1. Normal sample

(1) Univariate one-sample problem

Population: $X \sim N\left(\mu, \sigma^{2}\right)$
Sample: X_{1}, \ldots, X_{n}
Statistics and sampling distributions:
Sample mean $\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$ and $\frac{\operatorname{CSS}}{\sigma^{2}}=\frac{\sum_{i}\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)$ are independent.
Point estimators: \bar{X} is MLE of μ which is an UE. $s^{2}=\frac{\mathrm{CSS}}{n-1}$ is an UE for σ^{2}. $\frac{\mathrm{CSS}}{n}$ is MLE for σ^{2}.
CIs: $\bar{X} \pm t_{\alpha / 2}(n-1) \frac{s}{\sqrt{n}}$ is a $1-\alpha$ CI for $\mu,\left(\frac{\mathrm{CSS}}{\chi_{\alpha / 2}^{2}(n-1)}, \frac{\mathrm{CSS}}{\chi_{1-\alpha / 2}^{2}(n-1)}\right)$ is a $1-\alpha$ CI for σ^{2}.
Testing

$$
\begin{aligned}
& H_{0}: \mu=\mu_{0} \text { vs } H_{a}: \mu \neq \mu_{0} \\
& \text { Test statistic: } t=\frac{\bar{X}-\mu_{0}}{s / \sqrt{n}} \\
& p \text {-value: } 2 P\left(t(n-1)>\left|t_{o b}\right|\right)
\end{aligned}
$$

(2) Sample from multivariate normal population
X_{1}, \ldots, X_{n} is a random sample from a p-dimensional $N(\mu, \Sigma)$. This sample is represented by the data matrix $X=\left(X_{1}, \ldots, X_{n}\right) \in R^{p \times n}$. The distribution of the sample, at this time, can only be given to vectorized X.

$$
\operatorname{vec}(X)=\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{n}
\end{array}\right) \sim N\left(\left(\begin{array}{c}
\mu \\
\vdots \\
\mu
\end{array}\right),\left(\begin{array}{ccc}
\Sigma & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \Sigma
\end{array}\right)\right)=N\left(\operatorname{vec}\left(\mu 1_{n}^{\prime}\right), I_{n} \otimes \Sigma\right)
$$

Denote above by $X \sim N_{p \times n}\left(\mu 1_{n}^{\prime}, \Sigma, I_{n}\right)$. Generally,

$$
Y \sim N(M, \Sigma, \Psi) \stackrel{\text { def }}{\Longleftrightarrow} \operatorname{vec}(Y) \sim N(\operatorname{vec}(M), \Psi \otimes \Sigma)
$$

2. Properties of $Y \sim N_{p \times n}(M, \Sigma, \Psi)$
(1) Transformation properties

If $Y \sim N_{p \times n}(M, \Sigma, \Psi)$, then
(i) $Y^{\prime} \sim N_{n \times p}\left(M^{\prime}, \Psi, \Sigma\right)$
(ii) With $A \in C^{q \times p}, B \in R^{n \times m}$ and $C \in R^{q \times m}, A Y B+C \sim N_{q \times m}\left(A M B+C, A \Sigma A^{\prime}, B^{\prime} \Psi B\right)$.
(2) Independence properties

Suppose $Y \sim N_{p \times n}(M, \Sigma, \Psi)$.
(i) Independence of $A_{1} Y B_{1}$ and $A_{2} Y B_{2}$
$A_{1} Y B_{1}$ and $A_{2} Y B_{2}$ are independent $\Longleftrightarrow A_{1} \Sigma A_{2}^{\prime}=0$ or $B_{1}^{\prime} \Psi B_{2}=0$.
Proof. $\quad A_{1} Y B_{1}$ and $A_{2} Y B_{2}$ are independent

$$
\begin{aligned}
& \Longleftrightarrow \operatorname{vec}\left(A_{1} Y B_{1}\right) \text { and } \operatorname{vec}\left(A_{2} Y B_{2}\right) \text { are independent } \\
& \Longleftrightarrow\left(B_{1}^{\prime} \otimes A_{1}\right) \operatorname{vec}(Y) \text { and }\left(B_{2}^{\prime} \otimes A_{2}\right) \operatorname{vec}(Y) \text { are independent } \\
& \Longleftrightarrow 0=\left(B_{1}^{\prime} \otimes A_{1}\right)(\Psi \otimes \Sigma)\left(B_{2}^{\prime} \otimes A_{2}\right)^{\prime}=\left(B_{1}^{\prime} \Psi B_{2}\right) \otimes\left(A_{1} \Sigma A_{2}^{\prime}\right) \\
& \Longleftrightarrow A_{1} \Sigma A_{2}^{\prime}=0 \text { or } B_{1}^{\prime} \Psi B_{2}=0 .
\end{aligned}
$$

Comments: By (i) one can find conditions for the independence involving $A Y B, Y C Y^{\prime}$ and $Y^{\prime} D Y$ since with the compact forms of EVDs for $C=P \Lambda P^{\prime}$ and $D=Q \Gamma Q^{\prime}$, $Y C Y^{\prime}=(Y P) \Lambda(Y P)^{\prime}$ and $Y^{\prime} D Y=\left(Q^{\prime} Y\right)^{\prime} \Gamma\left(Q^{\prime} Y\right)$ are functions $Y P$ and $Q^{\prime} Y$. But the independence involving $A Y B, Y P$ and $Q^{\prime} Y$ are given in (i).
(ii) Independence of $Y A$ and $Y B Y^{\prime}$
$B^{\prime}=B \in R^{n \times n}$. If $A^{\prime} \Psi B=0$, then $Y A$ and $Y B Y^{\prime}$ are independent.
Proof. By the compact form of EVD, $B=P \Lambda_{r} P^{\prime}$ where $P \in R^{n \times r}$ is of full column rank. $0=A^{\prime} \Psi B=A^{\prime} \Psi P \Lambda_{r} P^{\prime} \quad \Longrightarrow \quad 0=A^{\prime} \Psi P \Longrightarrow Y A$ and $Y P$ are independent $\Longrightarrow \quad Y A$ and $(Y P) \Lambda_{r}(Y P)^{\prime}=Y B Y^{\prime}$ are independent
3. Distributions of \bar{X} and CSSCP
(1) $\bar{X} \sim N\left(\mu, \frac{1}{n} \Sigma\right)$ is independent to CSSCP

Proof. Note that $X \sim N_{p \times n}\left(\mu 1_{n}^{\prime}, \Sigma, I_{n}\right)$. So

$$
\bar{X}=X \frac{1_{n}}{n} \sim N_{p \times 1}\left(\mu 1_{n}^{\prime} \frac{1_{n}}{n}, \Sigma, \frac{1_{n}^{\prime}}{n} I_{n} \frac{1_{n}}{n}\right)=N_{p \times 1}\left(\mu, \Sigma, \frac{1}{n}\right)=N\left(\mu, \frac{1}{n} \Sigma\right)
$$

But CSSCP $=X\left(I-1_{n} 1_{n}^{+}\right) X^{\prime}$ and $\frac{1_{n}^{\prime}}{n} I_{n}\left(I_{n}-1_{n} 1_{n}^{+}\right)=0$. So \bar{X} and CSSCP are independent.
Comment: For the distribution of CSSCP we define Wishart distribution.
(2) Definition of Wishart distributions
$X \sim N_{p \times n}\left(M, \Sigma, I_{n}\right), A^{\prime}=A=A^{2} \in R^{n \times n}$ with $\operatorname{rank}(A)=r$. Then the distribution of $X A X^{\prime}$ is called a Wishart distribution with non-centrality $M A M^{\prime}$, degrees of freedom r and a parameter matrix Σ, denoted by

$$
X A X^{\prime} \sim W_{p \times p}\left(M A M^{\prime}, r, \Sigma\right)
$$

$W_{p \times p}(0, n, \Sigma)$ is called central Wishart distribution denoted by $W_{p \times p}(n, \Sigma)$.
$W_{p \times p}\left(0, n, I_{p}\right)$ is called standardized Wishart distribution denoted by $W_{p \times p}(n)$.

$$
X A X^{\prime} \sim W_{p \times p}\left(r, M A M^{\prime}, \Sigma\right)
$$

Ex1: $E\left[W_{p \times p}(D, n, \Sigma)\right]=D+n \Sigma$. $E\left[W_{p \times}(n, \Sigma)=n \Sigma, E\left[W_{p \times p}(n)\right]=n I_{p}\right.$.
Ex2: $X \sim N_{p \times n}\left(M, \Sigma, I_{n}\right) \Longrightarrow X X^{\prime} \sim W_{p \times p}\left(M M^{\prime}, n, \Sigma\right)$.
Ex3: $\mathrm{CSSCP}=X\left(I-1_{n} 1_{n}^{+}\right) X^{\prime}$ where $\left(I-11^{+}\right)^{2}=\left(I-11^{+}\right)^{\prime}=I-11^{+}$with rank $n-1$ and $\left(\mu 1_{n}^{\prime}\right)\left(I-11^{+}\right)\left(\mu 1^{\prime}\right)^{\prime}=0$. Thus CSSCP $\sim W_{p \times p}(0, n-1, \Sigma)=W_{p \times p}(n-1, \Sigma)$ with expectation $(n-1) \Sigma$.
Comment: $\bar{X} \sim N\left(\mu, \frac{\Sigma}{n}\right)$ and CSSCP $\sim W_{p \times p}(n-1, \Sigma)$ are independent.
Ex4: $X_{i} \sim N\left(\mu_{i}, 1^{2}\right), i=1, \ldots, n$, are independent $\Longrightarrow \sum_{i} X_{i}^{2} \sim \chi^{2}\left(\sum_{i} \mu_{i}^{2}, n\right)$.
But $X=\left(X_{1}, . ., X_{n}\right) \sim N_{1 \times n}\left(\left(\mu_{1}, . ., \mu_{n}\right), 1, I_{n}\right) \Longrightarrow \sum_{i} X_{i}^{2}=X X^{\prime} \sim W_{1 \times 1}\left(\sum_{i} \mu_{i}^{2}, n, 1\right)$. So $\chi^{2}(\alpha, k)=W_{1 \times 1}(\alpha, k, 1)$.
(3) A transformation
$W \sim W_{p \times p}(D, n, \Sigma)$ and $A \in R^{q \times p} \Longrightarrow A W A^{\prime} \sim W_{q \times q}\left(A D A^{\prime}, n, A \Sigma A^{\prime}\right)$.
Pf: Let $X \sim N_{p \times n}\left(D^{1 / 2}, \Sigma, I_{n}\right)$. Then $W \xlongequal{L} X X^{\prime} \sim W_{p \times p}(D, n, \Sigma)$.
With $A X \sim N_{q \times n}\left(A D^{1 / 2}, A \Sigma A^{\prime}, I_{n}\right), A W A^{\prime} \xlongequal{L} A X X^{\prime} A^{\prime} \sim W_{q \times q}\left(A D A^{\prime}, n, A \Sigma A^{\prime}\right)$.
Ex5: $W_{1 \times 1}(\alpha, k, c)=\sqrt{c} W_{1 \times 1}\left(\frac{\alpha}{c}, k, 1\right) \sqrt{c}=c \cdot \chi^{2}\left(\frac{\alpha}{c}, k\right)$.
Ex6: $\Sigma^{-1 / 2}(\operatorname{CSSCP}) \Sigma^{-1 / 2} \sim \Sigma^{-1 / 2}\left[W_{p \times p}(0, n-1, \Sigma)\right] \Sigma^{-1 / 2}=W_{p \times p}(n-1)$.

L09 Hotelling's T^{2}-distribution

1. Hotelling's T^{2}-distributions
(1) Definitions

Suppose $X_{0} \sim N\left(\mu, I_{p}\right)=N_{p \times 1}\left(\mu, I_{p}, 1\right)$ and $W \sim W_{p \times p}(k)$ are independent. Then the distribution of $T^{2}=X_{0}^{\prime}\left(\frac{W}{k}\right)^{-1} X_{0}$ is called a Hotelling's T^{2}-distribution with non-centrality parameter μ, numerator degrees of freedom p and Denominator degrees of freedom k denoted by

$$
T^{2}=X_{0}^{\prime}\left(\frac{W}{k}\right)^{-1} X_{0} \sim T^{2}(\mu, p, k)
$$

$T^{2}(0, p, k)$ is called a central T^{2}-distribution denoted by $T^{2}(p, k)$.
(2) From $[t(\mu, k)]^{2}$ to T^{2}
$X_{0} \sim N\left(\mu, 1^{2}\right)$ and $W \sim \chi^{2}(k)$ are independent $\Longrightarrow t=\frac{X_{0}}{\sqrt{W / k}} \sim t(\mu, k)$.
So $t^{2}=\frac{X_{0}^{2}}{W / k} \sim[t(\mu, k)]^{2}$.
But $t^{2}=\frac{X_{0}^{2}}{W / k}=X_{0}^{\prime}\left(\frac{W}{k}\right)^{-1} X_{0}$ where $X_{0} \sim N\left(\mu, 1^{2}\right)$ and $W \sim \chi^{2}(k)=W_{1 \times 1}(k)$ are independent. Thus $t^{2} \sim T^{2}(\mu, 1, k)$. Therefore

$$
[t(\mu, k)]^{2}=T^{2}(\mu, 1, k) \text { and }[t(k)]^{2}=T^{2}(0,1, k)=T^{2}(1, k)
$$

(3) From $F(\alpha, 1, k)$ and T^{2}

Note that in (2), $X_{0} \sim N\left(\mu, 1^{2}\right) \Longrightarrow X_{0}^{2} \sim \chi^{2}\left(\mu^{2}, 1\right)$.
With independent $X_{0}^{2} \sim \chi^{2}\left(\mu^{2}, 1\right)$ and $W \sim \chi^{2}(k), t^{2}=\frac{X_{0}^{2}}{W / k} \sim F\left(\mu^{2}, 1, k\right)$.
But $t^{2}=\frac{X_{0}^{2}}{W / k} \sim T^{2}(\mu, 1, k)$. Thus

$$
F(c, 1, k)=T^{2}(\sqrt{c}, 1, k)=[t(\sqrt{c}, k)]^{2} \text { and } F(1, k)=T^{2}(1, k)=[t(k)]^{2}
$$

Ex1: Find c in $P\left(T^{2}(1, k)>c\right)=\alpha$
(i) $P\left(T^{2}(1, k)>c\right)=\alpha \Longleftrightarrow P\left([t(k)]^{2}>c\right)=\alpha \Longleftrightarrow P(t(k)>\sqrt{c})=\alpha / 2$.

So $\sqrt{c}=t_{\alpha / 2}(k)$. Thus $c=\left[t_{\alpha / 2}(k)\right]^{2}$.
For example, with $k=10$ and $\alpha=0.05, c=\left[t_{0.025}(10)\right]^{2}=2.228^{2}=4.964$ by the APP with link posted on the class web.
(ii) $P\left(T^{2}(1, k)>c\right)=\alpha \Longleftrightarrow P(F(1, k)>c)=\alpha \Longleftrightarrow c=F_{\alpha}(1, k)$.

For example, with $k=10$ and $\alpha=0.05, F_{0.05}(1,10)=4.965$ by the APP with link posted on the class web.
2. Sampling distribution T^{2}
(1) Creating a T^{2}-distribution

Suppose $X_{0} \sim N_{p}(\mu, \Sigma)$ and $W \sim W_{p \times p}(k, \Sigma)$ are independent. Then

$$
X_{0}^{\prime}\left(\frac{W}{k}\right)^{-1} X_{0} \sim T^{2}\left(\Sigma^{-1 / 2} \mu, p, k\right)
$$

Pf: $X_{0} \sim N_{p}(\mu, \Sigma) \Longrightarrow \Sigma^{-1 / 2} X_{0} \sim N\left(\Sigma^{-1 / 2} \mu, I_{p}\right)$
$W \sim W_{p \times p}(k, \Sigma) \Longrightarrow \Sigma^{-1 / 2} W \Sigma^{-1 / 2} \sim W_{p \times p}(k)$
X_{0} and W are independent $\Longrightarrow \Sigma^{-1 / 2} X_{0}$ and $\Sigma^{-1 / 2} W \Sigma^{-1 / 2}$ are independent.
Thus $\left(\Sigma^{-1 / 2} X_{0}\right)^{\prime}\left(\frac{\Sigma^{-1 / 2} W \Sigma^{-1 / 2}}{k}\right)^{-1}\left(\Sigma^{-1 / 2} X_{0}\right) \sim T^{2}\left(\Sigma^{-1 / 2} \mu, p, k\right)$
But $\left(\Sigma^{-1 / 2} X_{0}\right)^{\prime}\left(\frac{\Sigma^{-1 / 2} W \Sigma^{-1 / 2}}{k}\right)^{-1}\left(\Sigma^{-1 / 2} X_{0}\right)=X_{0}^{\prime}\left(\frac{W}{k}\right)^{-1} X_{0}$.
Hence $X_{0}^{\prime}\left(\frac{W}{k}\right)^{-1} X_{0} \sim T^{2}\left(\Sigma^{-1 / 2} \mu, p, k\right)$
(2) Suppose $X_{0} \sim N_{p}(\mu, \Sigma)$ and $W \sim W_{p \times p}(k, \Sigma)$ are independent. Then

$$
\left(X_{0}-\mu\right)^{\prime}\left(\frac{W}{k}\right)^{-1}\left(X_{0}-\mu\right) \sim T^{2}(p, k)
$$

Pf: $X_{0}-\mu \sim N_{p}(0, \Sigma)$ and $W \sim W_{p \times p}(k, \Sigma)$ are independent.
By (1) $\left(X_{0}-\mu\right)^{\prime}\left(\frac{W}{k}\right)^{-1}\left(X_{0}-\mu\right) \sim T^{2}(0, p, k)=T^{2}(p, k)$.
(3) T^{2} as a sampling distribution

From a random sample of size n from a p-dimensional normal population,

$$
T^{2}=(\bar{X}-\mu)^{\prime}\left(\frac{S}{n}\right)^{-1}(\bar{X}-\mu) \sim T^{2}(p, n-1)
$$

Proof. $\bar{X} \sim N\left(\mu, \frac{\Sigma}{n}\right)$ and CSSCP $\sim W_{p \times p}(n-1, \Sigma)$ are independent.
So $\sqrt{n}(\bar{X}-\mu) \sim N(0, \Sigma)$ and CSSCP $\sim W_{p \times p}(n-1, \Sigma)$ are independent.
By $(2)[\sqrt{n}(\bar{X}-\mu)]^{\prime}\left(\frac{\mathrm{CSSCP}}{n-1}\right)^{-1}[\sqrt{n}(\bar{X}-\mu)] \sim T^{2}(p, n-1)$.
But $[\sqrt{n}(\bar{X}-\mu)]^{\prime}\left(\frac{\mathrm{CSSCP}}{n-1}\right)^{-1}[\sqrt{n}(\bar{X}-\mu)]=(\bar{X}-\mu)^{\prime}\left(\frac{S}{n}\right)^{-1}(\bar{X}-\mu)$.
So $(\bar{X}-\mu)^{\prime}\left(\frac{S}{n}\right)^{-1}(\bar{X}-\mu) \sim T^{2}(p, n-1)$.
3. A theorem
(1) Theorem

$$
T^{2}(\mu, p, k)=\frac{p k}{k-p+1} F\left(\mu^{\prime} \mu, p, k-p+1\right)
$$

Proof. Skipped
Ex2: $T^{2}(\mu, 1, k)=\frac{1 k}{k-1+1} F(\mu \mu, 1, k-1+1)=F\left(\mu^{2}, 1, k\right)$
(2) Corollary

$$
T^{2}(p, k)=\frac{p k}{k-p+1} F(p, k-p+1)
$$

Comment: F-table can be utilized for $T^{2}(p, k)$.
Ex3: $T^{2}(1, k)=\frac{1 k}{k-1+1} F(1, k-1+1)=F(1, k)$.
Ex4: Let $\bar{X} \in R^{3}$ and $S \in R^{3 \times 3}$ be from a sample of size 10 from $N(\mu, \Sigma)$.
With $T^{2}=(\bar{X}-\mu)^{\prime}\left(\frac{S}{n}\right)^{-1}(\bar{X}-\mu)$, find $P\left(T^{2}>4\right)$.
$T^{2} \sim T^{2}(p, n-1)=\frac{p(n-1)}{n-1-p+1} F(p, n-1-p+1)=\frac{p(n-1)}{n-p} F(p, n-p)$.
So $T^{2} \sim T^{2}(3,9)=\frac{3 \times 9}{9-3+1} F(3,10-3)=\frac{27}{7} F(3,7)$
Thus $P\left(T^{2}>4\right)=P\left(\frac{27}{7} F(3,7)>4\right)=P\left(F(3,7)>\frac{28}{27}\right)=P(F(3,7)>1.037)=0.4331$

