}\left|E_{0}\right|^{-n / 2}$ where $E_{0}=\sum_{i}\left(X_{i}-\mu_{0}\right)\left(X_{i}-\mu_{0}\right)^{\prime}$.
$\max [L(\mu, \Sigma): \mu, \Sigma]=\left(\frac{n}{2 \pi e}\right)^{(n p) / 2}|E|^{-n / 2}$ where $E=\mathrm{CSSCP}$.
So $\mathrm{LR}=\left(\frac{|E|}{\left|E_{0}\right|}\right)^{n / 2}$ is an increasing function of $\Lambda=\frac{|E|}{\left|E_{0}\right|}$ called Wilks Lambda, and
$\Lambda=\left(1+\frac{T^{2}}{n-1}\right)^{-1}$ is a decreasing function of $T^{2}=\left(\bar{X}-\mu_{0}\right)^{\prime}\left(\frac{S}{n}\right)^{-1}\left(\bar{X}-\mu_{0}\right)$. Thus

$$
H_{0}: \mu=\mu_{0} \text { versus } H_{a}: \mu \neq \mu_{0}
$$

Test Statistic $\Lambda=\frac{|E|}{\left|E_{0}\right|}$
Reject H_{0} if $\Lambda<c_{1}$
and test in 1 (1) are both LRTs.
(3) Remarks

Two-step implementation: Present calculated value of test statistic and state the conclusion. Two conclusions: (i) Reject H_{0}. The error probability is controlled by the significance level. (ii) Fail to reject H_{0}. The probability of error called Type II error has not been controlled.

Relation $\Lambda=\left(1+\frac{T^{2}}{n-1}\right)^{-1} \Longleftrightarrow T^{2}=\left(\frac{1}{\Lambda}-1\right)(n-1)$ can be used to get $T_{o b}^{2}$.
Ex2: If $\Lambda=0.72$ and $n=3$, then $T^{2}=0.7778$. So we have the report on the test,

$$
H_{0}: \mu=\mu_{0} \text { vs } H_{a}: \mu \neq \mu_{0} \text { where } \mu_{0}=\binom{9}{6}
$$

$$
\text { Test Statistic: } T^{2}=\left(\bar{X}-\mu_{0}\right)^{\prime}\left(\frac{S}{3}\right)^{-1}\left(\bar{X}-\mu_{0}\right)
$$

$$
\text { Reject } H_{0} \text { if } T^{2}>798 \text { for } \alpha=0.05
$$

$$
\begin{aligned}
& T_{o b}^{2}=0.7778 \\
& \text { Fail to reject } H_{0} .
\end{aligned}
$$

3. Test by p-value
(1) p-value: Observed significance level

Based on observed $T_{o b}^{2}$, the smallest significance level that allows H_{0} to be rejected is called the p-value or the observed significance level.
High p-value means high error probability if H_{0} is rejected. Thus p-value is the degree of consistency of data with H_{0}.
With p-value, the universal rejection rule is to reject H_{0} if p-vlue $<\alpha$.
(2) Test scheme using p-value
has three-steps: Hypotheses, test statistic, and the formula for p-value

$$
\begin{aligned}
& H_{0}: \mu=\mu_{0} \text { vs } H_{a}: \mu \neq \mu_{0} \\
& \text { Test statistic: } T^{2}=\left(\bar{X}-\mu_{0}\right)^{\prime}\left(\frac{S}{n}\right)^{-1}\left(\bar{X}-\mu_{0}\right) \\
& p \text {-value: } P\left(T^{2}(p, n-1)>T_{o b}^{2}\right)
\end{aligned}
$$

(3) Implementation

Implementation still has two steps: Computation and conclusion.
Computation includes the computation for $T_{o b}^{2}$ and the computation for p-value,
$\left.P\left(T^{2}(p, n-1)>T_{o b}^{2}\right)=P\left(\frac{(n-1) p}{n-p} F_{(} p, n-p\right)>T_{o b}^{2}\right)=P\left(F(p, n-p)>\frac{n-p}{(n-1) p} T_{o b}^{2}\right)$.
Ex3: For data and hypotheses in Ex2, using p-value

$$
\begin{aligned}
& H_{0}: \mu=\mu_{0} \text { versus } H_{a}: \mu \neq \mu_{0} \text { where } \mu_{0}=\binom{9}{6} \\
& \text { Test Statistic } T^{2}=\left(\bar{X}-\mu_{0}\right)^{\prime}\left(\frac{S}{n}\right)^{-1}\left(\bar{X}-\mu_{0}\right) \\
& p \text {-value: } P\left(T^{2}(2,2)>T_{o b}^{2}\right) \\
& T^{2}=\left(\frac{1}{0.72}-1\right) \times 2=0.7778 \\
& p \text {-value: } P\left(T^{2}(2,2)>0.7778\right)=P(F(2,1)>0.19)=0.8485
\end{aligned}
$$

Fail to reject H_{0}

L13: SAS for one-sample test

1. Data

For one-sample test by rejection region we need to calculate $T_{o b}^{2}$. For one-sample test by p-value, besides $T_{o b}^{2}$ we also need to calculate p-value: $P\left(T^{2}(p, n-1)>T_{o b}^{2}\right)=P\left(F(p, n-p)>\frac{n-p}{(n-1) p} T_{o b}^{2}\right)$.
(1) Enter sample into SAS

Suppose based on sample $X_{1}=\binom{6}{9}, X_{2}=\binom{10}{6}, X_{3}=\binom{8}{3}$ we want to test $\mu=\mu_{0}=\binom{9}{6}$

| data a;
 input x1 x2 @@;
 datalines;
 6$\quad 10683$ |
| :--- |\quad or \quad| data a; |
| :--- |
| infile "D://example.txt"; |
| input x1 x2 @@; |

(2) Modify data

SAS will test $H_{0}: \mu=0$. To test $H_{0}: \mu=\mu_{0}$, note that $\mu=\mu_{0} \Longleftrightarrow \mu-\mu_{0}=0$. So we need to convert the population to the one with mean $\mu-\mu_{0}$. The sample from this new population has sample $X_{i}-\mu_{0}, i=1, \ldots, n$ where $X_{i}, i=1, \ldots, n$, is the original sample.

```
data b;
    set a;
    y1=x1-9; or in one step
data a;
    infile "D://example.txt";
    input x1 x2 @@;
    y1=x1-9; y2=x2-6;
```

2. Procedure and output
(1) proc reg and its output
```
proc reg;
    model y1 y2=/noprint;
    mtest intercept;
    run;
```

Statistics	Value	F-value Num DF	Den DF	Pr $>$ F	
Wilks' Lambda	0.7200	0.19	2	1	0.8485
Pillai's Trace	0.2800	0.19	2	1	0.8485
Hotellig-Lawley Trace	0.3889	0.19	2	1	0.8485
Roy's Greatest Root	0.3889	0.19	2	1	0.8485

$T_{o b}^{2}=\left(\frac{1}{\Lambda}-1\right)(n-1)$ can be calculated based on Wilk's Lambda, Λ, given in the output.
$F_{o b}=\frac{n-p}{(n-1) p} T_{o b}^{2}$ is given in the output, p-value: $P\left(F(p, n-p)>F_{o b}\right)$ is also given int the output.
(2) Testing on $H_{0}: \mu=\mu_{0}$ using rejection region
$H_{0}: \mu=\mu_{0}$ vs $H_{a}: \mu \neq \mu_{0}$ where $\mu_{0}=\binom{9}{6}$
Test Statistic: $T^{2}=\left(\bar{X}-\mu_{0}\right)^{\prime}\left(\frac{S}{3}\right)^{-1}\left(\bar{X}-\mu_{0}\right)$
Reject H_{0} if $T^{2}>798$ for $\alpha=0.05$
$T_{o b}^{2}=0.7778$
Fail to reject H_{0}.
(2) Using p-value

$$
\begin{aligned}
& H_{0}: \mu=\mu_{0} \text { versus } H_{a}: \mu \neq \mu_{0} \text { where } \mu_{0}=\binom{9}{6} \\
& \text { Test Statistic } T^{2}=\left(\bar{X}-\mu_{0}\right)^{\prime}\left(\frac{S}{n}\right)^{-1}\left(\bar{X}-\mu_{0}\right) \\
& p \text {-value: } P\left(T^{2}(2,2)>T_{o b}^{2}\right) \\
& T^{2}=\left(\frac{1}{0.72}-1\right) \times 2=0.7778 ; \\
& p \text {-value: } P\left(T^{2}(2,2)>0.7778\right)=P(F(2,1)>0.19)=0.8485 \\
& \text { Fail to reject } H_{0}
\end{aligned}
$$

3. Four test statistics in SAS output
(1) Wilk's Lambda
$\Lambda=\frac{|E|}{\left|E_{0}\right|}=\frac{|E|}{|E+H|}$ where the error matrix $E=\sum_{i}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)^{\prime}=$ CSSCP.
$E_{0}=\sum_{i}\left(X_{i}-\mu_{0}\right)\left(X_{i}-\mu_{0}\right)^{\prime}=\sum_{i}\left(X_{i}-\bar{X}+\bar{X}-\mu_{0}\right)\left(X_{i}-\bar{X}-\bar{X}-\mu_{0}\right)^{\prime}=E+n\left(\bar{X}-\mu_{0}\right)\left(\bar{X}-\mu_{0}\right)^{\prime}$ $=E+H \quad$ where $H=n\left(\bar{X}-\mu_{0}\right)\left(\bar{X}-\mu_{0}\right)^{\prime}$.
Recall: $T^{2}=\left(\bar{X}-\mu_{0}\right)\left(\frac{S}{n}\right)^{-1}\left(\bar{X}-\mu_{0}\right)=n(n-1)\left(\bar{X}-\mu_{0}\right)^{\prime} E^{-1}\left(\bar{X}-\mu_{0}\right)$.
By formula $\left|\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right|=\left|A_{11}\right| \cdot\left|A_{22.1}\right|=\left|A_{22}\right| \cdot\left|A_{11.2}\right|$ where $A_{11.2}=A_{11}-A_{12} A_{22}^{-1} A_{21}$ and
$A_{22.1}=A_{22}-A_{21} A_{11}^{-1} A_{12}$, from $\left|\begin{array}{cc}1 & n\left(\bar{X}-\mu_{0}\right)^{\prime} \\ -\left(\bar{X}-\mu_{0}\right) & E\end{array}\right|$,
$\left|E+n\left(\bar{X}-\mu_{0}\right)\left(\bar{X}-\mu_{0}\right)^{\prime}\right|=|E|\left[1+n\left(\bar{X}-\mu_{0}\right)^{\prime} E^{-1}\left(\bar{X}-\mu_{0}\right)\right]$, i.e., $|E+H|=|E|\left(1+\frac{T^{2}}{n-1}\right)$.
So $\Lambda=\left(1+\frac{T^{2}}{n-1}\right)^{-1}$. Thus $T^{2}=\left(\frac{1}{\Lambda}-1\right)(n-1)$.
(2) Hotelling-Lawley trace

H-L trace $\xlongequal{\text { def }} \operatorname{tr}\left(H E^{-1}\right)=\operatorname{tr}\left[n\left(\bar{X}-\mu_{0}\right)\left(\bar{X}-\mu_{0}\right)^{\prime} E^{-1}\right]=n\left(\bar{X}-\mu_{0}\right)^{\prime} E^{-1}\left(\bar{X}-\mu_{0}\right)=\frac{T^{2}}{n-1}$.
So $T^{2}=(n-1) \mathrm{H}-\mathrm{L}$ trace.
(3) Roy's greatest root

Roy's greatest root is the largest eighenvalue of $E^{-1 / 2} H E^{-1 / 2}$.
Let $E^{-1 / 2} H E^{-1 / 2}=Q \Gamma Q^{\prime}$ be the EVD where $\Gamma=\operatorname{diag}\left(\gamma_{1}, . ., \gamma_{p}\right), \gamma_{1} \geq \cdots \geq \gamma_{p}$.
Then Roy's greatest root is γ_{1}.
But $\operatorname{rank}\left(E^{-1 / 2} H E^{-1 / 2}\right)=\operatorname{rank}(H)=\operatorname{rank}\left[n\left(\bar{X}-\mu_{0}\right)\left(\bar{X}-\mu_{0}\right)^{\prime}\right]=1$.
Thus $E^{-1 / 2} H E^{-1 / 2}$ has only one non-zero eigenvalue γ_{1}. So

$$
\begin{aligned}
\text { Roy's greatest root } & =\gamma_{1}=\gamma_{1}+\cdots+\gamma_{p}=\operatorname{tr}\left(E^{-1 / 2} H E^{-1 / 2}\right)=\operatorname{tr}\left(H E^{-1}\right) \\
& =\text { H-L trace }=\frac{T^{2}}{n-1} .
\end{aligned}
$$

(4) Pillai's trace

Pillai's trace $\stackrel{\text { def }}{=} \operatorname{tr}\left[H(E+H)^{-1}\right]=\operatorname{tr}\left[E^{1 / 2}\left(E^{-1 / 2} H E^{-1 / 2}\right) E^{1 / 2}(E+H)^{-1}\right]$
$=\operatorname{tr}\left[\left(E^{-1 / 2} H E^{-1 / 2}\right) E^{1 / 2}(E+H)^{-1} E^{1 / 2}\right]$
$=\operatorname{tr}\left[Q \Gamma Q^{\prime}\left(I+E^{-1 / 2} H E^{-1 / 2}\right)^{-1}\right]=\operatorname{tr}\left[Q \Gamma Q^{\prime}\left(I+Q \Gamma Q^{\prime}\right)^{-1}\right]$
$=\operatorname{tr}\left\{Q \Gamma Q^{\prime}\left[Q(I+\Gamma) Q^{\prime}\right]^{-1}\right\}=\operatorname{tr}\left[Q \Lambda Q^{\prime} Q(I+\Gamma)^{-1} Q^{\prime}\right]$
$=\operatorname{tr}\left[\Gamma(I+\Gamma)^{-1}\right]=\frac{\gamma_{1}}{1+\gamma_{1}}+\cdots+\frac{\gamma_{p}}{1+\gamma_{p}}=\frac{\gamma_{1}}{1+\gamma_{1}}=1-\left(1+\gamma_{1}\right)^{-1}$
$=1-[1+(\mathrm{H}-\mathrm{L} \text { trace })]^{-1}=1-\left(1+\frac{T^{2}}{n-1}\right)^{-1}$.
Thus $T^{2}=\left(\frac{1}{1-\text { Pillai trace }}-1\right)(n-1)$.
Comment: Wilk Lambda + Pillai trace $=1$
Hotelling-Lawley trace $=$ Roy's greatest root.

