L07 Observed principal components and their applications

- 1. Parameters related to principal components
 - (1) For random vectors

 $X \in \mathbb{R}^p$; standardized $X, Z \in \mathbb{R}^p$; principal component vector of X, Y_x ; principal component vector of Z, Y_z . has PC vector Y_x and standardized vector Z. Z has PC vector Y_z . With variance-covariance matrix $\Sigma = \text{Cov}(X)$, variance matrix $V = \text{diag}(\Sigma)$, and correlation matrix $\rho = V^{-1/2} \Sigma V^{-1/2}$, let $\Sigma = P_x \Lambda_x P'_x$ and $\rho = P_z \Lambda_z P'_z$ be the EVDs. Then

- $$\begin{split} & X \sim (\mu, \, \Sigma) \\ & Y_x = P'_x X \sim (P'_x \mu, \, P'_x \Sigma P_x) = (P'_x \mu, \, \Lambda_x) \\ & Z = V^{-1/2} (X \mu) \sim (0, \, V^{-1/2} \Sigma V^{-1/2}) = (0, \, \rho) \\ & Y_z = P'_z Z \sim (0, \, P'_z \rho P_z) = (0, \, \Lambda_z) \end{split}$$
- (2) Covariance matrices

With four vectors X, Z, Y_x and Y_z , there are covariance matrices for 6 pairs. Each matrix may have multiple but equivalent expressions. For example

$$\operatorname{Cov}(Y_x, Z) = \operatorname{Cov}(P'_x X, V^{-1/2}(X - \mu)) = P'_x \Sigma V^{-1/2} = \Lambda_x P'_x V^{-1/2} = P'_x V^{1/2} \rho_x$$

(3) Correlation matrices

There are also correlation matrices for 6 pairs of vectors. For example

$$\rho(Y_x, Z) = \Lambda_x^{-1/2} \operatorname{Cov}(Y_x, Z) I = \Lambda_x^{-1/2} \Lambda_x P'_x V^{-1/2} = \Lambda_x^{1/2} P'_x V^{-1/2}.$$
Ex1: In 8.3 p471 $X \sim (\mu, \Sigma)$ with $\Sigma = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix}$. Find $\rho(Y_x, Z)$.

$$\Sigma = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix} = V = P_x \Lambda_x P'_x = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

$$\rho(Y_x, Z) = \Lambda_x^{1/2} P'_x V^{-1/2} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

2. Observed principal components

(1) Population principal components

By entering population covariance matrix Σ into SAS and do the procedures

proc princomp cov;	proc princomp;
var x1 x2 x3;	var x1 x2 x3;
run;	run;

one can get the EVDs for Σ and ρ from which the inference on the PCs of population and standardized population can be made.

(2) Entering data from file into SAS

But in practice Σ is most likely unavailable. In stead, we have sample from the population. For example file sample.txt

1 2 3 4 5 6 7 8 9 10 8 4 3 1	data a; infile "C:\sample.txt"; input y x1 x2 x3 x4;
--	--

(3) Requesting EVDs of S and R

SAS can calculate S and R from sample and do EVDs of S and R to get the estimated PCs for population and standardized population

proc princomp cov;	proc princomp;
var x1 x2 x3 x4;	var x1 x2 x3 x4;
run;	run;

(4) Observed principal components

The PCs, for example $Y_1 = \frac{1}{\sqrt{2}}X_1 - \frac{1}{\sqrt{2}}X_2$, is based on the EVD of S, or simply based on n observations from population. With n observations on X_1 and X_2 , there are n observations on Y_1 . Generally, there are n observations on the principal component vector.

proc princomp cov out=b;	proc print;
var x1 x2 x3 x4;	<pre>var prin1 prin2 prin3 pin4;</pre>
run;	run;

- 3. An example of the usage of principal components
 - (1) Regression

Regression model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$ relates y to two predictors x_1 and x_2 . Suppose the observations on y and six candidate variables are stored in file Example.txt with order y, z1, z2, z3, z4, z5, z6. We may select first two predictors z1 and z2 as x_1 and x_2 . We may also find observations on principal components and use the first two as x_1 and x_2 .

(2) SAS

To implement our plan we execute SAS below.

```
data a;
    infile "D:\Example.txt";
    input y z1 z2 z3 z4 z5;
proc princomp cov out=b;
    var z1 z2 z3 z4 z5;
    run;
proc reg;
    model y=z1 z2;
    run;
proc reg;
    model y=prin1 prin2;
    run;
```

(3) Results

The first model produced the coefficient of determination $R^2 = 0.0993$ which means that about 10% of variation in y are explained by two predictor variable z1 and z2.

The second model produced $R^2 = 0.1424$ which means that about 14.24% of variation in y are explained by two principal components.