L10: One sample estimation

- 1. Maximum likelihood estimators
 - (1) Likelihood function and maximum likelihood estimators. Let $X = (X_1, ..., X_n) \in \mathbb{R}^{p \times n}$ be a random sample from $N(\mu, \Sigma)$. The joint pdf of X, treated as a function of μ and Σ , is the likelihood function (LF).

$$\begin{split} L(\mu, \Sigma) &= \prod_{i=1}^{n} \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2} (X_i - \mu)' \Sigma^{-1} (X_i - \mu)\right] \\ &= \frac{1}{(2\pi)^{(np)/2} |\Sigma|^{n/2}} \exp\left[-\frac{1}{2} \sum_i (X_i - \overline{X} + \overline{X} - \mu)' \Sigma^{-1} (X_i - \overline{X} + \overline{X} - \mu)\right] \\ &= \frac{1}{(2\pi)^{(np)/2} |\Sigma|^{n/2}} \exp\left[-\frac{1}{2} \sum_i (X_i - \overline{X})' \Sigma^{-1} (X_i - \overline{X})\right] \exp\left[-\frac{n}{2} (\overline{X} - \mu)' \Sigma^{-1} (\overline{X} - \mu)\right] \\ &= \frac{1}{(2\pi)^{(np)/2} |\Sigma|^{n/2}} \exp\left[-\frac{1}{2} \operatorname{tr} \left(\Sigma^{-1/2} \operatorname{CSSCP} \Sigma^{-1/2}\right)\right] \exp\left[-\frac{n}{2} (\overline{X} - \mu)' \Sigma^{-1} (\overline{X} - \mu)\right]. \end{split}$$

 $\hat{\mu}$ and $\hat{\Sigma}$ are maximum likelihood estimators (MLEs) for μ and Σ if

$$L(\mu, \Sigma) \leq L(\widehat{\mu}, \widehat{\Sigma})$$
 for all μ and Σ .

(2) MLE of μ

Note that Maximizing $L(\mu, \Sigma)$ over all μ for all $\Sigma \iff$ Minimizing $(\overline{X} - \mu)' \Sigma^{-1} (\overline{X} - \mu)$. But $(\overline{X} - \mu)' \Sigma^{-1} (\overline{X} - \mu)$ is minimized when $\mu = \overline{X}$. Thus $\hat{\mu} = \overline{X}$ is the MLE for μ .

(3) MLE of Σ Let $\Sigma^{-1/2} CSSCP \Sigma^{-1/2} = P \Lambda P'$ be the EVD. $L(\overline{X}, \Sigma) = \frac{|\Sigma^{-1/2} CSSCP \Sigma^{-1/2}|^{n/2}}{(2\pi)^{np/2} |CSSCP|^{n/2}} \exp\left[-\frac{1}{2} tr\left(\Sigma^{-1/2} CSSCP \Sigma^{-1/2}\right)\right]$ $= \frac{|P \Lambda P'|^{n/2}}{(2\pi)^{np/2} |CSSCP|^{n/2}} \exp\left[-\frac{1}{2} tr(P \Lambda P')\right]$ $= \frac{1}{(2\pi)^{np/2} |CSSCP|^{n/2}} (\lambda_1 \cdots \lambda_p) \exp\left(-\frac{\lambda_1 + \cdots + \lambda_p}{2}\right)$ $= \frac{1}{(2\pi)^{np/2} |CSSCP|^{n/2}} \prod_i \lambda_i^{n/2} e^{-\frac{\lambda_i}{2}} = \frac{1}{(2\pi)^{np/2} |CSSCP|^{n/2}} \prod_i g(\lambda_i)$

where $g(\lambda_i) = \lambda_i^{n/2} e^{-\frac{\lambda_i}{2}}$ is maximized when $\lambda_i = n$. So with $\lambda_i = n$ for all i = 1, ..., p, $\Sigma^{-1/2} \operatorname{CSSCP} \Sigma^{-1/2} = P \Lambda P' = nI$, i.e., $\Sigma = \frac{\operatorname{CSSCP}}{n}$. Hence $L(\overline{X}, \Sigma)$ is maximized when $\Sigma = \frac{\operatorname{CSSCP}}{n}$. Thus $\frac{\operatorname{CSSCP}}{n}$ is a MLE for Σ .

Comments: (i) Recall: $S = \frac{\text{CSSCP}}{n-1}$ is UE for Σ .

(ii) Direct computation shows that $L\left(\overline{X}, \frac{\text{CSSCP}}{n}\right) = \left(\frac{n}{2\pi e}\right)^{np/2} |\text{CSSCP}|^{n/2}$. (iii) SAS for computing \overline{X} , CSSCP and S by SAS:

2. Confidence regions

(1) Pivotal quantity and confidence region

For parameter vector $\theta \in R^p$ if $C(X) \subset R^p$ where X is the data matrix such that $P(\theta \in C(X)) \ge 1 - \alpha$,

then the random region C(X) is called a confidence region for θ with confidence coefficient $1 - \alpha$. $T(X, \theta)$ is called a pivotal quantity if its distribution is free of parameter θ . Let $\mathcal{A} \subset \mathbb{R}^p$ be a high probability density region for pivotal quantity $T(X, \theta)$ such that $P(T(X, \theta) \in \mathcal{A}) \ge 1 - \alpha$. With $T(X, \theta) \in \mathcal{A} \iff \theta \in C(X)$,

$$P(\theta \in C(X)) = P(T(X, \theta) \in \mathcal{A}) \ge 1 - \alpha.$$

So C(X) is a $1 - \alpha$ confidence region for θ .

(2) Confidence region for β

Based on sample $X \sim N_{p \times n}(\mu 1'_n, \Sigma, I_n), T^2 = (\overline{X} - \mu)' \left(\frac{S}{n}\right)^{-1} (\overline{X} - \mu) \sim T^2(p, n-1)$ is a pivotal quantity. By $T^2(p, n-1) = \frac{p(n-1)}{n-p}F(p, n-p),$

$$P\left(T^2 \le \frac{p(n-1)}{n-p}F_{\alpha}(p, n-p)\right) = 1 - \alpha.$$

But

$$T^{2} \leq \frac{p(n-1)}{n-p} F_{\alpha}(p, n-p) \Longleftrightarrow \mu \in \left\{ (\mu - \overline{X})' \left(\frac{S}{n}\right)^{-1} (\mu - \overline{X}) \leq \frac{p(n-1)}{n-p} F_{\alpha}(p, n-p) \right\}.$$

Thus $\left\{\mu \in R^p: \left(\mu - \overline{X}\right)' \left(\frac{S}{n}\right)^{-1} \left(\mu - \overline{X}\right) \le \frac{p(n-1)}{n-p} F_{\alpha}(p, n-p)\right\}$ is a $1 - \alpha$ confidence region for μ .

(3) An ellipsoid

Let $c = \frac{p(n-1)}{n-p} F_{\alpha}(p, n-p)$ and $\frac{cS}{n} = P\Lambda P'$ be the EVD. By the orthogonal transformation $y = P'(\mu - \overline{X}),$

$$(\mu - \overline{X})' \left(\frac{S}{n}\right)^{-1} (\mu - \overline{X}) \leq \frac{p(n-1)}{n-p} F_{\alpha}(p, n-p)$$
$$\iff (\mu - \overline{X})' (P\Lambda P')^{-1} (\mu - \overline{X}) \leq 1$$
$$\iff y'\Lambda^{-1}y \leq 1 \iff \frac{y_1^2}{(\sqrt{\lambda_1})^2} + \dots + \frac{y_p^2}{(\sqrt{\lambda_p})^2} \leq 1$$

Thus the $1 - \alpha$ confidence region for μ is an ellipsoid with center \overline{X} and half-axes $\sqrt{\lambda_1}, \dots, \sqrt{\lambda_p}$.

Ex1: Find a formula for 95% confidence region for $\mu \in \mathbb{R}^3$ based on a sample of size 20. $\begin{array}{l} (\mu - \overline{X})' \left(\frac{S}{20}\right)^{-1} (\mu - \overline{X}) \leq \frac{3 \times 19}{17} F_{0.05}(3, 17) = \frac{57}{17} \times 3.21 = 10.73 \\ \text{So } \{\mu \in R^3 : (\mu - \overline{X})' (0.5365S)^{-1} (\mu - \overline{X}) \leq 1\} \text{ is a } 95\% \text{ confidence region for } \mu. \end{array}$

- 3. Confidence region for $\theta = L\mu \in \mathbb{R}^q$
 - (1) Transformations

Transformations of populations, parameters, samples and statistics.

 $X \in \mathbb{R}^{p \times n}$ is a random sample from $N(\mu, \Sigma)$. Then $LX \in \mathbb{R}^{q \times n}$ is a random sample from $N(L\theta, L\Sigma L').$

If \overline{X} and S are the sample mean and sample covariance matrix from X, $L\overline{X}$ and LSL' are sample mean and sample covariance matrix from LX.

(2) Confidence region for $\theta = \lambda$

 $\left\{ \theta \in R^q : \left(\theta - L\overline{X}\right)' \left(\frac{LSL'}{n}\right)^{-1} \left(\theta - L\overline{X}\right) \leq \frac{q(n-1)}{n-q} F_{\alpha}(q, n-q) \right\}$ is a $1 - \alpha$ confidence region for $\theta = L\mu$.

Ex2: When q = 1, write $\theta = L\mu = l'\mu$, $L\overline{X} = l'\overline{X}$ and LSL' = l'Sl. Then $(l'\mu - l'\overline{X})' \left(\frac{l'Sl}{n}\right)^{-1} (l'\mu - l'\overline{X}) \leq \frac{1(n-1)}{n-1}F_{\alpha}(1, n-1)$ $\iff (l'\mu - l'\overline{X})^2 \leq \frac{l'Sl}{n}F_{\alpha}(1, n-1) \iff l'\mu \in l'\overline{X} \pm \sqrt{F_{\alpha}(1, n-1)}\sqrt{l'Sl/n}.$ So $l'\overline{X} \pm \sqrt{F_{\alpha}(1, n-1)}\sqrt{l'Sl/n}$ is the $1 - \alpha$ confidence interval for $l'\mu$.

L11: Simultaneous CIs

- 1. Confidence regions and confidence intervals
 - (1) Formulas
 - 1α confidence region for $\mu \in \mathbb{R}^p$ is the collection of μ satisfying

$$(\mu - \overline{X})' \left(\frac{S}{n}\right)^{-1} (\mu - \overline{X}) \le T_{\alpha}^2(p, n-1).$$

 $1 - \alpha$ confidence region for $\theta = L\mu \in \mathbb{R}^q$ is the collection of θ satisfying

$$(\theta - L\overline{X})'\left(\frac{LSL'}{n}\right)^{-1}(\theta - L\overline{X}) \le T_{\alpha}^{2}(q, n-1).$$

 $1 - \alpha$ confidence interval for $\theta = l' \mu$ is

$$l'\overline{X} \pm \sqrt{T_{\alpha}^2(1, n-1)} \sqrt{\frac{l'Sl}{n}}.$$

(2) Table values

 $\begin{array}{l} T_{\alpha}^{2}(p,\,n-1)\,=\,\frac{p(n-1)}{n-p}F_{\alpha}(p,\,n-p)\,\,\text{and}\,\,T^{2}(q,\,n-1)\,=\,\frac{q(n-1)}{n-q}F_{\alpha}(1,\,n-q)\,\,\text{can be calculated}\\ \text{with F-table or APP. While $T^{2}(1,\,n-1)\,=\,F(1,\,n-1)$, because $F(1,\,n-1)\,=\,[t(n-1)]^{2}$, $\alpha=P(F(1,\,n-1)\,>F_{\alpha}(1,\,n-1))\,=\,P([t(n-1)]^{2}\,>F_{\alpha}(1,\,n-1))\,=\,2P(t(n-1)\,>\sqrt{F_{\alpha}(1,\,n-1)}\,).$ So $\alpha/2=P(t(n-1)\,>\sqrt{F_{\alpha}(1,\,n-1)})$. Thus $\sqrt{F_{\alpha}(1,\,n-1)}\,=\,\sqrt{T^{2}(1,\,n-1)}\,=\,t_{\alpha/2}(n-1)$. This value can be looked up from t-table or calculated by APP.} \end{array}$

(3) Statistics

In the last formula, $\overline{X} \sim N\left(\mu, \frac{\Sigma}{n}\right) \Longrightarrow l'\overline{X} \sim N\left(l'\mu, \frac{l'\Sigma l}{n}\right)$ where $\sigma_{l'\overline{X}}^2 = \frac{l'\Sigma l}{n}$ is the variance of $l'\overline{X}$. When Σ is estimated by $S, \sigma_{l'\overline{X}}^2$ is estimated by $S_{l'\overline{X}}^2 = \frac{l'S l}{n}$.

(4) Confidence intervals $1 - \alpha$ CI for $l'\mu$ is $l'\overline{X} \pm t_{\alpha/2}(n-1)S_{l'\overline{X}}$.

Ex1: A sample of size n = 61 from $N(\mu, \Sigma)$ produced $\overline{X} = \begin{pmatrix} 17.98 \\ 31.13 \end{pmatrix}$ and $S = \begin{pmatrix} 9.95 & 13.88 \\ 13.88 & 21.26 \end{pmatrix}$. Find a 95% confidence region for μ .

$$(\mu - \overline{X})' \left(\frac{S}{n}\right)^{-1} (\mu - \overline{X}) \le T_{\alpha}^{2}(p, n-1) = T_{0.05}^{2}(2, 60) = \frac{2 \times 60}{59} F_{0.05}(2, 59) = \frac{120}{59} \times 3.15312 = 6.4131.$$
So
$$\left\{ \mu \in R^{2} : \begin{pmatrix} \mu_{1} - 17.98 \\ \mu_{2} - 31.13 \end{pmatrix}' \begin{pmatrix} 1.0461 & 1.4592 \\ 1.4592 & 2.2351 \end{pmatrix}^{-1} \begin{pmatrix} \mu_{1} - 17.98 \\ \mu_{2} - 31.13 \end{pmatrix} \le 1 \right\}$$
is a 05% confidence region for μ

is a 95% confidence region for μ .

Ex2: In Ex1 find 95% confidence interval for
$$\mu_1 + \mu_2$$
.
 $\overline{X}_1 + \overline{X}_2 \pm t_{\alpha/2}(n-1)S_{\overline{X}_1 + \overline{X}_2}$
= 17.98 + 31.13 ± $t_{0.025}(60)\sqrt{\frac{9.95 \pm 13.88 \pm 13.88 \pm 21.26}{61}}$ = 49.11 ± 1.96 × 0.9832
= 49.11 ± 1.93 = (47.18, 51.04)
is a 95% confidence interval for $\mu_1 + \mu_2$.

- 2. Bonferroni simultaneous confidence intervals
 - (1) Definition

Let I_i be a CI for θ_i , i = 1, ..., k. If $P(\theta_1 \in I_1, ..., \theta_k \in I_k) \ge 1 - \alpha$, then $I_1, ..., I_k$ are simultaneous confidence intervals for $\theta_1, ..., \theta_k$ with overall confidence coefficient $1 - \alpha$.

(2) Bonferroni method

To construct simultaneous confidence intervals for $\theta_1, ..., \theta_k$ with overall confidence coefficient $1 - \alpha$, one can construct them one by one, each has confidence coefficient $1 - \frac{\alpha}{k}$.

Proof. Let $A_i = [\theta_i \in I_i]$ and suppose $P(A_i) = P(\theta_i \in I_i) \ge 1 - \frac{\alpha}{k}, i = 1, ..., k$. We show $P(A_1 \cap \cdots \cap A_k) \ge 1 - \alpha$. $P(A_i \cap \cdots \cap A_k) = -1 - P((A_1 \cap \cdots \cap A_k)^c) = 1 - P(A_i^c \cup \cdots \cup A_i^c)$

$$P(A_{1} \cap \dots \cap A_{k}) = 1 - P((A_{1} \cap \dots \cap A_{k})^{c}) = 1 - P(A_{1}^{c} \cup \dots \cup A_{k}^{c})$$

$$\geq 1 - [P(A_{1}^{c}) + \dots + P(A_{k}^{c})] = 1 - [1 - P(A_{1}) + \dots + 1 - P(A_{k})]$$

$$= 1 - k + [P(A_{1}) + \dots + P(A_{k})]$$

$$\geq 1 - k + (1 - \frac{\alpha}{k} + \dots + 1 - \frac{\alpha}{k}) = 1 - k + (k - \alpha) = 1 - \alpha$$
Cinctly, where $P(A_{k}) = 1 - k + (k - \alpha) = 1 - \alpha$

(3) Simultaneous CIs for $\theta_i = l'_i \mu \in R, i = 1, ..., k$.

$$\theta_i \in l'_i \overline{X} \pm t_{\alpha/(2k)}(n-1)S_{l',\overline{X}}, \ i = 1, ..., k$$

are k simultaneous CIs with overall confidence coefficient $1 - \alpha$.

Ex3: In Ex1 find simultaneous CIs for μ_1 and μ_2 with overall confidence coefficient 90%. With k = 2, $\alpha = 0.1$ and n = 61, $t_{\alpha/(2k)}(n-1) = t_{0.025}(60) = 1.96$. $\mu_1 \in \overline{X}_1 \pm 1.96 \times \sqrt{\frac{9.95}{61}} = 17.98 \pm 1.96 \times 0.404 = 17.98 \pm 0.79 = (17.19, 18.77)$ and

$$\mu_2 \in \overline{X}_2 \pm 1.96 \times \sqrt{\frac{21.26}{61}} = 31.13 \pm 1.96 \times 0.59 = 31.138 \pm 1.16 = (29.97, 32.29)$$

are simultaneous CIs with overall confidence coefficient 90%.

- 3. Scheffe's intervals
 - (1) Extended Cauchy-Schwartz inequality For $x, y \in \mathbb{R}^p$, $(x'y)^2 \leq (x'x)(y'y)$ is the well-known Cauchy-Schwartz inequality. With A > 0, replacing x by $A^{-1/2}x$, and y be $A^{1/2}y$ leads to the extended Cauchy-Schwartz inequality

$$(x'y)^2 \le (x'A^{-1}x)(y'Ay)$$

- (2) A lemma If $x'A^{-1}x \leq c$, then $x'y \in \pm\sqrt{c}\sqrt{y'Ay}$, i.e., $-\sqrt{c}\sqrt{y'Ay} \leq x'y \leq \sqrt{c}\sqrt{y'Ay}$. **Proof.** If $x'A^{-1}x \leq c$, by the extended Cauchy-Schwartz inequality $(x'y)^2 \leq (x'A^{-1}x)(y'Ay)$, $(x'y)^2 \leq c(y'Ay)$. Hence $x'y \in \pm\sqrt{c}\sqrt{y'Ay}$.
- (3) Scheffe's intervals For $\theta_i = l'_i \mu, i = 1, 2, \cdots,$

$$\theta_i \in l_i' \overline{X} \pm \sqrt{T_\alpha^2(p, n-1)} \, S_{l_i' \overline{X}}, \, i = 1, 2, \cdots$$

are simultaneous CIs with overall confidence coefficient $1 - \alpha$. **Proof.** Let $D_i = \left[l'_i \mu \in l'_i \overline{X} \pm \sqrt{T^2_{\alpha}(p, n-1)} S_{l'_i \overline{X}} \right]$. We show $P(D_1 \cap D_2 \cap \cdots) \ge 1 - \alpha$. Let $D = \left[(\mu - \overline{X})' \left(\frac{S}{n} \right)^{-1} (\mu - \overline{X}) \le T^2_{\alpha}(p, n-1) \right]$. Then $P(D) = 1 - \alpha$. With $x = \mu - \overline{X}$, $y = l_i$, $A = \frac{S}{n}$, and $c = T^2_{\alpha}(p, n-1)$, by (2) $D = \left[(\mu - \overline{X})' \left(\frac{S}{n} \right)^{-1} (\mu - \overline{X}) \le T^2_{\alpha}(p, n-1) \right]$ $\subset \left[(\mu - \overline{X})' l_i \in \pm \sqrt{T^2_{\alpha}(p, n-1)} \sqrt{\frac{l'_i S l'_i}{n}} \right] = \left[l'_i (\mu - \overline{X}) \in \pm \sqrt{T^2_{\alpha}(p, n-1)} S_{l'_i \overline{X}} \right]$ $= \left[l'_i \mu \in l'_i \overline{X} \pm \sqrt{T^2_{\alpha}(p, n-1)} S_{l'_i \overline{X}} \right] = D_i$ for all $i = 1, 2, \cdots$ Thus $D \subset D_1 \cap D_2 \cap \cdots$ Hence $1 - \alpha = P(D) \le P(D_1 \cap D_2 \cap \cdots)$.

Ex4: In Ex1 find Scheffe's simultaneous confidence intervals for μ_1 and μ_2 with overall confidence coefficient 90%.

$$\sqrt{T_{0.1}^2(2, 60)} = \sqrt{\frac{2 \times 60}{59}} F_{0.1}(2, 59) = \sqrt{\frac{2 \times 60}{59} \times 2.395} = 2.207.$$

$$\mu_1 \in \overline{X}_1 \pm 2.207 \times \sqrt{\frac{9.95}{61}} = 17.98 \pm 2.207 \times 0.404 = 17.98 \pm 0.89 = (17.09, 18.87) \text{ and}$$

$$\mu_2 \in \overline{X}_2 \pm 2.207 \times \sqrt{\frac{21.26}{61}} = 31.13 \pm 2.207 \times 0.59 = 31.138 \pm 1.30 = (29.84, 32.44)$$

are Scheffe's intervals for μ_1 and μ_2 with overall confidence coefficient 90%.