L10: One sample estimation

1. Maximum likelihood estimators
(1) Likelihood function and maximum likelihood estimators.

Let $X=\left(X_{1}, \ldots, X_{n}\right) \in R^{p \times n}$ be a random sample from $N(\mu, \Sigma)$. The joint pdf of X, treated as a function of μ and Σ, is the likelihood function (LF).

$$
\begin{aligned}
L(\mu, \Sigma) & =\prod_{i=1}^{n} \frac{1}{(2 \pi)^{p / 2}|\Sigma|^{1 / 2}} \exp \left[-\frac{1}{2}\left(X_{i}-\mu\right)^{\prime} \Sigma^{-1}\left(X_{i}-\mu\right)\right] \\
& =\frac{1}{(2 \pi)^{(n p) / 2}|\Sigma|^{n / 2}} \exp \left[-\frac{1}{2} \sum_{i}\left(X_{i}-\bar{X}+\bar{X}-\mu\right)^{\prime} \Sigma^{-1}\left(X_{i}-\bar{X}+\bar{X}-\mu\right)\right] \\
& =\frac{1}{(2 \pi)^{(n p) / 2}|\Sigma|^{n / 2}} \exp \left[-\frac{1}{2} \sum_{i}\left(X_{i}-\bar{X}\right)^{\prime} \Sigma^{-1}\left(X_{i}-\bar{X}\right)\right] \exp \left[-\frac{n}{2}(\bar{X}-\mu)^{\prime} \Sigma^{-1}(\bar{X}-\mu)\right] \\
& =\frac{1}{(2 \pi)^{(n p) / 2}|\Sigma|^{n / 2}} \exp \left[-\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1 / 2} \operatorname{CSSCP} \Sigma^{-1 / 2}\right)\right] \exp \left[-\frac{n}{2}(\bar{X}-\mu)^{\prime} \Sigma^{-1}(\bar{X}-\mu)\right] .
\end{aligned}
$$

$\widehat{\mu}$ and $\widehat{\Sigma}$ are maximum likelihood estimators (MLEs) for μ and Σ if

$$
L(\mu, \Sigma) \leq L(\widehat{\mu}, \widehat{\Sigma}) \text { for all } \mu \text { and } \Sigma
$$

(2) MLE of μ

Note that Maximizing $L(\mu, \Sigma)$ over all μ for all $\Sigma \Longleftrightarrow$ Minimizing $(\bar{X}-\mu)^{\prime} \Sigma^{-1}(\bar{X}-\mu)$.
But $(\bar{X}-\mu)^{\prime} \Sigma^{-1}(\bar{X}-\mu)$ is minimized when $\mu=\bar{X}$.
Thus $\widehat{\mu}=\bar{X}$ is the MLE for μ.
(3) MLE of Σ

Let $\Sigma^{-1 / 2} \operatorname{CSSCP} \Sigma^{-1 / 2}=P \Lambda P^{\prime}$ be the EVD.

$$
\begin{aligned}
L(\bar{X}, \Sigma) & =\frac{\left|\Sigma^{-1 / 2} \mathrm{CSSCP} \Sigma^{-1 / 2}\right|^{n / 2}}{(2 \pi)^{n p / 2}|\operatorname{CSSCP}|^{n / 2}} \exp \left[-\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1 / 2} \operatorname{CSSCP} \Sigma^{-1 / 2}\right)\right] \\
& =\frac{\left|P \Lambda P^{\prime}\right|^{n / 2}}{(2 \pi)^{n p / 2}|\operatorname{CSSCP}|^{n / 2}} \exp \left[-\frac{1}{2} \operatorname{tr}\left(P \Lambda P^{\prime}\right)\right] \\
& =\frac{1}{(2 \pi)^{n p / 2}|\operatorname{CSSCP}|^{n / 2}}\left(\lambda_{1} \cdots \lambda_{p}\right) \exp \left(-\frac{\lambda_{1}+\cdots+\lambda_{p}}{2}\right) \\
& =\frac{1}{(2 \pi)^{n p / 2}|\operatorname{CSSCP}|^{n / 2}} \prod_{i} \lambda_{i}^{n / 2} e^{-\frac{\lambda_{i}}{2}}=\frac{1}{(2 \pi)^{n p / 2} \mid \operatorname{CSSCP}^{n / 2}} \prod_{i} g\left(\lambda_{i}\right)
\end{aligned}
$$

where $g\left(\lambda_{i}\right)=\lambda_{i}^{n / 2} e^{-\frac{\lambda_{i}}{2}}$ is maximized when $\lambda_{i}=n$. So with $\lambda_{i}=n$ for all $i=1, \ldots, p$, $\Sigma^{-1 / 2} \operatorname{CSSCP} \Sigma^{-1 / 2}=P \Lambda P^{\prime}=n I$, i.e., $\Sigma=\frac{\mathrm{CSSCP}}{n}$. Hence $L(\bar{X}, \Sigma)$ is maximized when $\Sigma=\frac{\text { CSSCP }}{n}$. Thus $\frac{\text { CSSCP }}{n}$ is a MLE for Σ.

Comments: (i) Recall: $S=\frac{\text { CSSCP }}{n-1}$ is UE for Σ.
(ii) Direct computation shows that $L\left(\bar{X}, \frac{\mathrm{CSSCP}}{n}\right)=\left(\frac{n}{2 \pi e}\right)^{n p / 2}|\mathrm{CSSCP}|^{n / 2}$.
(iii) SAS for computing \bar{X}, CSSCP and S by SAS:

```
data a; infile "C:\ex.txt";
    input x1 x2 x3;
proc corr nocorr CSSCP COV;
    var x1 x2 x3;
    run;
```

2. Confidence regions
(1) Pivotal quantity and confidence region

For parameter vector $\theta \in R^{p}$ if $C(X) \subset R^{p}$ where X is the data matrix such that $P(\theta \in C(X)) \geq 1-\alpha$,
then the random region $C(X)$ is called a confidence region for θ with confidence coefficient $1-\alpha$. $T(X, \theta)$ is called a pivotal quantity if its distribution is free of parameter θ.

Let $\mathcal{A} \subset R^{p}$ be a high probability density region for pivotal quantity $T(X, \theta)$ such that $P(T(X, \theta) \in \mathcal{A}) \geq 1-\alpha$. With $\quad T(X, \theta) \in \mathcal{A} \Longleftrightarrow \theta \in C(X)$,

$$
P(\theta \in C(X))=P(T(X, \theta) \in \mathcal{A}) \geq 1-\alpha
$$

So $C(X)$ is a $1-\alpha$ confidence region for θ.
(2) Confidence region for β

Based on sample $X \sim N_{p \times n}\left(\mu 1_{n}^{\prime}, \Sigma, I_{n}\right), T^{2}=(\bar{X}-\mu)^{\prime}\left(\frac{S}{n}\right)^{-1}(\bar{X}-\mu) \sim T^{2}(p, n-1)$ is a pivotal quantity. By $T^{2}(p, n-1)=\frac{p(n-1)}{n-p} F(p, n-p)$,

$$
P\left(T^{2} \leq \frac{p(n-1)}{n-p} F_{\alpha}(p, n-p)\right)=1-\alpha .
$$

But

$$
T^{2} \leq \frac{p(n-1)}{n-p} F_{\alpha}(p, n-p) \Longleftrightarrow \mu \in\left\{(\mu-\bar{X})^{\prime}\left(\frac{S}{n}\right)^{-1}(\mu-\bar{X}) \leq \frac{p(n-1)}{n-p} F_{\alpha}(p, n-p)\right\}
$$

Thus $\quad\left\{\mu \in R^{p}:(\mu-\bar{X})^{\prime}\left(\frac{S}{n}\right)^{-1}(\mu-\bar{X}) \leq \frac{p(n-1)}{n-p} F_{\alpha}(p, n-p)\right\}$
is a $1-\alpha$ confidence region for μ.
(3) An ellipsoid

Let $c=\frac{p(n-1)}{n-p} F_{\alpha}(p, n-p)$ and $\frac{c S}{n}=P \Lambda P^{\prime}$ be the EVD. By the orthogonal transformation $y=P^{\prime}(\mu-\bar{X})$,

$$
\begin{aligned}
& (\mu-\bar{X})^{\prime}\left(\frac{S}{n}\right)^{-1}(\mu-\bar{X}) \leq \frac{p(n-1)}{n-p} F_{\alpha}(p, n-p) \\
\Longleftrightarrow & (\mu-\bar{X})^{\prime}\left(P \Lambda P^{\prime}\right)^{-1}(\mu-\bar{X}) \leq 1 \\
\Longleftrightarrow & y^{\prime} \Lambda^{-1} y \leq 1 \Longleftrightarrow \frac{y_{1}^{2}}{\left(\sqrt{\lambda_{1}}\right)^{2}}+\cdots+\frac{y_{p}^{2}}{\left(\sqrt{\lambda_{p}}\right)^{2}} \leq 1
\end{aligned}
$$

Thus the $1-\alpha$ confidence region for μ is an ellipsoid with center \bar{X} and half-axes $\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{p}}$.
Ex1: Find a formula for 95% confidence region for $\mu \in R^{3}$ based on a sample of size 20 .
$(\mu-\bar{X})^{\prime}\left(\frac{S}{20}\right)^{-1}(\mu-\bar{X}) \leq \frac{3 \times 19}{17} F_{0.05}(3,17)=\frac{57}{17} \times 3.21=10.73$
So $\left\{\mu \in R^{3}:(\mu-\bar{X})^{\prime}(0.5365 S)^{-1}(\mu-\bar{X}) \leq 1\right\}$ is a 95% confidence region for μ.
3. Confidence region for $\theta=L \mu \in R^{q}$
(1) Transformations

Transformations of populations, parameters, samples and statistics.
$X \in R^{p \times n}$ is a random sample from $N(\mu, \Sigma)$. Then $L X \in R^{q \times n}$ is a random sample from $N\left(L \theta, L \Sigma L^{\prime}\right)$.
If \bar{X} and S are the sample mean and sample covariance matrix from $X, L \bar{X}$ and $L S L^{\prime}$ are sample mean and sample covariance matrix from $L X$.
(2) Confidence region for $\theta=L \mu$
$\left\{\theta \in R^{q}:(\theta-L \bar{X})^{\prime}\left(\frac{L S L^{\prime}}{n}\right)^{-1}(\theta-L \bar{X}) \leq \frac{q(n-1)}{n-q} F_{\alpha}(q, n-q)\right\}$
is a $1-\alpha$ confidence region for $\theta=L \mu$.
Ex2: When $q=1$, write $\theta=L \mu=l^{\prime} \mu, L \bar{X}=l^{\prime} \bar{X}$ and $L S L^{\prime}=l^{\prime} S l$. Then

$$
\begin{aligned}
& \quad\left(l^{\prime} \mu-l^{\prime} \bar{X}\right)^{\prime}\left(\frac{l^{\prime} S l}{n}\right)^{-1}\left(l^{\prime} \mu-l^{\prime} \bar{X}\right) \leq \frac{1(n-1)}{n-1} F_{\alpha}(1, n-1) \\
& \Longleftrightarrow\left(l^{\prime} \mu-l^{\prime} \bar{X}\right)^{2} \leq \frac{l^{\prime} S l}{n} F_{\alpha}(1, n-1) \Longleftrightarrow l^{\prime} \mu \in l^{\prime} \bar{X} \pm \sqrt{F_{\alpha}(1, n-1)} \sqrt{l^{\prime} S l / n} \\
& \text { So } l^{\prime} \bar{X} \pm \sqrt{F_{\alpha}(1, n-1)} \sqrt{l^{\prime} S l / n} \text { is the } 1-\alpha \text { confidence interval for } l^{\prime} \mu .
\end{aligned}
$$

L11: Simultaneous CIs

1. Confidence regions and confidence intervals
(1) Formulas
$1-\alpha$ confidence region for $\mu \in R^{p}$ is the collection of μ satisfying

$$
(\mu-\bar{X})^{\prime}\left(\frac{S}{n}\right)^{-1}(\mu-\bar{X}) \leq T_{\alpha}^{2}(p, n-1)
$$

$1-\alpha$ confidence region for $\theta=L \mu \in R^{q}$ is the collection of θ satisfying

$$
(\theta-L \bar{X})^{\prime}\left(\frac{L S L^{\prime}}{n}\right)^{-1}(\theta-L \bar{X}) \leq T_{\alpha}^{2}(q, n-1)
$$

$1-\alpha$ confidence interval for $\theta=l^{\prime} \mu$ is

$$
l^{\prime} \bar{X} \pm \sqrt{T_{\alpha}^{2}(1, n-1)} \sqrt{\frac{l^{\prime} S l}{n}}
$$

(2) Table values
$T_{\alpha}^{2}(p, n-1)=\frac{p(n-1)}{n-p} F_{\alpha}(p, n-p)$ and $T^{2}(q, n-1)=\frac{q(n-1)}{n-q} F_{\alpha}(1, n-q)$ can be calculated with F-table or APP. While $T^{2}(1, n-1)=F(1, n-1)$, because $F(1, n-1)=[t(n-1)]^{2}$, $\alpha=P\left(F(1, n-1)>F_{\alpha}(1, n-1)\right)=P\left([t(n-1)]^{2}>F_{\alpha}(1, n-1)\right)=2 P\left(t(n-1)>\sqrt{F_{\alpha}(1, n-1)}\right)$. So $\alpha / 2=P\left(t(n-1)>\sqrt{F_{\alpha}(1, n-1)}\right)$. Thus $\sqrt{F_{\alpha}(1, n-1)}=\sqrt{T^{2}(1, n-1)}=t_{\alpha / 2}(n-1)$. This value can be looked up from t-table or calculated by APP.
(3) Statistics

In the last formula, $\bar{X} \sim N\left(\mu, \frac{\Sigma}{n}\right) \Longrightarrow l^{\prime} \bar{X} \sim N\left(l^{\prime} \mu, \frac{l^{\prime} \Sigma l}{n}\right)$ where $\sigma_{l^{\prime} \bar{X}}^{2}=\frac{l^{\prime} \Sigma l}{n}$ is the variance of $l^{\prime} \bar{X}$. When Σ is estimated by $S, \sigma_{l^{\prime} \bar{X}}^{2}$ is estimated by $S_{l^{\prime} \bar{X}}^{2}=\frac{l^{\prime} S l}{n}$.
(4) Confidence intervals
$1-\alpha \mathrm{CI}$ for $l^{\prime} \mu$ is $l^{\prime} \bar{X} \pm t_{\alpha / 2}(n-1) S_{l^{\prime} \bar{X}}$.
Ex1: A sample of size $n=61$ from $N(\mu, \Sigma)$ produced $\bar{X}=\binom{17.98}{31.13}$ and $S=\left(\begin{array}{cc}9.95 & 13.88 \\ 13.88 & 21.26\end{array}\right)$.
Find a 95% confidence region for μ.
$(\mu-\bar{X})^{\prime}\left(\frac{S}{n}\right)^{-1}(\mu-\bar{X}) \leq T_{\alpha}^{2}(p, n-1)=T_{0.05}^{2}(2,60)=\frac{2 \times 60}{59} F_{0.05}(2,59)=\frac{120}{59} \times 3.15312=6.4131$.
So $\quad\left\{\mu \in R^{2}:\binom{\mu_{1}-17.98}{\mu_{2}-31.13}^{\prime}\left(\begin{array}{ll}1.0461 & 1.4592 \\ 1.4592 & 2.2351\end{array}\right)^{-1}\binom{\mu_{1}-17.98}{\mu_{2}-31.13} \leq 1\right\}$
is a 95% confidence region for μ.
Ex2: In Ex1 find 95\% confidence interval for $\mu_{1}+\mu_{2}$.

$$
\begin{aligned}
& \bar{X}_{1}+\bar{X}_{2} \pm t_{\alpha / 2}(n-1) S_{\bar{X}_{1}+\bar{X}_{2}} \\
= & 17.98+31.13 \pm t_{0.025}(60) \sqrt{\frac{9.95+13.88+13.88+21.26}{61}}=49.11 \pm 1.96 \times 0.9832 \\
= & 49.11 \pm 1.93=(47.18,51.04)
\end{aligned}
$$

is a 95% confidence interval for $\mu_{1}+\mu_{2}$.
2. Bonferroni simultaneous confidence intervals
(1) Definition

Let I_{i} be a CI for $\theta_{i}, i=1, \ldots, k$. If $P\left(\theta_{1} \in I_{1}, \ldots, \theta_{k} \in I_{k}\right) \geq 1-\alpha$, then I_{1}, \ldots, I_{k} are simultaneous confidence intervals for $\theta_{1}, \ldots, \theta_{k}$ with overall confidence coefficient $1-\alpha$.
(2) Bonferroni method

To construct simultaneous confidence intervals for $\theta_{1}, \ldots, \theta_{k}$ with overall confidence coefficient $1-\alpha$, one can construct them one by one, each has confidence coefficient $1-\frac{\alpha}{k}$.

Proof. Let $A_{i}=\left[\theta_{i} \in I_{i}\right]$ and suppose $P\left(A_{i}\right)=P\left(\theta_{i} \in I_{i}\right) \geq 1-\frac{\alpha}{k}, i=1, \ldots, k$.
We show $P\left(A_{1} \cap \cdots \cap A_{k}\right) \geq 1-\alpha$.

$$
\begin{aligned}
P\left(A_{1} \cap \cdots \cap A_{k}\right) & =1-P\left(\left(A_{1} \cap \cdots \cap A_{k}\right)^{c}\right)=1-P\left(A_{1}^{c} \cup \cdots \cup A_{k}^{c}\right) \\
& \geq 1-\left[P\left(A_{1}^{c}\right)+\cdots+P\left(A_{k}^{c}\right)\right]=1-\left[1-P\left(A_{1}\right)+\cdots+1-P\left(A_{k}\right)\right] \\
& =1-k+\left[P\left(A_{1}\right)+\cdots+P\left(A_{k}\right)\right] \\
& \geq 1-k+\left(1-\frac{\alpha}{k}+\cdots+1-\frac{\alpha}{k}\right)=1-k+(k-\alpha)=1-\alpha
\end{aligned}
$$

(3) Simultaneous CIs for $\theta_{i}=l_{i}^{\prime} \mu \in R, i=1, \ldots, k$.

$$
\theta_{i} \in l_{i}^{\prime} \bar{X} \pm t_{\alpha /(2 k)}(n-1) S_{l_{i}^{\prime} \bar{X}}, i=1, \ldots, k
$$

are k simultaneous CIs with overall confidence coefficient $1-\alpha$.
Ex3: In Ex1 find simultaneous CIs for μ_{1} and μ_{2} with overall confidence coefficient 90%.
With $k=2, \alpha=0.1$ and $n=61, t_{\alpha /(2 k)}(n-1)=t_{0.025}(60)=1.96$.
$\mu_{1} \in \bar{X}_{1} \pm 1.96 \times \sqrt{\frac{9.95}{61}}=17.98 \pm 1.96 \times 0.404=17.98 \pm 0.79=(17.19,18.77)$ and
$\mu_{2} \in \bar{X}_{2} \pm 1.96 \times \sqrt{\frac{21.26}{61}}=31.13 \pm 1.96 \times 0.59=31.138 \pm 1.16=(29.97,32.29)$
are simultaneous CIs with overall confidence coefficient 90%.
3. Scheffe's intervals
(1) Extended Cauchy-Schwartz inequality

For $x, y \in R^{p},\left(x^{\prime} y\right)^{2} \leq\left(x^{\prime} x\right)\left(y^{\prime} y\right)$ is the well-known Cauchy-Schwartz inequality.
With $A>0$, replacing x by $A^{-1 / 2} x$, and y be $A^{1 / 2} y$ leads to the extended Cauchy-Schwartz inequality

$$
\left(x^{\prime} y\right)^{2} \leq\left(x^{\prime} A^{-1} x\right)\left(y^{\prime} A y\right)
$$

(2) A lemma

If $x^{\prime} A^{-1} x \leq c$, then $x^{\prime} y \in \pm \sqrt{c} \sqrt{y^{\prime} A y}$, i.e., $-\sqrt{c} \sqrt{y^{\prime} A y} \leq x^{\prime} y \leq \sqrt{c} \sqrt{y^{\prime} A y}$.
Proof. If $x^{\prime} A^{-1} x \leq c$, by the extended Cauchy-Schwartz inequality $\left(x^{\prime} y\right)^{2} \leq\left(x^{\prime} A^{-1} x\right)\left(y^{\prime} A y\right)$,
$\left(x^{\prime} y\right)^{2} \leq c\left(y^{\prime} A y\right)$. Hence $x^{\prime} y \in \pm \sqrt{c} \sqrt{y^{\prime} A y}$.
(3) Scheffe's intervals

For $\theta_{i}=l_{i}^{\prime} \mu, i=1,2, \cdots$,

$$
\theta_{i} \in l_{i}^{\prime} \bar{X} \pm \sqrt{T_{\alpha}^{2}(p, n-1)} S_{l_{i}^{\prime} \bar{X}}, i=1,2, \cdots
$$

are simultaneous CIs with overall confidence coefficient $1-\alpha$.
Proof. Let $D_{i}=\left[l_{i}^{\prime} \mu \in l_{i}^{\prime} \bar{X} \pm \sqrt{T_{\alpha}^{2}(p, n-1)} S_{l_{i}^{\prime} \bar{X}}\right]$. We show $P\left(D_{1} \cap D_{2} \cap \cdots\right) \geq 1-\alpha$.
Let $D=\left[(\mu-\bar{X})^{\prime}\left(\frac{S}{n}\right)^{-1}(\mu-\bar{X}) \leq T_{\alpha}^{2}(p, n-1)\right]$. Then $P(D)=1-\alpha$.
With $x=\mu-\bar{X}, y=l_{i}, A=\frac{S}{n}$, and $c=T_{\alpha}^{2}(p, n-1)$, by (2)

$$
\begin{aligned}
D & =\left[(\mu-\bar{X})^{\prime}\left(\frac{S}{n}\right)^{-1}(\mu-\bar{X}) \leq T_{\alpha}^{2}(p, n-1)\right] \\
& \subset\left[(\mu-\bar{X})^{\prime} l_{i} \in \pm \sqrt{T_{\alpha}^{2}(p, n-1)} \sqrt{\frac{l_{i}^{\prime} S l_{i}^{\prime}}{n}}\right]=\left[l_{i}^{\prime}(\mu-\bar{X}) \in \pm \sqrt{T_{\alpha}^{2}(p, n-1)} S_{l_{i}^{\prime} \bar{X}}\right] \\
& =\left[l_{i}^{\prime} \mu \in l_{i}^{\prime} \bar{X} \pm \sqrt{T_{\alpha}^{2}(p, n-1)} S_{l_{i}^{\prime} \bar{X}}\right]=D_{i} \text { for all } i=1,2, \cdots
\end{aligned}
$$

Thus $D \subset D_{1} \cap D_{2} \cap \cdots$ Hence $1-\alpha=P(D) \leq P\left(D_{1} \cap D_{2} \cap \cdots\right)$.
Ex4: In Ex1 find Scheffe's simultaneous confidence intervals for μ_{1} and μ_{2} with overall confidence coefficient 90%.
$\sqrt{T_{0.1}^{2}(2,60)}=\sqrt{\frac{2 \times 60}{59} F_{0.1}(2,59)}=\sqrt{\frac{2 \times 60}{59} \times 2.395}=2.207$.
$\mu_{1} \in \bar{X}_{1} \pm 2.207 \times \sqrt{\frac{9.95}{61}}=17.98 \pm 2.207 \times 0.404=17.98 \pm 0.89=(17.09,18.87)$ and
$\mu_{2} \in \bar{X}_{2} \pm 2.207 \times \sqrt{\frac{21.26}{61}}=31.13 \pm 2.207 \times 0.59=31.138 \pm 1.30=(29.84,32.44)$
are Scheffe's intervals for μ_{1} and μ_{2} with overall confidence coefficient 90%.

