
L08 Wishart distributions

1. Normal sample

(1) Univariate one-sample problem
Population: X ∼ N(µ, σ2) Sample: X1, ..., Xn

Statistics and sampling distributions:

Sample mean X ∼ N
(
µ, σ2

n

)
and CSS

σ2 =
∑

i(Xi−X)2

σ2 ∼ χ2(n− 1) are independent.

Point estimators: X is MLE of µ which is an UE. s2 = CSS
n−1 is an UE for σ2. CSS

n is MLE for σ2.

CIs: X ± tα/2(n− 1) s√
n
is a 1− α CI for µ,

(
CSS

χ2
α/2

(n−1)
, CSS

χ2
1−α/2

(n−1)

)
is a 1− α CI for σ2.

Testing

H0 : µ = µ0 vs Ha : µ ̸= µ0

Test statistic: t = X−µ0

s/
√
n

p-value: 2P (t(n− 1) > |tob|)

(2) Sample from multivariate normal population
X1, ..., Xn is a random sample from a p-dimensional N(µ, Σ). This sample is represented by the
data matrix X = (X1, ..., Xn) ∈ Rp×n. The distribution of the sample, at this time, can only be
given to vectorized X.

vec(X) =

X1

...
Xn

 ∼ N


µ

...
µ

 ,

Σ · · · 0
...

. . .
...

0 · · · Σ


 = N (vec(µ1′n), In ⊗ Σ) .

Denote above by X ∼ Np×n(µ1
′
n, Σ, In). Generally,

Y ∼ N(M, Σ, Ψ)
def⇐⇒ vec(Y ) ∼ N(vec(M), Ψ⊗ Σ)

2. Properties of Y ∼ Np×n(M, Σ, Ψ)

(1) Transformation properties
If Y ∼ Np×n(M, Σ, Ψ), then

(i) Y ′ ∼ Nn×p(M
′, Ψ, Σ)

(ii) With A ∈ Cq×p, B ∈ Rn×m and C ∈ Rq×m, AY B + C ∼ Nq×m(AMB + C, AΣA′, B′ΨB).

(2) Independence properties
Suppose Y ∼ Np×n(M, Σ, Ψ).

(i) Independence of A1Y B1 and A2Y B2

A1Y B1 and A2Y B2 are independent ⇐⇒ A1ΣA
′
2 = 0 or B′

1ΨB2 = 0.
Proof. A1Y B1 and A2Y B2 are independent

⇐⇒ vec(A1Y B1) and vec(A2Y B2) are independent
⇐⇒ (B′

1 ⊗A1)vec(Y ) and (B′
2 ⊗A2)vec(Y ) are independent

⇐⇒ 0 = (B′
1 ⊗A1)(Ψ⊗ Σ)(B′

2 ⊗A2)
′ = (B′

1ΨB2)⊗ (A1ΣA
′
2)

⇐⇒ A1ΣA
′
2 = 0 or B′

1ΨB2 = 0.

Comments: By (i) one can find conditions for the independence involving AY B, Y CY ′

and Y ′DY since with the compact forms of EVDs for C = PΛP ′ and D = QΓQ′,
Y CY ′ = (Y P )Λ(Y P )′ and Y ′DY = (Q′Y )′Γ(Q′Y ) are functions Y P and Q′Y . But the
independence involving AY B, Y P and Q′Y are given in (i).
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(ii) Independence of Y A and Y BY ′

B′ = B ∈ Rn×n. If A′ΨB = 0, then Y A and Y BY ′ are independent.

Proof. By the compact form of EVD, B = PΛrP
′ where P ∈ Rn×r is of full column rank.

0 = A′ΨB = A′ΨPΛrP
′ =⇒ 0 = A′ΨP =⇒ Y A and Y P are independent

=⇒ Y A and (Y P )Λr(Y P )′ = Y BY ′ are independent

3. Distributions of X and CSSCP

(1) X ∼ N
(
µ, 1

nΣ
)
is independent to CSSCP

Proof. Note that X ∼ Np×n(µ1
′
n, Σ, In). So

X = X
1n
n

∼ Np×1

(
µ1′n

1n
n
, Σ,

1′n
n
In

1n
n

)
= Np×1

(
µ, Σ,

1

n

)
= N

(
µ,

1

n
Σ

)
.

But CSSCP = X(I − 1n1
+
n )X

′ and
1′n
n In(In− 1n1

+
n ) = 0. So X and CSSCP are independent.

Comment: For the distribution of CSSCP we define Wishart distribution.

(2) Definition of Wishart distributions
X ∼ Np×n(M, Σ, In), A

′ = A = A2 ∈ Rn×n with rank(A) = r. Then the distribution of XAX ′ is
called a Wishart distribution with non-centrality MAM ′, degrees of freedom r and a parameter
matrix Σ, denoted by

XAX ′ ∼ Wp×p(MAM ′, r, Σ).

Wp×p(0, n, Σ) is called central Wishart distribution denoted by Wp×p(n, Σ).
Wp×p(0, n, Ip) is called standardized Wishart distribution denoted by Wp×p(n).

XAX ′ ∼ Wp×p(r, MAM ′, Σ)

Ex1: E[Wp×p(D, n, Σ)] = D + nΣ. E[Wp×(n, Σ) = nΣ, E[Wp×p(n)] = nIp.

Ex2: X ∼ Np×n(M, Σ, In) =⇒ XX ′ ∼ Wp×p(MM ′, n, Σ).

Ex3: CSSCP= X(I − 1n1
+
n )X

′ where (I − 11+)2 = (I − 11+)′ = I − 11+ with rank n − 1
and (µ1′n)(I − 11+)(µ1′)′ = 0. Thus CSSCP∼ Wp×p(0, n − 1, Σ) = Wp×p(n − 1, Σ) with
expectation (n− 1)Σ.

Comment: X ∼ N
(
µ, Σ

n

)
and CSSCP∼ Wp×p(n− 1, Σ) are independent.

Ex4: Xi ∼ N(µi, 1
2), i = 1, ..., n, are independent =⇒

∑
i X

2
i ∼ χ2(

∑
i µ

2
i , n).

But X = (X1, .., Xn) ∼ N1×n((µ1, .., µn), 1, In) =⇒
∑

i X
2
i = XX ′ ∼ W1×1(

∑
i µ

2
i , n, 1).

So χ2(α, k) = W1×1(α, k, 1).

(3) A transformation
W ∼ Wp×p(D, n, Σ) and A ∈ Rq×p =⇒ AWA′ ∼ Wq×q(ADA′, n, AΣA′).

Pf: Let X ∼ Np×n(D
1/2, Σ, In). Then W

L
== XX ′ ∼ Wp×p(D, n, Σ).

With AX ∼ Nq×n(AD1/2, AΣA′, In), AWA′ L
== AXX ′A′ ∼ Wq×q(ADA′, n, AΣA′).

Ex5: W1×1(α, k, c) =
√
cW1×1

(
α
c , k, 1

) √
c = c · χ2

(
α
c , k

)
.

Ex6: Σ−1/2 (CSSCP)Σ−1/2 ∼ Σ−1/2 [Wp×p(0, n− 1, Σ)] Σ−1/2 = Wp×p(n− 1).
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L09 Hotelling’s T 2-distribution

1. Hotelling’s T 2-distributions

(1) Definitions

Suppose X0 ∼ N(µ, Ip) = Np×1(µ, Ip, 1) and W ∼ Wp×p(k) are independent. Then the distribu-

tion of T 2 = X ′
0

(
W
k

)−1
X0 is called a Hotelling’s T 2-distribution with non-centrality parameter

µ, numerator degrees of freedom p and Denominator degrees of freedom k denoted by

T 2 = X ′
0

(
W

k

)−1

X0 ∼ T 2(µ, p, k).

T 2(0, p, k) is called a central T 2-distribution denoted by T 2(p, k).

(2) From [t(µ, k)]2 to T 2

X0 ∼ N(µ, 12) and W ∼ χ2(k) are independent =⇒ t = X0√
W/k

∼ t(µ, k).

So t2 =
X2

0

W/k ∼ [t(µ, k)]2.

But t2 =
X2

0

W/k = X ′
0

(
W
k

)−1
X0 where X0 ∼ N(µ, 12) and W ∼ χ2(k) = W1×1(k) are independent.

Thus t2 ∼ T 2(µ, 1, k). Therefore

[t(µ, k)]2 = T 2(µ, 1, k) and [t(k)]2 = T 2(0, 1, k) = T 2(1, k).

(3) From F (α, 1, k) and T 2

Note that in (2), X0 ∼ N(µ, 12) =⇒ X2
0 ∼ χ2(µ2, 1).

With independent X2
0 ∼ χ2(µ2, 1) and W ∼ χ2(k), t2 =

X2
0

W/k ∼ F (µ2, 1, k).

But t2 =
X2

0

W/k ∼ T 2(µ, 1, k). Thus

F (c, 1, k) = T 2(
√
c, 1, k) = [t(

√
c, k)]2 and F (1, k) = T 2(1, k) = [t(k)]2.

Ex1: Find c in P (T 2(1, k) > c) = α

(i) P (T 2(1, k) > c) = α ⇐⇒ P ([t(k)]2 > c) = α ⇐⇒ P (t(k) >
√
c) = α/2.

So
√
c = tα/2(k). Thus c = [tα/2(k)]

2.
For example, with k = 10 and α = 0.05, c = [t0.025(10)]

2 = 2.2282 = 4.964 by the APP
with link posted on the class web.

(ii) P (T 2(1, k) > c) = α ⇐⇒ P (F (1, k) > c) = α ⇐⇒ c = Fα(1, k).
For example, with k = 10 and α = 0.05, F0.05(1, 10) = 4.965 by the APP with link posted
on the class web.

2. Sampling distribution T 2

(1) Creating a T 2-distribution
Suppose X0 ∼ Np(µ, Σ) and W ∼ Wp×p(k, Σ) are independent. Then

X ′
0

(
W

k

)−1

X0 ∼ T 2(Σ−1/2µ, p, k).

Pf: X0 ∼ Np(µ, Σ) =⇒ Σ−1/2X0 ∼ N(Σ−1/2µ, Ip)
W ∼ Wp×p(k, Σ) =⇒ Σ−1/2WΣ−1/2 ∼ Wp×p(k)
X0 and W are independent =⇒ Σ−1/2X0 and Σ−1/2WΣ−1/2 are independent.

Thus (Σ−1/2X0)
′
(

Σ−1/2WΣ−1/2

k

)−1

(Σ−1/2X0) ∼ T 2(Σ−1/2µ, p, k)

But (Σ−1/2X0)
′
(

Σ−1/2WΣ−1/2

k

)−1

(Σ−1/2X0) = X ′
0

(
W
k

)−1
X0.

Hence X ′
0

(
W
k

)−1
X0 ∼ T 2(Σ−1/2µ, p, k)

3



(2) Suppose X0 ∼ Np(µ, Σ) and W ∼ Wp×p(k, Σ) are independent. Then

(X0 − µ)′
(
W

k

)−1

(X0 − µ) ∼ T 2(p, k).

Pf: X0 − µ ∼ Np(0, Σ) and W ∼ Wp×p(k, Σ) are independent.

By (1) (X0 − µ)′
(
W
k

)−1
(X0 − µ) ∼ T 2(0, p, k) = T 2(p, k).

(3) T 2 as a sampling distribution
From a random sample of size n from a p-dimensional normal population,

T 2 = (X − µ)′
(
S

n

)−1

(X − µ) ∼ T 2(p, n− 1).

Proof. X ∼ N
(
µ, Σ

n

)
and CSSCP ∼ Wp×p(n− 1, Σ) are independent.

So
√
n(X − µ) ∼ N(0, Σ) and CSSCP ∼ Wp×p(n− 1, Σ) are independent.

By (2) [
√
n(X − µ)]′

(
CSSCP

n−1

)−1

[
√
n(X − µ)] ∼ T 2(p, n− 1).

But [
√
n(X − µ)]′

(
CSSCP

n−1

)−1

[
√
n(X − µ)] = (X − µ)′

(
S
n

)−1
(X − µ).

So (X − µ)′
(
S
n

)−1
(X − µ) ∼ T 2(p, n− 1).

3. A theorem

(1) Theorem

T 2(µ, p, k) =
pk

k − p+ 1
F (µ′µ, p, k − p+ 1)

Proof. Skipped

Ex2: T 2(µ, 1, k) = 1k
k−1+1F (µµ, 1, k − 1 + 1) = F (µ2, 1, k)

(2) Corollary

T 2(p, k) =
pk

k − p+ 1
F (p, k − p+ 1)

Comment: F-table can be utilized for T 2(p, k).

Ex3: T 2(1, k) = 1k
k−1+1F (1, k − 1 + 1) = F (1, k).

Ex4: Let X ∈ R3 and S ∈ R3×3 be from a sample of size 10 from N(µ, Σ).

With T 2 = (X − µ)′
(
S
n

)−1
(X − µ), find P (T 2 > 4).

T 2 ∼ T 2(p, n− 1) = p(n−1)
n−1−p+1F (p, n− 1− p+ 1) = p(n−1)

n−p F (p, n− p).

So T 2 ∼ T 2(3, 9) = 3×9
9−3+1F (3, 10− 3) = 27

7 F (3, 7)

Thus P (T 2 > 4) = P
(
27
7 F (3, 7) > 4

)
= P

(
F (3, 7) > 28

27

)
= P (F (3, 7) > 1.037) = 0.4331
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