L05 Sample and Statistics

- 1. Sample and statistics
 - (1) Sample

Let $X_i \in \mathbb{R}^p$, i = 1, ..., n, be a random sample from a population with parameters (μ, Σ) . Then $X = (X_1, ..., X_n) \in \mathbb{R}^{p \times n}$ is a data matrix representing the sample.

- (2) Statistics
 - (i) Sum

$$\sum_{i=1}^{n} X_i = (X_1, ..., X_n) \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} = X \mathbf{1}_n \in \mathbb{R}^p \text{ is the sum of all observations.}$$

- (ii) Sample mean $\overline{X} = \frac{\sum X_i}{n} = \frac{X1_n}{n} = X(1_n^+)' \in \mathbb{R}^p$ is the sample mean. For a matrix M with full column rank, $M^+ = (M'M)^{-1}M'$. So $1_n^+ = (1'_n 1_n)^{-1} 1'_n = \frac{1'_n}{n}$.
- (iii) SSCP (Sum of Squares and Cross Product) matrix $\sum_{j=1}^{n} X_j X'_j = (X_1, ..., X_n)(X_1, ..., X_n)' = XX' \in \mathbb{R}^{p \times p} \text{ is the SSCP matrix.}$ Let $X = (x_{ij})_{p \times n}$ and $A = XX' = (a_{ij})_{p \times p}$. Then $a_{ii} = \sum_{j=1}^{n} x_{ij}^2$ (Sum of squares) and $a_{ij} = \sum_{k=1}^{n} x_{ik} x_{jk}$ (Sum of Cross-Products).
- (iv) CSSCP (Corrected Sum of Squares and Cross Products) matrix

$$\sum_{j=1}^{n} (X_j - \overline{X})(X_j - \overline{X})' = \sum_{j=1}^{n} X_j X_j' - \frac{1}{n} \left(\sum_j X_j \right) \left(\sum_j X_j \right)'$$
$$= XX' - \frac{X \mathbf{1}_n \mathbf{1}_n' X'}{n} = X(I_n - \mathbf{1}_n \mathbf{1}_n^+) X' \in \mathbb{R}^{p \times p}.$$
is CSSCP matrix. CSSCP is SSCP for $X - \overline{X} \mathbf{1}_n'.$

- (v) Sample covariance matrix $S = \frac{\text{CSSCP}}{n-1}$ is the sample variance-covariance matrix or simply sample covariance matrix.
- (vi) Sample correlation matrix

Let $S = (s_{ij})_{p \times p}$ where s_{ii} is also denoted by s_i^2 . Then $R = \left(\frac{s_{ij}}{s_i s_j}\right)_{p \times p}$ is called the sample correlation matrix.

Ex1:
$$R = [\operatorname{diag}(S)]^{-1/2} S[\operatorname{diag}(S)]^{-1/2}$$
. Let $\operatorname{CSSCP} = (a_{ij})_{p \times p}$. Then $R = \left(\frac{a_{ij}}{\sqrt{a_{ii} a_{jj}}}\right)_{p \times p}$. The diagonal elements of R are 1s.

2. SAS for computing statistics

(1) Entering sample

$X = \begin{pmatrix} 4 & -1 & 3 \\ 1 & 3 & 5 \end{pmatrix}$ data a; input x1 x2; datalines;	4 1 -1 3 3 5 ;
---	-------------------------

(2) Requesting statistics

$n, \overline{X} \text{ and } R$	$n, \overline{X} \text{ and } S$	$n, \overline{X}, R, SSCP, CSSCP S$
proc corr;	proc corr nocorr COV;	proc corr SSCP CSSCP COV;
var x1 x2 x3 x4;	var x1 x2 x3 x4;	var x1 x2 x3 x4;
run;	run;	run;

- 3. SAS for principal component analysis
 - (1) Enter Σ into SAS

$\Sigma = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{pmatrix}$	<pre>data a (type='cov'); _TYPE_='COV'; input _NAME_ \$ x1 x2 x3; datalines; x1 1 -2 0 x2 -2 5 0 x3 0 0 2 ; </pre>	x1 1 -2 0 x2 . 5 0 x3 2 x1 1 x2 -2 5 . x3 0 0 2
--	---	--

(2) Eigenvalue decomposition for Σ

	Total Variables: 3					
	Total Variances: $\lambda_1 + \lambda_2 + \lambda_3$					
	EVs of Covariance Matrix					
	EVs Difference		nce	Proportion Cur		mulative
proc princomp cov; var x1 x2 x3; run;	$\lambda_1 \ \lambda_2 \ \lambda_3$	$\lambda_1 - \lambda_2 - \lambda_2$	λ_3 Eig	$\frac{\lambda_1}{\lambda_1 + \lambda_2 + \lambda_3} \\ \frac{\lambda_2}{\lambda_1 + \lambda_2 + \lambda_3} \\ \frac{\lambda_3}{\lambda_1 + \lambda_2 + \lambda_3} \\ \frac{\lambda_1 + \lambda_2 + \lambda_3}{\lambda_1 + \lambda_2 + \lambda_3} $	$\frac{\overline{\lambda_1}}{\overline{\lambda_1}}$	$\begin{array}{c} \lambda_1 \\ +\lambda_2 +\lambda_3 \\ \lambda_1 +\lambda_2 \\ +\lambda_2 +\lambda_3 \\ +\lambda_2 +\lambda_3 \\ +\lambda_2 +\lambda_3 \\ +\lambda_2 +\lambda_3 \end{array}$
			Prin1		Prin3	
		x1	p_{11}	p_{12}	p_{13}	
		$\mathbf{x}2$	p_{21}	p_{22}	p_{23}	
		x3	p_{31}	p_{32}	p_{33}	

(3) Principal components for standardized X Convert X with $\operatorname{Cov}(X)\Sigma$, to $Z = V^{-1/2}Z = [\operatorname{diag}(\Sigma)]^{-1/2}X$ called standardized X. Then $\operatorname{Cov}(Z) = V^{-1/2}\Sigma V^{-1/2} = \rho(X)$, the correlation matrix for X. By EVD of ρ one can find principal components for standardized X.

	Total Variables: 3 EVs of Correlation Matrix					
	EVs	EVs Difference Proportion		on Cu	mulative	
	λ_1	λ_1 –		$\frac{\lambda_1}{\sqrt{3}}$		$\frac{\lambda_1}{3}$
proc princomp;	λ_2	$\lambda_2 -$	λ_3	$\frac{\lambda_2}{3}$:	$\frac{\lambda_1 + \lambda_2}{3}$
var x1 x2 x3;	λ_3			$\frac{\lambda_3}{3}$	$\underline{\lambda_1}$	$\frac{+\lambda_2+\lambda_3}{3}$
run;	Eigenvectors					
			Prin1	Prin2	Prin3	
		x1	p_{11}	p_{12}	p_{13}	
		x2	p_{21}	p_{22}	p_{23}	
		x3	p_{31}	p_{32}	p_{33}	

L06: Parameters of sample and statistics

- 1. Two operations
 - (1) Vectorization

For matrix $X = (X_1, ..., X_n) \in \mathbb{R}^{m \times n}$, $\operatorname{vec}(X) \stackrel{def}{=} \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} \in \mathbb{R}^{mn}$ is the vectorization of X.

Vectorization $\operatorname{vec}(\cdot)$ is a linear operation, i.e., $\operatorname{vec}(\alpha A + \beta B) = \alpha \operatorname{vec}(A) + \beta \operatorname{vec}(B)$. This one-to-one mapping between $\mathbb{R}^{m \times n}$ and \mathbb{R}^{mn} preserves the inner product

 $\langle A, B \rangle = \operatorname{tr}(B'A) = [\operatorname{vec}(B)]'[\operatorname{vec}(A)] = \langle \operatorname{vec}(A), \operatorname{vec}(B) \rangle$

With this one-to-one mapping we see that the Hilbert space $\mathbb{R}^{m \times n}$ and \mathbb{R}^{mn} are isomorphic.

(2) Kronecker product

For
$$A = (a_{ij})_{p \times q}$$
 and $B \in \mathbb{R}^{m \times n}$, $A \otimes B = \begin{pmatrix} a_{11}B & \cdots & a_{1q}B \\ \vdots & \ddots & \vdots \\ a_{p1}B & \cdots & a_{pq}B \end{pmatrix} \in \mathbb{R}^{pm \times qn}$ is the Kronecker

product of A and B.

Keronecker product \otimes is associative, i.e., $(A \otimes B) \otimes C = A \otimes (B \otimes C) = A \otimes B \otimes C$. But it is not commutative, i.e., $A \otimes B \neq B \otimes A$. However, with column vectors x and y, $x \otimes y' = y' \otimes x = xy'$.

(3) A formula

Formula: $\operatorname{vec}(AXB) = (B' \otimes A) \operatorname{vec}(X)$ links the two operations. It shows that the linear transformation Y = AXB from $X \in \mathbb{R}^{p \times q}$ to $Y \in \mathbb{R}^{m \times n}$, is rendered as the linear transformation $\operatorname{vec}(Y) = (B'A) \operatorname{vec}(X)$ from $\operatorname{vec}(X) \in \mathbb{R}^{pq}$ to $\operatorname{vec}(Y) \in \mathbb{R}^{mn}$. **Ex1:** For column vectors $x \in \mathbb{R}^p$ and $y \in \mathbb{R}^q$,

$$\operatorname{vec}(x \otimes y') = \operatorname{vec}(y' \otimes x) = \operatorname{vec}(xy') = \operatorname{vec}\left[\begin{pmatrix} x_1y_1 & \cdots & x_1y_q \\ \vdots & \ddots & \vdots \\ x_py_1 & \cdots & x_py_q \end{pmatrix}\right] = \begin{pmatrix} y_1x \\ \vdots \\ y_qx \end{pmatrix} = y \otimes x_1$$

- 2. One notation
 - (1) Definition

Suppose $X = (X_1, ..., X_n) \in \mathbb{R}^{p \times n}$ is a random matrix such that $E(X) = (\mu_1, ..., \mu_n) = M \in \mathbb{R}^{p \times n}$ and $\operatorname{Cov}(X_i, X_j) = \begin{cases} \psi_{ii} \Sigma & i = j \\ \psi_{ij} \Sigma & 1 \neq j \end{cases}$. Clearly, $\Sigma \in \mathbb{R}^{p \times p}$. Let $\Psi = (\psi_{ij})_{n \times n}$. Then

$$\operatorname{vec}(X) = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} \sim \left(\begin{pmatrix} \mu_1 \\ \vdots \\ \mu_n \end{pmatrix}, \begin{pmatrix} \psi_{11}\Sigma & \cdots & \psi_{1n}\Sigma \\ \vdots & \ddots & \vdots \\ \psi_{n1}\Sigma & \cdots & \psi_{nn}\Sigma \end{pmatrix} \right) = (\operatorname{vec}(M), \Psi \otimes \Sigma) \stackrel{\text{denoted}}{=} (M, \Sigma, \Psi)$$

Ex2: If $\mu \in \mathbb{R}^p$, then $X \sim (\mu, \Sigma) = (\mu, \Sigma, 1)$. If $\beta \in \mathbb{R}^p$, then $X \sim (\beta, \Sigma, c) = (\beta, c\Sigma)$.

(2) Two transformations

 $\begin{aligned} X &\sim (M, \Sigma, \Psi) \Longrightarrow AXB + T \sim (AMB + T, A\Sigma A', B'\Psi B). \\ X &\sim (M, \Sigma, \Psi) \Longrightarrow X' \sim (M', \Psi, \Sigma). \end{aligned}$

Proof. Skipped

Ex3: $X \in \mathbb{R}^p$, $X \sim (\mu, \Sigma) = (\mu, \Sigma, 1)$. So $AX + b \sim (A\mu + b, A\Sigma A', 1) = (A\mu + b, A\Sigma A')$.

(3) Expectations

$$\begin{split} X &\sim (M, \Sigma, \Psi), \, A \in \mathbb{R}^{n \times n} \Longrightarrow E(XAX') = MAM' + \operatorname{tr}(A\Psi)\Sigma. \\ X &\sim (M, \Sigma, \Psi), \, B \in \mathbb{R}^{p \times p} \Longrightarrow E(X'BX) = M'BM + \operatorname{tr}(B\Sigma)\Psi. \end{split}$$

Proof. We show the second one.

If $X \sim (M, \Sigma, \Psi)$, by the second transformation in (2), $Y = X' \sim (M', \Psi, \Sigma)$. For E(X'BX) = E(YBY'), by the first formula in (3),

 $E(X'BX) = E(YBY') = M'BM + \operatorname{tr}(B\Sigma)\Psi.$

Ex4: $X \in \mathbb{R}^p$ and $X \sim (\mu, \Sigma) = (\mu, \Sigma, 1)$. Then $E(X'AX) = \mu'A\mu + \operatorname{tr}(A\Sigma)$.

3. Parameters of sample and statistics

Suppose $X \in \mathbb{R}^{p \times n}$ is a random sample from a population with parameters (μ, Σ) .

(1) Sample

 $X \in \mathbb{R}^{p \times n}$ is a random sample from a population with parameters (μ, Σ) . Then $X \sim (\mu 1'_n, \Sigma, I_n)$.

Proof.
$$\operatorname{vec}(X) = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} \sim \left(\begin{pmatrix} \mu \\ \vdots \\ \mu \end{pmatrix}, \begin{pmatrix} \Sigma & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \Sigma \end{pmatrix} \right) = (\operatorname{vec}(\mu 1'_n), I_n \otimes \Sigma).$$

So $X \sim (\mu 1'_n, \Sigma, I_n).$

(2) Sum

$$\sum_{i=1}^{n} X_i \sim (n\mu, n\Sigma).$$
Proof. $X \sim (\mu 1', \Sigma)$

Proof.
$$X \sim (\mu 1'_n, \Sigma, 1) \Longrightarrow \sum_i X_i = X \mathbf{1}_n \sim (\mu 1'_n \mathbf{1}_n, \Sigma, \mathbf{1}'_n I_n \mathbf{1}_n) = (n\mu, \Sigma, n) = (n\mu, n\Sigma).$$

(3) Sample mean $\overline{X} \sim (\mu, \frac{1}{n}\Sigma)$

Proof.
$$X \sim (\mu 1'_n, \Sigma, I_n) \Longrightarrow \overline{X} = X \frac{1_n}{n} \sim \left(\mu 1'_n \frac{1_n}{n}, \Sigma, \frac{1'_n}{n} I_n \frac{1_n}{n} \right) = \left(\mu, \Sigma, \frac{1}{n} \right) = \left(\mu, \frac{1}{n} \Sigma \right).$$

(4) E(CSSCP) $E(\text{CSSCP}) = (n-1)\Sigma$ **Proof.** Under $X \sim (\mu 1'_n, \Sigma, I_n)$,

$$E(\text{CSSCP}) = E[X(I_n - 1_n 1_n^+) X'] = (\mu 1'_n)(I_n - 1_n 1_n^+)(\mu 1'_n)' + [\text{tr}(I_n - 1_n 1_n^+)]\Sigma$$

= 0 + (n - 1)\Sigma = (n - 1)\Sigma.

- (5) E(S) $E(S) = \Sigma$
 - **Proof.** $E(S) = E\left(\frac{\text{CSSCP}}{n-1}\right) = \Sigma.$

Ex5: Sample mean \overline{X} is an UE for the population mean μ since $E(\overline{X}) = \mu$. Sample covariance matrix S is an UE for the population covariance matrix Σ since $E(S) = \Sigma$.