
L03: Parameters of conditional distributions

1. Parameters of conditional distributions

(1) Definitions

Suppose

(
X
Y

)
has a joint distribution where X ∈ Rp and Y ∈ Rq.

Then E(Y |x) = (E(Yi|x))q×1 =
(∫∫

Rq yifY |x(y)dy1, ..dyq
)
q×1

Cov(Y |X) = E(Y Y ′|x)− E(Y |x)[E(Y |x)]′.
Here E(Y Y ′|x) = (E(YiYj |x))q×q =

(∫∫
Rq yiyjfY |x(y)dy1, ..dyq

)
q×q

Comments: Y ∼ (E(Y ), Cov(Y )), Y |X ∼ (E(Y |X), Cov(Y |X)) where E(Y |X) and Cov(Y |X)
are vector-valued and matrix-valued functions of X, and hence are still random. So one can
further consider E(Y |X) ∼ (E[E(Y |X)], Cov(E(Y |X))

(2) Relations

(i) E[E(Y |X)] = E(Y ).

Proof. We show E[E(Yi|X)] = E(Yi).
E[E(Yi|X)] =

∫∫
Rp E(Yi|x) fX(x1, .., xp) dx1, ..., dxp

=
∫∫

Rp [
∫∫

Rq yifY |x(y1, .., yq) dy1, ...dyq] fX(x1, .., xp) dx1, · · · , dxp

=
∫∫

Rp+q yif(x1, ..., xp, y1, ..., yq) dx1, · · · , dxp, dy1, · · · , dyq
= E(Yi)

.

(ii) E[Cov(Y |X)] + Cov[E(Y |X)] = Cov(Y )

Proof.Cov(Y ) = E(Y Y ′)− E(Y )[E(Y )]′

E[Cov(Y |X)] = E {E(Y Y ′|X)− E(Y |X)[E(Y |X)]′}
= E(Y Y ′)− E {E(Y |X)[E(Y |X)]′}

Cov[E(Y |X)] = E {E(Y |X)[E(Y |X)]′} − E[E(Y |X)] {E[E(Y |X)]}′
= E {E(Y |X)[E(Y |X)]′} − E(Y )[E(Y )]′.

So E[Cov(Y |X)] + Cov[E(Y |X)] = E(Y Y ′)− E(Y )[E(Y )]′ = Cov(Y ).

Ex1: For

(
X
Y

)
∼ N

((
µx

µy

)
,

(
Σxx Σxy

Σyx Σyy

))
, Y ∼ N(µy, Σyy)

Y |X ∼ N
(
µy +ΣyxΣ

−1
xx (X − µx), Σyy − ΣyxΣ

−1
xxΣxy

)
.

E(Y |X) = µy +ΣyxΣ
−1
xx (X − µx) ∼ N

(
µy, ΣyxΣ

−1
xxΣxy

)
.

So E[E(Y |X)] = µy = E(Y ) and
E[Cov(Y |X)] + Cov[E(Y |X)] =

(
Σyy − ΣyxΣ

−1
xxΣxy

)
+ΣyxΣ

−1
xxΣxy = Σyy = Cov(Y )

2. Independence

(1) Independence

X ∈ Rp and Y ∈ Rq are independent
def⇐⇒ fX(x) = fX|y(x) ⇐⇒ fX(x) = f(x,y)

fY (y)

⇐⇒ f(x, y) = fX(x) fY (y) ̸= 0
⇐⇒ fY (y) = fY |x(y).

(2) Impact of independence on parameters
X ∈ Rp and Y ∈ Rq are independent ⇒ X and Y are uncorrelated.

Proof. We show cov(Xi, Yj) = E(XiYj)− E(Xi)E(Yj) = 0.
E(XiYj) =

∫∫
Rp+q xiyjf(x1, .., xp, y1, .., yq)dx1, .., dxp, dy1, ..., dyq

=
∫∫

Rp+q xiyj fX(x1, .., xp) fY (y1, ..., yq)dx1, .., dxp, dy1, ..., dyq
=

∫∫
Rp xifX(x1, .., xp) dx1, .., dxp

∫∫
Rq yjfY (y1, ..., yq), dy1, ..., dyq

= E(Xi)E(Yj)
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(3) Independence for normal vectors

Suppose

(
X
Y

)
∼ N

((
µx

µy

)
,

(
Σxx Σxy

Σyx Σyy

))
. Then

X and Y are independent ⇐⇒ X and Y are uncorrelated

Proof. Only give the sketch for ⇐.
X and Y are uncorrelated =⇒ Σxy = Cov(X, Y ) = 0 =⇒ Σxy = 0 and Σyx = Σ′

xy = 0.

With

(
X
Y

)
∼ N

((
µx

µy

)
,

(
Σxx 0
0 Σyy

))
, X ∼ N(µx, Σxx) and Y ∼ N(µy, Σyy) one can

check f(x1, ..., xp, y1, ..., yp) = fX(x1, ..., xp)fY (y1, ..., yq).

Ex2: In 4.3 on page 201 X =

X1

X2

X3

 ∼ N(µ, Σ) where Σ =

 1 −2 0
−2 5 0
0 0 2

.

(i) Are X1 and X2 independent?
cov(X1, X2) = −2 ̸= 0. So X1 and X2 are not independent.

(ii) Are X1 and X3 independent?
cov(X1, X3) = 0. So X1 and X3 are independent.

(iii) Are X1 and 2X1 +X2 +X3 independent?

Cov(X1, 2X1 +X2 +X3) = (1, 0, 0)

 1 −2 0
−2 5 0
0 0 2

2
1
1

 = 0.

So X1 and 2X1 +X2 +X3 are independent.

3. Extended definitions for normality and independence

(1) Generalized normal vector

X ∼ N(µ, Σ)
def⇐⇒ X = AZr + µ where Zr ∼ N(0, Ir) and AA′ = Σ

So a vector is normal if it is transformed from a normal vector with pdf by function Ax+ b.
Under this definition there is a convenient transformation for normal vectors,

X ∼ N(µ, Σ) ⇐⇒ AX + β ∼ N(Aµ+ β, AΣA′) for all A and β

Caution: For a p-dimensional normal vector, its support may not be Rp.

Ex3: For Z ∼ N(0, 12),

(
X1

X2

)
=

(
1
1

)
Z ∼ N

((
0
0

)
,

(
1 1
1 1

))
has support x1 = x2.

(2) Concept of independence
g(X) and h(Y ) are independent if X and Y are independent by pdfs or pmfs.
Under this extended definition, X and Y are independent =⇒ X and Y are uncorrelated.
For normal vectors (X, Y )′, X and Y are independent ⇐⇒ X and Y are uncorrelated.

(3) Independence from normal vectors
Suppose X ∼ N(µ, Σ)

(i) AX and BX: AΣB′ = 0 ⇐⇒ AX and BX are independent.
Pf: AX and BX are independent =⇒ Cov(AX, BX) = 0 ⇐⇒ AΣB′ = 0.

(ii) AX and X ′BX where B′ = B: AΣB = 0 =⇒ AX and X ′BX are independent.

Pf: By the compact form of EVD, B = PΛP ′. So AΣB = AΣPΛP ′ = 0 =⇒ AΣP = 0.
So AX and P ′X are independent.
Hence AX and X ′BX = (P ′X)′Λ(P ′X) are independent.

(iii) X ′AX and X ′BX where A′ = A and B′ = B
AΣB = 0 =⇒ X ′AX and X ′BX are independent.
Pf: Skipped.
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L04: Principal components

1. Principal components for X

(1) Components of X ∼ (µ, Σ)
The importance of the components of X ∈ Rp is usually measured by their variances. The larger
the variance, the more information provided by the component.
The information provided by correlated components overlapped.
So an ideal vector would have Σ = Vx with non-increasing diagonal elements.

(2) Principal components of X
Among all linear combinations of the components of X with unit vector coefficients, select one
with the largest variance and call it the first principal component of X.
Once the first k principal components of X are selected, among all linear combinations of the
components of X with unit vector coefficients and uncorrelated to the first k principal components
already selected, select one with the largest variance and call it the k+1 the principal component
of X.

2. Eigenvalue decomposition and principal components

(1) Eigenvalue decomposition of Σ
If Σv = λv where 0 ̸= v ∈ Rp, then λ is an eigenvalue of Σ, v is an eigenvector of Σ belonging to
the eigenvalue λ.
Σ > 0 has p eigenvalues, all are positive numbers. Those eigenvalues are the roots of the charac-
teristic polynomial |Σ− λI|, i.e., the solutions to the characteristic equation |Σ− λI| = 0.
All vectors except 0 in the eigenspace N (Σ− λI) are eigenvectors belonging to λ.
For real symmetric Σ, the eigenvectors belonging to different eigenvalues are orthogonal.
So one can find eigenvalue matrix Λ = diag(λ1, ..., λp) with λ1 ≥ · · · ≥ λp such that all diagonal
elements of Λ are eigenvalues of Σ; and eigenvector matrix P ∈ Rp×p such that the Pi, ith column
of P , is the eigenvector for λi, ∥Pi∥ = 1, and all columns of P are orthogonal. Thus P is an
orthogonal matrix, i.e., P ′ = P−1.
Clearly ΣP = PΛ ⇐⇒ Σ = PΛP ′, called the EVD for Σ.

|Σ− λI| is a polynomial of λ called characteristic polynomial of Σ.
Equation |Σ− λI| = 0 is called the characteristic equation for Σ.
The characteristic equation has p solutions λ1 ≥ λ2 ≥ · · · ≥ λp called the first, second,..., the pth
largest eigenvalue of Σ.
Solution x ̸= 0 to (Σ− λiI)x = 0 is an eigenvector of Σ belonging to the eigenvalue λi.
It can be shown that Σ = PΛP ′ where P = (P1, ..., Pp) ∈ Rp×p is an orthogonal matrix such that
P ′P = I, and Pi is an eigenvector of Σ belonging to λi.
Σ = PΛP ′ is called an eigenvalue decomposition of Σ.

Ex1: Find eigenvalue decomposition for Σ =

(
3 −1
−1 3

)
.

|Σ− λI| =
∣∣∣∣3− λ −1
−1 3− λ

∣∣∣∣ = (λ− 3)2 − 1 = (λ− 2)(λ− 4).

|Σ− λI| = 0, λ1 = 4 and λ2 = 2. So Λ =

(
4 0
0 2

)
.

(Σ− λ1)x = 0,

(
−1 −1
−1 −1

)
x = 0, x1 = −x2, x = c

(
1
−1

)
, P1 = 1√

2

(
1
−1

)
.

(Σ− λ2)x = 0,

(
1 −1
−1 1

)
x = 0, x1 = x2, x = c

(
1
1

)
, P2 = 1√

2

(
1
1

)
.

P = 1√
2

(
1 1
−1 1

)
. Σ = PΛP ′ =

[
1√
2

(
1 1
−1 1

)](
4 0
0 2

)[
1√
2

(
1 1
−1 1

)]′
.
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(2) EVD and principal components

For X ∼ (µ,Σ) with EVD Σ = PΛP ′ with non-decreasing eigenvalues, the compoents of Y = P ′X
are the principal components of X.

Proof. First, note that Cov(Y ) = P ′ΣP = P ′PΛP ′P = Λ. So Yi = P ′
iX with ∥Pi∥ = 1;

Cov(Yi, Yj) = 0 for i ̸= j, and var(Yi) = λi with λ1 ≥ · · · ≥ λp.
Secondly we show that it is the best choice. When creating Y1, in {α′X : ∥α∥ = 1},
var(α′X) = α′PΛP ′α = β′Λβ = β2

1λ1 + · · ·+ β2
pλp. Here β2

1 + · · ·+ β2
p = α′PP ′α = 1.

When creating Y2, in {α′X : ∥α∥ = 1 and cov(α′X, Y1) = 0}, var(αX) = β2
1λ1 + · · · + β2

pλp

where β2
1 + · · ·+ β2

p = 1. But
0 = cov(αX, Y1) = cov(α′X, P ′

1X) = α′PΣP ′P1 = β′Λei = β1λ1.
So β1 = 0. Hence max[var(α′X) : ∥α∥ = 1, cov(α′X, Y1) = 0) = λ2.
Similarly one can show max[var(α′X) : ∥α∥ = 1 and cov(α′X, Yi) = 0 for i = 1, .., k} is λk+1.

Ex2: For X in Ex1,

(
Y1

Y2

)
= P ′X = 1√

2

(
1 −1
1 1

)(
X1

X2

)
= 1√

2

(
X1 −X2

X1 +X2

)
. Here Y1 and Y2 are

the first and the second principal components of X, and Cov(Y ) =

(
4 0
0 2

)
.

3. Properties

(1) Total variance
Total variance in X and total variance in Y , the principal component vector of X, are equal.

Proof. Cov(X) = Σ = PΛP ′. So tr(Σ) = tr(PΛP ′) = tr(P ′PΛ) = tr(Λ) = λ1 + · · ·+ λp.
Here tr(Σ) = var(X1) + · · ·+ var(Xp), the total variance in X.
With principal component vector Y = P ′X, the total variance in Y is
var(Y1) + · · ·+ var(Yp) = λ1 + · · ·+ λp.

Ex3: In Ex1, var(X1) + var(X2) = 3 + 3 = 6. In Ex2, var(Y1) + var(Y2) = 4 + 2 = 6.

(2) Variations explained by principal components
The proportion of total variation in the original X explained by the ith principal component is

var(Yi)

Total varaince in X
=

λi

λ1 + · · ·+ λp
.

The proportion of total variance explained by the first k principal components is

var(Y1) + · · ·+ var(Yk)

Total variance in X
=

λ1 + · · ·+ λk

λ1 + · · ·+ λp
.

Using principal components to achieve certain proportion of total variation explained, one can
reduce the number of components in the vector.

Ex4: In Ex1, if we want to explain 60% of total variations in X, we have to use both X1 and
X2. But if using principal components, from Ex2, we see we onely need the first principal
component since 4

6 =66.7%>60%.

Comment: The concept of principal component is a good mathematical work. But the new
component might be 1√

3
(Age) + 1√

3
(Height) + 1√

3
(Number of hours in study) that does not

have clear meaning.
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