L08 Wishart distributions

- 1. Normal sample
 - (1) Univariate one-sample problem Population: $X \sim N(\mu, \sigma^2)$ Sample: $X_1, ..., X_n$ Statistics and sampling distributions: Sample mean $\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ and $\frac{\text{CSS}}{\sigma^2} = \frac{\sum_i (X_i - \overline{X})^2}{\sigma^2} \sim \chi^2(n-1)$ are independent. Point estimators: \overline{X} is MLE of μ which is an UE. $s^2 = \frac{\text{CSS}}{n-1}$ is an UE for σ^2 . $\frac{\text{CSS}}{n}$ is MLE for σ^2 . CIs: $\overline{X} \pm t_{\alpha/2}(n-1)\frac{s}{\sqrt{n}}$ is a $1 - \alpha$ CI for μ , $\left(\frac{\text{CSS}}{\chi^2_{\alpha/2}(n-1)}, \frac{\text{CSS}}{\chi^2_{1-\alpha/2}(n-1)}\right)$ is a $1 - \alpha$ CI for σ^2 . Testing

$$H_0: \mu = \mu_0 \text{ vs } H_a: \mu \neq \mu_0$$

Test statistic: $t = \frac{\overline{X} - \mu_0}{s/\sqrt{n}}$
p-value: $2 P(t(n-1) > |t_{ob}|)$

(2) Sample from multivariate normal population

 $X_1, ..., X_n$ is a random sample from a *p*-dimensional $N(\mu, \Sigma)$. This sample is represented by the data matrix $X = (X_1, ..., X_n) \in \mathbb{R}^{p \times n}$. The distribution of the sample, at this time, can only be given to vectorized X.

$$\operatorname{vec}(X) = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} \sim N\left(\begin{pmatrix} \mu \\ \vdots \\ \mu \end{pmatrix}, \begin{pmatrix} \Sigma & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \Sigma \end{pmatrix}\right) = N\left(\operatorname{vec}(\mu 1'_n), I_n \otimes \Sigma\right).$$

Denote above by $X \sim N_{p \times n}(\mu 1'_n, \Sigma, I_n)$. Generally,

$$Y \sim N(M, \Sigma, \Psi) \stackrel{def}{\Longrightarrow} \operatorname{vec}(Y) \sim N(\operatorname{vec}(M), \Psi \otimes \Sigma)$$

- 2. Properties of $Y \sim N_{p \times n}(M, \Sigma, \Psi)$
 - (1) Transformation properties
 - If $Y \sim N_{p \times n}(M, \Sigma, \Psi)$, then
 - (i) $Y' \sim N_{n \times p}(M', \Psi, \Sigma)$
 - (ii) With $A \in C^{q \times p}$, $B \in \mathbb{R}^{n \times m}$ and $C \in \mathbb{R}^{q \times m}$, $AYB + C \sim N_{q \times m}(AMB + C, A\Sigma A', B'\Psi B)$.
 - (2) Independence properties Suppose $Y \sim N_{p \times n}(M, \Sigma, \Psi)$.
 - (i) Independence of A_1YB_1 and A_2YB_2 A_1YB_1 and A_2YB_2 are independent $\iff A_1\Sigma A'_2 = 0$ or $B'_1\Psi B_2 = 0$. **Proof.** A_1YB_1 and A_2YB_2 are independent $\iff \operatorname{vec}(A_1YB_1)$ and $\operatorname{vec}(A_2YB_2)$ are independent $\iff (B'_1 \otimes A_1)\operatorname{vec}(Y)$ and $(B'_2 \otimes A_2)\operatorname{vec}(Y)$ are independent $\iff 0 = (B'_1 \otimes A_1)(\Psi \otimes \Sigma)(B'_2 \otimes A_2)' = (B'_1\Psi B_2) \otimes (A_1\Sigma A'_2)$
 - $\iff A_1 \Sigma A'_2 = 0 \text{ or } B'_1 \Psi B_2 = 0.$
 - **Comments:** By (i) one can find conditions for the independence involving AYB, YCY'and Y'DY since with the compact forms of EVDs for $C = P\Lambda P'$ and $D = Q\Gamma Q'$, $YCY' = (YP)\Lambda(YP)'$ and $Y'DY = (Q'Y)'\Gamma(Q'Y)$ are functions YP and Q'Y. But the independence involving AYB, YP and Q'Y are given in (i).

(ii) Independence of YA and YBY'

 $B' = B \in \mathbb{R}^{n \times n}$. If $A'\Psi B = 0$, then YA and YBY' are independent. **Proof.** By the compact form of EVD, $B = P\Lambda_r P'$ where $P \in \mathbb{R}^{n \times r}$ is of full column rank. $0 = A'\Psi B = A'\Psi P\Lambda_r P' \implies 0 = A'\Psi P \implies YA$ and YP are independent

$$\implies$$
 YA and $(YP)\Lambda_r(YP)' = YBY'$ are independent

- 3. Distributions of \overline{X} and CSSCP
 - (1) $\overline{X} \sim N\left(\mu, \frac{1}{n}\Sigma\right)$ is independent to CSSCP

Proof. Note that $X \sim N_{p \times n}(\mu 1'_n, \Sigma, I_n)$. So

$$\overline{X} = X \frac{1_n}{n} \sim N_{p \times 1} \left(\mu 1_n' \frac{1_n}{n}, \Sigma, \frac{1_n'}{n} I_n \frac{1_n}{n} \right) = N_{p \times 1} \left(\mu, \Sigma, \frac{1}{n} \right) = N \left(\mu, \frac{1}{n} \Sigma \right).$$

But CSSCP = $X(I - 1_n 1_n^+)X'$ and $\frac{1'_n}{n}I_n(I_n - 1_n 1_n^+) = 0$. So \overline{X} and CSSCP are independent. Comment: For the distribution of CSSCP we define Wishart distribution.

(2) Definition of Wishart distributions

 $X \sim N_{p \times n}(M, \Sigma, I_n), A' = A = A^2 \in \mathbb{R}^{n \times n}$ with rank(A) = r. Then the distribution of XAX' is called a Wishart distribution with non-centrality MAM', degrees of freedom r and a parameter matrix Σ , denoted by

$$XAX' \sim W_{p \times p}(MAM', r, \Sigma).$$

 $W_{p \times p}(0, n, \Sigma)$ is called central Wishart distribution denoted by $W_{p \times p}(n, \Sigma)$. $W_{p \times p}(0, n, I_p)$ is called standardized Wishart distribution denoted by $W_{p \times p}(n)$.

$$XAX' \sim W_{p \times p}(r, MAM', \Sigma)$$

Ex1: $E[W_{p \times p}(D, n, \Sigma)] = D + n\Sigma$. $E[W_{p \times}(n, \Sigma) = n\Sigma$, $E[W_{p \times p}(n)] = nI_p$.

- **Ex2:** $X \sim N_{p \times n}(M, \Sigma, I_n) \Longrightarrow XX' \sim W_{p \times p}(MM', n, \Sigma).$
- **Ex3:** CSSCP= $X(I 1_n 1_n^+)X'$ where $(I 11^+)^2 = (I 11^+)' = I 11^+$ with rank n 1 and $(\mu 1'_n)(I 11^+)(\mu 1')' = 0$. Thus CSSCP~ $W_{p \times p}(0, n 1, \Sigma) = W_{p \times p}(n 1, \Sigma)$ with expectation $(n 1)\Sigma$.

Comment: $\overline{X} \sim N\left(\mu, \frac{\Sigma}{n}\right)$ and CSSCP~ $W_{p \times p}(n-1, \Sigma)$ are independent.

- **Ex4:** $X_i \sim N(\mu_i, 1^2), i = 1, ..., n$, are independent $\Longrightarrow \sum_i X_i^2 \sim \chi^2(\sum_i \mu_i^2, n)$. But $X = (X_1, ..., X_n) \sim N_{1 \times n}((\mu_1, ..., \mu_n), 1, I_n) \Longrightarrow \sum_i X_i^2 = XX' \sim W_{1 \times 1}(\sum_i \mu_i^2, n, 1)$. So $\chi^2(\alpha, k) = W_{1 \times 1}(\alpha, k, 1)$.
- (3) A transformation
 - $W \sim W_{p \times p}(D, n, \Sigma)$ and $A \in \mathbb{R}^{q \times p} \Longrightarrow AWA' \sim W_{q \times q}(ADA', n, A\Sigma A').$

Pf: Let $X \sim N_{p \times n}(D^{1/2}, \Sigma, I_n)$. Then $W \stackrel{L}{=} XX' \sim W_{p \times p}(D, n, \Sigma)$. With $AX \sim N_{q \times n}(AD^{1/2}, A\Sigma A', I_n)$, $AWA' \stackrel{L}{=} AXX'A' \sim W_{q \times q}(ADA', n, A\Sigma A')$. **Ex5:** $W_{1 \times 1}(\alpha, k, c) = \sqrt{c} W_{1 \times 1}\left(\frac{\alpha}{c}, k, 1\right) \sqrt{c} = c \cdot \chi^2\left(\frac{\alpha}{c}, k\right)$. **Ex6:** $\Sigma^{-1/2}$ (CSSCP) $\Sigma^{-1/2} \sim \Sigma^{-1/2}$ [$W_{p \times p}(0, n - 1, \Sigma)$] $\Sigma^{-1/2} = W_{p \times p}(n - 1)$.

L09 Hotelling's T^2 -distribution

- 1. Hotelling's T^2 -distributions
 - (1) Definitions

Suppose $X_0 \sim N(\mu, I_p) = N_{p \times 1}(\mu, I_p, 1)$ and $W \sim W_{p \times p}(k)$ are independent. Then the distribution of $T^2 = X'_0 \left(\frac{W}{k}\right)^{-1} X_0$ is called a Hotelling's T^2 -distribution with non-centrality parameter μ , numerator degrees of freedom p and Denominator degrees of freedom k denoted by

$$T^2 = X'_0 \left(\frac{W}{k}\right)^{-1} X_0 \sim T^2(\mu, p, k)$$

 $T^2(0, p, k)$ is called a central T^2 -distribution denoted by $T^2(p, k)$.

(2) From $[t(\mu, k)]^2$ to T^2 $X_0 \sim N(\mu, 1^2)$ and $W \sim \chi^2(k)$ are independent $\Longrightarrow t = \frac{X_0}{\sqrt{W/k}} \sim t(\mu, k)$. So $t^2 = \frac{X_0^2}{W/k} \sim [t(\mu, k)]^2$. But $t^2 = \frac{X_0^2}{W/k} = X_0' \left(\frac{W}{k}\right)^{-1} X_0$ where $X_0 \sim N(\mu, 1^2)$ and $W \sim \chi^2(k) = W_{1 \times 1}(k)$ are independent. Thus $t^2 \sim T^2(\mu, 1, k)$. Therefore

$$[t(\mu, k)]^2 = T^2(\mu, 1, k)$$
 and $[t(k)]^2 = T^2(0, 1, k) = T^2(1, k).$

(3) From $F(\alpha, 1, k)$ and T^2 Note that in (2), $X_0 \sim N(\mu, 1^2) \Longrightarrow X_0^2 \sim \chi^2(\mu^2, 1)$. With independent $X_0^2 \sim \chi^2(\mu^2, 1)$ and $W \sim \chi^2(k), t^2 = \frac{X_0^2}{W/k} \sim F(\mu^2, 1, k)$. But $t^2 = \frac{X_0^2}{W/k} \sim T^2(\mu, 1, k)$. Thus

$$F(c, 1, k) = T^2(\sqrt{c}, 1, k) = [t(\sqrt{c}, k)]^2$$
 and $F(1, k) = T^2(1, k) = [t(k)]^2$.

Ex1: Find c in $P(T^2(1, k) > c) = \alpha$

- (i) $P(T^2(1, k) > c) = \alpha \iff P([t(k)]^2 > c) = \alpha \iff P(t(k) > \sqrt{c}) = \alpha/2.$ So $\sqrt{c} = t_{\alpha/2}(k)$. Thus $c = [t_{\alpha/2}(k)]^2$. For example, with k = 10 and $\alpha = 0.05$, $c = [t_{0.025}(10)]^2 = 2.228^2 = 4.964$ by the APP with link posted on the class web.
- (ii) $P(T^2(1, k) > c) = \alpha \iff P(F(1, k) > c) = \alpha \iff c = F_{\alpha}(1, k)$. For example, with k = 10 and $\alpha = 0.05$, $F_{0.05}(1, 10) = 4.965$ by the APP with link posted on the class web.
- 2. Sampling distribution T^2
 - (1) Creating a T^2 -distribution Suppose $X_0 \sim N_p(\mu, \Sigma)$ and $W \sim W_{p \times p}(k, \Sigma)$ are independent. Then

$$X'_0 \left(\frac{W}{k}\right)^{-1} X_0 \sim T^2(\Sigma^{-1/2}\mu, p, k)$$

$$\begin{aligned} \mathbf{Pf:} \ & X_0 \sim N_p(\mu, \Sigma) \Longrightarrow \Sigma^{-1/2} X_0 \sim N(\Sigma^{-1/2}\mu, I_p) \\ & W \sim W_{p \times p}(k, \Sigma) \Longrightarrow \Sigma^{-1/2} W \Sigma^{-1/2} \sim W_{p \times p}(k) \\ & X_0 \text{ and } W \text{ are independent} \Longrightarrow \Sigma^{-1/2} X_0 \text{ and } \Sigma^{-1/2} W \Sigma^{-1/2} \text{ are independent.} \\ & \text{Thus } (\Sigma^{-1/2} X_0)' \left(\frac{\Sigma^{-1/2} W \Sigma^{-1/2}}{k} \right)^{-1} (\Sigma^{-1/2} X_0) \sim T^2 (\Sigma^{-1/2} \mu, p, k) \\ & \text{But } (\Sigma^{-1/2} X_0)' \left(\frac{\Sigma^{-1/2} W \Sigma^{-1/2}}{k} \right)^{-1} (\Sigma^{-1/2} X_0) = X_0' \left(\frac{W}{k} \right)^{-1} X_0. \\ & \text{Hence } X_0' \left(\frac{W}{k} \right)^{-1} X_0 \sim T^2 (\Sigma^{-1/2} \mu, p, k) \end{aligned}$$

(2) Suppose $X_0 \sim N_p(\mu, \Sigma)$ and $W \sim W_{p \times p}(k, \Sigma)$ are independent. Then

$$(X_0 - \mu)' \left(\frac{W}{k}\right)^{-1} (X_0 - \mu) \sim T^2(p, k).$$

Pf: $X_0 - \mu \sim N_p(0, \Sigma)$ and $W \sim W_{p \times p}(k, \Sigma)$ are independent. By (1) $(X_0 - \mu)' \left(\frac{W}{k}\right)^{-1} (X_0 - \mu) \sim T^2(0, p, k) = T^2(p, k).$

(3) T^2 as a sampling distribution From a random sample of size n from a p-dimensional normal population,

$$T^{2} = (\overline{X} - \mu)' \left(\frac{S}{n}\right)^{-1} (\overline{X} - \mu) \sim T^{2}(p, n-1).$$

Proof. $\overline{X} \sim N\left(\mu, \frac{\Sigma}{n}\right)$ and CSSCP $\sim W_{p \times p}(n-1, \Sigma)$ are independent. So $\sqrt{n}(\overline{X}-\mu) \sim N(0, \Sigma)$ and CSSCP $\sim W_{p \times p}(n-1, \Sigma)$ are independent. By (2) $\left[\sqrt{n}(\overline{X}-\mu)\right]' \left(\frac{\text{CSSCP}}{n-1}\right)^{-1} \left[\sqrt{n}(\overline{X}-\mu)\right] \sim T^2(p, n-1).$ But $\left[\sqrt{n}(\overline{X}-\mu)\right]' \left(\frac{\text{CSSCP}}{n-1}\right)^{-1} \left[\sqrt{n}(\overline{X}-\mu)\right] = (\overline{X}-\mu)' \left(\frac{S}{n}\right)^{-1} (\overline{X}-\mu).$ So $(\overline{X}-\mu)' \left(\frac{S}{n}\right)^{-1} (\overline{X}-\mu) \sim T^2(p, n-1).$

3. A theorem

(1) Theorem

$$T^{2}(\mu, p, k) = \frac{pk}{k - p + 1} F(\mu'\mu, p, k - p + 1)$$

Proof. Skipped **Ex2:** $T^2(\mu, 1, k) = \frac{1k}{k-1+1}F(\mu\mu, 1, k-1+1) = F(\mu^2, 1, k)$

(2) Corollary

$$T^{2}(p, k) = \frac{pk}{k - p + 1}F(p, k - p + 1)$$

Comment: F-table can be utilized for $T^2(p, k)$. **Ex3:** $T^2(1, k) = \frac{1k}{k-1+1}F(1, k-1+1) = F(1, k)$. **Ex4:** Let $\overline{X} \in \mathbb{R}^3$ and $S \in \mathbb{R}^{3\times 3}$ be from a sample of size 10 from $N(\mu, \Sigma)$. With $T^2 = (\overline{X} - \mu)' \left(\frac{S}{n}\right)^{-1} (\overline{X} - \mu)$, find $P(T^2 > 4)$.

$$\begin{split} T^2 &\sim T^2(p, n-1) = \frac{p(n-1)}{n-1-p+1} F(p, n-1-p+1) = \frac{p(n-1)}{n-p} F(p, n-p).\\ \text{So } T^2 &\sim T^2(3, 9) = \frac{3\times9}{9-3+1} F(3, 10-3) = \frac{27}{7} F(3, 7)\\ \text{Thus } P(T^2 > 4) = P\left(\frac{27}{7} F(3, 7) > 4\right) = P\left(F(3, 7) > \frac{28}{27}\right) = P(F(3, 7) > 1.037) = 0.4331 \end{split}$$