1. Sample and statistics
(1) Sample

Let $X_{i} \in R^{p}, i=1, \ldots, n$, be a random sample from a population with parameters (μ, Σ).
Then $X=\left(X_{1}, \ldots, X_{n}\right) \in R^{p \times n}$ is a data matrix representing the sample.
(2) Statistics
(i) Sum
$\sum_{i=1}^{n} X_{i}=\left(X_{1}, \ldots, X_{n}\right)\left(\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right)=X 1_{n} \in R^{p}$ is the sum of all observations.
(ii) Sample mean
$\bar{X}=\frac{\sum X_{i}}{n}=\frac{X 1_{n}}{n}=X\left(1_{n}^{+}\right)^{\prime} \in R^{p}$ is the sample mean.
For a matrix M with full column rank, $M^{+}=\left(M^{\prime} M\right)^{-1} M^{\prime}$. So $1_{n}^{+}=\left(1_{n}^{\prime} 1_{n}\right)^{-1} 1_{n}^{\prime}=\frac{1_{n}^{\prime}}{n}$.
(iii) SSCP (Sum of Squares and Cross Product) matrix
$\sum_{j=1}^{n} X_{j} X_{j}^{\prime}=\left(X_{1}, \ldots, X_{n}\right)\left(X_{1}, \ldots, X_{n}\right)^{\prime}=X X^{\prime} \in R^{p \times p}$ is the SSCP matrix.
Let $X=\left(x_{i j}\right)_{p \times n}$ and $A=X X^{\prime}=\left(a_{i j}\right)_{p \times p}$. Then $a_{i i}=\sum_{j=1}^{n} x_{i j}^{2}$ (Sum of squares) and $a_{i j}=\sum_{k=1}^{n} x_{i k} x_{j k}$ (Sum of Cross-Products).
(iv) CSSCP (Corrected Sum of Squares and Cross Products) matrix

$$
\begin{aligned}
\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)\left(X_{j}-\bar{X}\right)^{\prime} & =\sum_{j=1}^{n} X_{j} X_{j}^{\prime}-\frac{1}{n}\left(\sum_{j} X_{j}\right)\left(\sum_{j} X_{j}\right)^{\prime} \\
& =X X^{\prime}-\frac{X 1_{n} 1_{n}^{\prime} X^{\prime}}{\frac{n}{V_{1}^{\prime}}}=X\left(I_{n}-1_{n} 1_{n}^{+}\right) X^{\prime} \in R^{p \times p}
\end{aligned}
$$

is CSSCP matrix. CSSCP is SSCP for $X-\bar{X} 1_{n}^{\prime}$.
(v) Sample covariance matrix
$S=\frac{\text { CSSCP }}{n-1}$ is the sample variance-covariance matrix or simply sample covariance matrix.
(vi) Sample correlation matrix

Let $S=\left(s_{i j}\right)_{p \times p}$ where $s_{i i}$ is also denoted by s_{i}^{2}. Then $R=\left(\frac{s_{i j}}{s_{i} s_{j}}\right)_{p \times p}$ is called the sample correlation matrix.
Ex1: $R=[\operatorname{diag}(S)]^{-1 / 2} S[\operatorname{diag}(S)]^{-1 / 2}$. Let $\operatorname{CSSCP}=\left(a_{i j}\right)_{p \times p}$. Then $R=\left(\frac{a_{i j}}{\sqrt{a_{i i} a_{j j}}}\right)_{p \times p}$.
The diagonal elements of R are 1 s .
2. SAS for computing statistics
(1) Entering sample

$X=\left(\begin{array}{ccc}4 & -1 & 3 \\ 1 & 3 & 5\end{array}\right)$	```data a; input x1 x2; datalines;```	$\begin{aligned} & 41 \\ & -13 \\ & 35 \end{aligned}$

(2) Requesting statistics

n, \bar{X} and R	n, \bar{X} and S	n, \bar{X}, R, SSCP, CSSCP S
proc corr;		
var x1 x2 x3 x4;		
run;	proc corr nocorr COV; var x1 x2 x3 $\times 4 ;$ run;	proc corr SSCP CSSCP COV; var x1 x2 x3 x4; run;

3. SAS for principal component analysis
(1) Enter Σ into SAS

$\Sigma=\left(\begin{array}{ccc}1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2\end{array}\right)$	```data a (type='cov'); _TYPE_='COV'; input _NAME_ $ x1 x2 x3; datalines; x1 1 -2 0 x2 -2 5 0 x3 0 0 2```	$\begin{array}{llrl} \text { x1 } & 1 & -2 & 0 \\ \text { x2 } & . & 5 & 0 \\ \text { x3 } & . & . & 2 \\ & & & \\ \text { x1 } & 1 & . & . \\ \text { x2 } & -2 & 5 & . \\ \text { x3 } & 0 & 0 & 2 \end{array}$

(2) Eigenvalue decomposition for Σ

	Total Variables: 3 Total Variances: $\lambda_{1}+\lambda_{2}+\lambda_{3}$ EVs of Covariance Matrix		
$\begin{gathered} \text { EVs } \\ \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \end{gathered}$	$\begin{gathered} \text { Difference } \\ \lambda_{1}-\lambda_{2} \\ \lambda_{2}-\lambda_{3} \end{gathered}$	Proportion	Cumulative
		$\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}+\lambda_{1}}$	λ_{1}
		$\begin{gathered} \overline{\lambda_{1}+\lambda_{2}+\lambda_{3}} \\ \hline \end{gathered}$	$\lambda_{1}+\lambda_{2}+\lambda_{3}$ $\lambda_{1}+\lambda_{2}$
		${ }_{\substack{\text { d }}}^{\lambda_{1}+\lambda_{3}+\lambda_{3}}$	$\lambda_{1}+\lambda_{2}+\lambda_{3}$ $\lambda_{1}+\lambda_{2}+\lambda_{3}$
		$\overline{\lambda_{1}+\lambda_{2}+\lambda_{3}}$	$\lambda_{1}+\lambda_{2}+\lambda_{3}$
	Eigenvectors		
	Prin	1 Prin2	Prin3
	x1 p_{11}	p_{12}	p_{13}
	$\mathrm{x} 2 \quad p_{21}$	p_{22}	p_{23}
	$\mathrm{x} 3 \quad p_{31}$	p_{32}	p_{33}

(3) Principal components for standardized X

Convert X with $\operatorname{Cov}(X) \Sigma$, to $Z=V^{-1 / 2} Z=[\operatorname{diag}(\Sigma)]^{-1 / 2} X$ called standardized X.
Then $\operatorname{Cov}(Z)=V^{-1 / 2} \Sigma V^{-1 / 2}=\rho(X)$, the correlation matrix for X. By EVD of ρ one can find principal components for standardized X.

	Total Variables: 3 EVs of Correlation Matrix				
	$\begin{gathered} \mathrm{EVs} \\ \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \\ \hline \end{gathered}$	Difference Proportion $\lambda_{1}-\lambda_{2}$ $\frac{\lambda_{1}}{3}$ $\lambda_{2}-\lambda_{3}$ $\frac{\lambda_{2}}{3}$ $\frac{\lambda_{3}}{3}$			$\begin{gathered} \text { Cumulative } \\ \frac{\lambda_{1}}{3} \\ \frac{\lambda_{1}+\lambda_{2}}{3} \\ \frac{\lambda_{1}+\lambda_{2}+\lambda_{3}}{3} \\ \hline \end{gathered}$
run;	Eigenvectors				
			Prin	Prin2	Prin3
		x1		p_{12}	p_{13}
		x2		p_{22}	p_{23}
		x3	p_{31}	p_{32}	p_{33}

L06: Parameters of sample and statistics

1. Two operations
(1) Vectorization

For matrix $X=\left(X_{1}, \ldots, X_{n}\right) \in R^{m \times n}, \operatorname{vec}(X) \xlongequal{\text { def }}\left(\begin{array}{c}X_{1} \\ \vdots \\ X_{n}\end{array}\right) \in R^{m n}$ is the vectorization of X.
$\operatorname{Vectorization} \operatorname{vec}(\cdot)$ is a linear operation, i.e., $\operatorname{vec}(\alpha A+\beta B)=\alpha \operatorname{vec}(A)+\beta \operatorname{vec}(B)$.
This one-to-one mapping between $R^{m \times n}$ and $R^{m n}$ preserves the inner product

$$
\langle A, B\rangle=\operatorname{tr}\left(B^{\prime} A\right)=[\operatorname{vec}(B)]^{\prime}[\operatorname{vec}(A)]=\langle\operatorname{vec}(A), \operatorname{vec}(B)\rangle
$$

With this one-to-one mapping we see that the Hilbert space $R^{m \times n}$ and $R^{m n}$ are isomorphic.
(2) Kronecker product

For $A=\left(a_{i j}\right)_{p \times q}$ and $B \in R^{m \times n}, A \otimes B=\left(\begin{array}{ccc}a_{11} B & \cdots & a_{1 q} B \\ \vdots & \ddots & \vdots \\ a_{p 1} B & \cdots & a_{p q} B\end{array}\right) \in R^{p m \times q n}$ is the Kronecker product of A and B.
Keronecker product \otimes is associative, i.e., $(A \otimes B) \otimes C=A \otimes(B \otimes C)=A \otimes B \otimes C$.
But it is not commutative, i.e., $A \otimes B \neq B \otimes A$.
However, with column vectors x and $y, x \otimes y^{\prime}=y^{\prime} \otimes x=x y^{\prime}$.
(3) A formula

Formula: $\operatorname{vec}(A X B)=\left(B^{\prime} \otimes A\right) \operatorname{vec}(X)$ links the two operations.
It shows that the linear transformation $Y=A X B$ from $X \in R^{p \times q}$ to $Y \in R^{m \times n}$, is rendered as the linear transformation $\operatorname{vec}(Y)=\left(B^{\prime} A\right) \operatorname{vec}(X)$ from $\operatorname{vec}(X) \in R^{p q}$ to $\operatorname{vec}(Y) \in R^{m n}$.
Ex1: For column vectors $x \in R^{p}$ and $y \in R^{q}$,

$$
\operatorname{vec}\left(x \otimes y^{\prime}\right)=\operatorname{vec}\left(y^{\prime} \otimes x\right)=\operatorname{vec}\left(x y^{\prime}\right)=\operatorname{vec}\left[\left(\begin{array}{ccc}
x_{1} y_{1} & \cdots & x_{1} y_{q} \\
\vdots & \ddots & \vdots \\
x_{p} y_{1} & \cdots & x_{p} y_{q}
\end{array}\right)\right]=\left(\begin{array}{c}
y_{1} x \\
\vdots \\
y_{q} x
\end{array}\right)=y \otimes x
$$

2. One notation
(1) Definition

Suppose $X=\left(X_{1}, \ldots, X_{n}\right) \in R^{p \times n}$ is a random matrix such that $E(X)=\left(\mu_{1}, \ldots, \mu_{n}\right)=M \in R^{p \times n}$ and $\operatorname{Cov}\left(X_{i}, X_{j}\right)=\left\{\begin{array}{ll}\psi_{i i} \Sigma & i=j \\ \psi_{i j} \Sigma & 1 \neq j\end{array}\right.$. Clearly, $\Sigma \in R^{p \times p}$. Let $\Psi=\left(\psi_{i j}\right)_{n \times n}$. Then

$$
\operatorname{vec}(X)=\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{n}
\end{array}\right) \sim\left(\left(\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{n}
\end{array}\right),\left(\begin{array}{ccc}
\psi_{11} \Sigma & \cdots & \psi_{1 n} \Sigma \\
\vdots & \ddots & \vdots \\
\psi_{n 1} \Sigma & \cdots & \psi_{n n} \Sigma
\end{array}\right)\right)=(\operatorname{vec}(M), \Psi \otimes \Sigma) \xlongequal{\text { denoted }}(M, \Sigma, \Psi)
$$

Ex2: If $\mu \in R^{p}$, then $X \sim(\mu, \Sigma)=(\mu, \Sigma, 1) . \quad$ If $\beta \in R^{p}$, then $X \sim(\beta, \Sigma, c)=(\beta, c \Sigma)$.
(2) Two transformations
$X \sim(M, \Sigma, \Psi) \Longrightarrow A X B+T \sim\left(A M B+T, A \Sigma A^{\prime}, B^{\prime} \Psi B\right)$.
$X \sim(M, \Sigma, \Psi) \Longrightarrow X^{\prime} \sim\left(M^{\prime}, \Psi, \Sigma\right)$.
Proof. Skipped
Ex3: $X \in R^{p}, X \sim(\mu, \Sigma)=(\mu, \Sigma, 1)$.
So $A X+b \sim\left(A \mu+b, A \Sigma A^{\prime}, 1\right)=\left(A \mu+b, A \Sigma A^{\prime}\right)$.
(3) Expectations
$X \sim(M, \Sigma, \Psi), A \in R^{n \times n} \Longrightarrow E\left(X A X^{\prime}\right)=M A M^{\prime}+\operatorname{tr}(A \Psi) \Sigma$.
$X \sim(M, \Sigma, \Psi), B \in R^{p \times p} \Longrightarrow E\left(X^{\prime} B X\right)=M^{\prime} B M+\operatorname{tr}(B \Sigma) \Psi$.

Proof. We show the second one.
If $X \sim(M, \Sigma, \Psi)$, by the second transformation in (2), $Y=X^{\prime} \sim\left(M^{\prime}, \Psi, \Sigma\right)$.
For $E\left(X^{\prime} B X\right)=E\left(Y B Y^{\prime}\right)$, by the first formula in (3),

$$
E\left(X^{\prime} B X\right)=E\left(Y B Y^{\prime}\right)=M^{\prime} B M+\operatorname{tr}(B \Sigma) \Psi
$$

Ex4: $X \in R^{p}$ and $X \sim(\mu, \Sigma)=(\mu, \Sigma, 1) . \quad$ Then $E\left(X^{\prime} A X\right)=\mu^{\prime} A \mu+\operatorname{tr}(A \Sigma)$.
3. Parameters of sample and statistics

Suppose $X \in R^{p \times n}$ is a random sample from a population with parameters (μ, Σ).
(1) Sample
$X \in R^{p \times n}$ is a random sample from a population with parameters (μ, Σ). Then $X \sim\left(\mu 1_{n}^{\prime}, \Sigma, I_{n}\right)$.
Proof. $\operatorname{vec}(X)=\left(\begin{array}{c}X_{1} \\ \vdots \\ X_{n}\end{array}\right) \sim\left(\left(\begin{array}{c}\mu \\ \vdots \\ \mu\end{array}\right),\left(\begin{array}{ccc}\Sigma & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \Sigma\end{array}\right)\right)=\left(\operatorname{vec}\left(\mu 1_{n}^{\prime}\right), I_{n} \otimes \Sigma\right)$.

$$
\text { So } X \sim\left(\mu 1_{n}^{\prime}, \Sigma, I_{n}\right)
$$

(2) Sum
$\sum_{i=1}^{n} X_{i} \sim(n \mu, n \Sigma)$.
Proof. $X \sim\left(\mu 1_{n}^{\prime}, \Sigma, 1\right) \Longrightarrow \sum_{i} X_{i}=X 1_{n} \sim\left(\mu 1_{n}^{\prime} 1_{n}, \Sigma, 1_{n}^{\prime} I_{n} 1_{n}\right)=(n \mu, \Sigma, n)=(n \mu, n \Sigma)$.
(3) Sample mean
$\bar{X} \sim\left(\mu, \frac{1}{n} \Sigma\right)$
Proof. $X \sim\left(\mu 1_{n}^{\prime}, \Sigma, I_{n}\right) \Longrightarrow \bar{X}=X \frac{1_{n}}{n} \sim\left(\mu 1_{n}^{\prime} \frac{1_{n}}{n}, \Sigma, \frac{1_{n}^{\prime}}{n} I_{n} \frac{1_{n}}{n}\right)=\left(\mu, \Sigma, \frac{1}{n}\right)=\left(\mu, \frac{1}{n} \Sigma\right)$.
(4) $E(\mathrm{CSSCP})$
$E(\mathrm{CSSCP})=(n-1) \Sigma$
Proof. Under $X \sim\left(\mu 1_{n}^{\prime}, \Sigma, I_{n}\right)$,

$$
\begin{aligned}
E(\mathrm{CSSCP}) & =E\left[X\left(I_{n}-1_{n} 1_{n}^{+}\right) X^{\prime}\right]=\left(\mu 1_{n}^{\prime}\right)\left(I_{n}-1_{n} 1_{n}^{+}\right)\left(\mu 1_{n}^{\prime}\right)^{\prime}+\left[\operatorname{tr}\left(I_{n}-1_{n} 1_{n}^{+}\right)\right] \Sigma \\
& =0+(n-1) \Sigma=(n-1) \Sigma
\end{aligned}
$$

(5) $E(S)$
$E(S)=\Sigma$
Proof. $E(S)=E\left(\frac{\mathrm{CSSCP}}{n-1}\right)=\Sigma$.
Ex5: Sample mean \bar{X} is an UE for the population mean μ since $E(\bar{X})=\mu$.
Sample covariance matrix S is an UE for the population covariance matrix Σ since $E(S)=\Sigma$.

