
L05 Sample and Statistics

1. Sample and statistics

(1) Sample
Let Xi ∈ Rp, i = 1, ..., n, be a random sample from a population with parameters (µ, Σ).
Then X = (X1, ..., Xn) ∈ Rp×n is a data matrix representing the sample.

(2) Statistics

(i) Sum

∑n
i=1Xi = (X1, ..., Xn)

1
...
1

 = X1n ∈ Rp is the sum of all observations.

(ii) Sample mean

X =
∑

Xi

n = X1n
n = X(1+n )

′ ∈ Rp is the sample mean.

For a matrix M with full column rank, M+ = (M ′M)−1M ′. So 1+n = (1′n1n)
−11′n =

1′n
n .

(iii) SSCP (Sum of Squares and Cross Product) matrix∑n
j=1XjX

′
j = (X1, ..., Xn)(X1, ..., Xn)

′ = XX ′ ∈ Rp×p is the SSCP matrix.

Let X = (xij)p×n and A = XX ′ = (aij)p×p. Then aii =
∑n

j=1 x
2
ij (Sum of squares) and

aij =
∑n

k=1 xikxjk (Sum of Cross-Products).

(iv) CSSCP (Corrected Sum of Squares and Cross Products) matrix∑n
j=1(Xj −X)(Xj −X)′ =

∑n
j=1XjX

′
j − 1

n

(∑
j Xj

)(∑
j Xj

)′

= XX ′ − X1n1
′
nX

′

n = X(In − 1n1
+
n )X

′ ∈ Rp×p.

is CSSCP matrix. CSSCP is SSCP for X −X1′n.

(v) Sample covariance matrix

S = CSSCP
n−1 is the sample variance-covariance matrix or simply sample covariance matrix.

(vi) Sample correlation matrix

Let S = (sij)p×p where sii is also denoted by s2i . Then R =
(

sij
si sj

)
p×p

is called the sample

correlation matrix.

Ex1: R = [diag(S)]−1/2S[diag(S)]−1/2. Let CSSCP = (aij)p×p. Then R =
(

aij√
aii ajj

)
p×p

.

The diagonal elements of R are 1s.

2. SAS for computing statistics

(1) Entering sample

X =

(
4 −1 3
1 3 5

)
data a;

input x1 x2;

datalines;

4 1

-1 3

3 5

;

(2) Requesting statistics

n, X and R n, X and S n, X, R, SSCP, CSSCP S

proc corr;

var x1 x2 x3 x4;

run;

proc corr nocorr COV;

var x1 x2 x3 x4;

run;

proc corr SSCP CSSCP COV;

var x1 x2 x3 x4;

run;
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3. SAS for principal component analysis

(1) Enter Σ into SAS

Σ =

 1 −2 0
−2 5 0
0 0 2


data a (type=’cov’);

_TYPE_=’COV’;

input _NAME_ $ x1 x2 x3;

datalines;

x1 1 -2 0

x2 -2 5 0

x3 0 0 2

;

x1 1 -2 0

x2 . 5 0

x3 . . 2

x1 1 . .

x2 -2 5 .

x3 0 0 2

(2) Eigenvalue decomposition for Σ

proc princomp cov;

var x1 x2 x3;

run;

Total Variables: 3
Total Variances: λ1 + λ2 + λ3
EVs of Covariance Matrix

EVs Difference Proportion Cumulative

λ1 λ1 − λ2
λ1

λ1+λ2+λ3

λ1

λ1+λ2+λ3

λ2 λ2 − λ3
λ2

λ1+λ2+λ3

λ1+λ2

λ1+λ2+λ3

λ3
λ3

λ1+λ2+λ3

λ1+λ2+λ3

λ1+λ2+λ3

Eigenvectors
Prin1 Prin2 Prin3

x1 p11 p12 p13
x2 p21 p22 p23
x3 p31 p32 p33

(3) Principal components for standardized X
Convert X with Cov(X)Σ, to Z = V −1/2Z = [diag(Σ)]−1/2X called standardized X.
Then Cov(Z) = V −1/2ΣV −1/2 = ρ(X), the correlation matrix for X. By EVD of ρ one can find
principal components for standardized X.

proc princomp;

var x1 x2 x3;

run;

Total Variables: 3
EVs of Correlation Matrix

EVs Difference Proportion Cumulative

λ1 λ1 − λ2
λ1

3
λ1

3

λ2 λ2 − λ3
λ2

3
λ1+λ2

3

λ3
λ3

3
λ1+λ2+λ3

3

Eigenvectors
Prin1 Prin2 Prin3

x1 p11 p12 p13
x2 p21 p22 p23
x3 p31 p32 p33
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L06: Parameters of sample and statistics

1. Two operations

(1) Vectorization

For matrix X = (X1, ..., Xn) ∈ Rm×n, vec(X)
def
===

X1

...
Xn

 ∈ Rmn is the vectorization of X.

Vectorization vec(·) is a linear operation, i.e., vec(αA+ βB) = αvec(A) + βvec(B).
This one-to-one mapping between Rm×n and Rmn preserves the inner product

⟨A, B⟩ = tr(B′A) = [vec(B)]′[vec(A)] = ⟨vec(A), vec(B)⟩

With this one-to-one mapping we see that the Hilbert space Rm×n and Rmn are isomorphic.

(2) Kronecker product

For A = (aij)p×q and B ∈ Rm×n, A ⊗ B =

a11B · · · a1qB
...

. . .
...

ap1B · · · apqB

 ∈ Rpm×qn is the Kronecker

product of A and B.
Keronecker product ⊗ is associative, i.e., (A⊗B)⊗ C = A⊗ (B ⊗ C) = A⊗B ⊗ C.
But it is not commutative, i.e., A⊗B ̸= B ⊗A.
However, with column vectors x and y, x⊗ y′ = y′ ⊗ x = xy′.

(3) A formula
Formula: vec(AXB) = (B′ ⊗A) vec(X) links the two operations.
It shows that the linear transformation Y = AXB from X ∈ Rp×q to Y ∈ Rm×n, is rendered as
the linear transformation vec(Y ) = (B′A) vec(X) from vec(X) ∈ Rpq to vec(Y ) ∈ Rmn.

Ex1: For column vectors x ∈ Rp and y ∈ Rq,

vec(x⊗ y′) = vec(y′ ⊗ x) = vec(xy′) = vec


x1y1 · · · x1yq

...
. . .

...
xpy1 · · · xpyq


 =

y1x...
yqx

 = y ⊗ x.

2. One notation

(1) Definition
Suppose X = (X1, ..., Xn) ∈ Rp×n is a random matrix such that E(X) = (µ1, ..., µn) =M ∈ Rp×n

and Cov(Xi, Xj) =

{
ψiiΣ i = j
ψijΣ ı ̸= j

. Clearly, Σ ∈ Rp×p. Let Ψ = (ψij)n×n. Then

vec(X) =

X1

...
Xn

 ∼


µ1

...
µn

 ,

ψ11Σ · · · ψ1nΣ
...

. . .
...

ψn1Σ · · · ψnnΣ


 = (vec(M), Ψ⊗ Σ)

denoted
===== (M, Σ, Ψ)

Ex2: If µ ∈ Rp, then X ∼ (µ, Σ) = (µ, Σ, 1). If β ∈ Rp, then X ∼ (β, Σ, c) = (β, cΣ).

(2) Two transformations
X ∼ (M, Σ, Ψ) =⇒ AXB + T ∼ (AMB + T, AΣA′, B′ΨB).
X ∼ (M, Σ, Ψ) =⇒ X ′ ∼ (M ′, Ψ, Σ).

Proof. Skipped

Ex3: X ∈ Rp, X ∼ (µ, Σ) = (µ, Σ, 1).
So AX + b ∼ (Aµ+ b, AΣA′, 1) = (Aµ+ b, AΣA′).

(3) Expectations
X ∼ (M, Σ, Ψ), A ∈ Rn×n =⇒ E(XAX ′) =MAM ′ + tr(AΨ)Σ.
X ∼ (M, Σ, Ψ), B ∈ Rp×p =⇒ E(X ′BX) =M ′BM + tr(BΣ)Ψ.
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Proof. We show the second one.
If X ∼ (M, Σ, Ψ), by the second transformation in (2), Y = X ′ ∼ (M ′, Ψ, Σ).
For E(X ′BX) = E(Y BY ′), by the first formula in (3),

E(X ′BX) = E(Y BY ′) =M ′BM + tr(BΣ)Ψ.

Ex4: X ∈ Rp and X ∼ (µ, Σ) = (µ, Σ, 1). Then E(X ′AX) = µ′Aµ+ tr(AΣ).

3. Parameters of sample and statistics
Suppose X ∈ Rp×n is a random sample from a population with parameters (µ, Σ).

(1) Sample
X ∈ Rp×n is a random sample from a population with parameters (µ, Σ). Then X ∼ (µ1′n, Σ, In).

Proof. vec(X) =

X1

...
Xn

 ∼


µ...
µ

 ,

Σ · · · 0
...

. . .
...

0 · · · Σ


 = (vec(µ1′n), In ⊗ Σ).

So X ∼ (µ1′n, Σ, In).

(2) Sum∑n
i=1Xi ∼ (nµ, nΣ).

Proof. X ∼ (µ1′n, Σ, 1) =⇒
∑

iXi = X1n ∼ (µ1′n1n, Σ, 1
′
nIn1n) = (nµ, Σ, n) = (nµ, nΣ).

(3) Sample mean
X ∼

(
µ, 1

nΣ
)

Proof. X ∼ (µ1′n, Σ, In) =⇒ X = X 1n
n ∼

(
µ1′n

1n
n , Σ,

1′n
n In

1n
n

)
=

(
µ, Σ, 1

n

)
=

(
µ, 1

nΣ
)
.

(4) E(CSSCP)
E(CSSCP) = (n− 1)Σ

Proof. Under X ∼ (µ1′n, Σ, In),

E(CSSCP) = E[X(In − 1n1
+
n )X

′] = (µ1′n)(In − 1n1
+
n )(µ1

′
n)

′ + [tr(In − 1n1
+
n )]Σ

= 0 + (n− 1)Σ = (n− 1)Σ.

(5) E(S)
E(S) = Σ

Proof. E(S) = E
(
CSSCP

n−1

)
= Σ.

Ex5: Sample mean X is an UE for the population mean µ since E(X) = µ.
Sample covariance matrix S is an UE for the population covariance matrix Σ since E(S) = Σ.
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