L03: Parameters of conditional distributions

1. Parameters of conditional distributions
(1) Definitions

Suppose $\binom{X}{Y}$ has a joint distribution where $X \in R^{p}$ and $Y \in R^{q}$.
Then $E(Y \mid x)=\left(E\left(Y_{i} \mid x\right)\right)_{q \times 1}=\left(\iint_{R^{q}} y_{i} f_{Y \mid x}(y) d y_{1}, . . d y_{q}\right)_{q \times 1}$
$\operatorname{Cov}(Y \mid X)=E\left(Y Y^{\prime} \mid x\right)-E(Y \mid x)[E(Y \mid x)]^{\prime}$.
Here $E\left(Y Y^{\prime} \mid x\right)=\left(E\left(Y_{i} Y_{j} \mid x\right)\right)_{q \times q}=\left(\iint_{R^{q}} y_{i} y_{j} f_{Y \mid x}(y) d y_{1}, . . d y_{q}\right)_{q \times q}$
Comments: $Y \sim(E(Y), \operatorname{Cov}(Y)), Y \mid X \sim(E(Y \mid X), \operatorname{Cov}(Y \mid X))$ where $E(Y \mid X)$ and $\operatorname{Cov}(Y \mid X)$ are vector-valued and matrix-valued functions of X, and hence are still random. So one can further consider $E(Y \mid X) \sim(E[E(Y \mid X)], \operatorname{Cov}(E(Y \mid X))$
(2) Relations
(i) $E[E(Y \mid X)]=E(Y)$.

Proof. We show $E\left[E\left(Y_{i} \mid X\right)\right]=E\left(Y_{i}\right)$.

$$
\begin{aligned}
E\left[E\left(Y_{i} \mid X\right)\right] & =\iint_{R^{p}} E\left(Y_{i} \mid x\right) f_{X}\left(x_{1}, . ., x_{p}\right) d x_{1}, \ldots, d x_{p} \\
& =\iint_{R^{p}}\left[\iint_{R^{q}} y_{i} f_{Y \mid x}\left(y_{1}, . ., y_{q}\right) d y_{1}, \ldots d y_{q}\right] f_{X}\left(x_{1}, . ., x_{p}\right) d x_{1}, \cdots, d x_{p} \\
& =\iint_{R^{p+q}} y_{i} f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{q}\right) d x_{1}, \cdots, d x_{p}, d y_{1}, \cdots, d y_{q} \\
& =E\left(Y_{i}\right)
\end{aligned}
$$

(ii) $E[\operatorname{Cov}(Y \mid X)]+\operatorname{Cov}[E(Y \mid X)]=\operatorname{Cov}(Y)$

$$
\begin{aligned}
\text { Proof. } \operatorname{Cov}(Y) & =E\left(Y Y^{\prime}\right)-E(Y)[E(Y)]^{\prime} \\
E[\operatorname{Cov}(Y \mid X)] & =E\left\{E\left(Y Y^{\prime} \mid X\right)-E(Y \mid X)[E(Y \mid X)]^{\prime}\right\} \\
& =E\left(Y Y^{\prime}\right)-E\left\{E(Y \mid X)[E(Y \mid X)]^{\prime}\right\} \\
\operatorname{Cov}[E(Y \mid X)] & =E\left\{E(Y \mid X)[E(Y \mid X)]^{\prime}\right\}-E[E(Y \mid X)]\{E[E(Y \mid X)]\}^{\prime} \\
& =E\left\{E(Y \mid X)[E(Y \mid X)]^{\prime}\right\}-E(Y)[E(Y)]^{\prime} . \\
\text { So } E[\operatorname{Cov}(Y \mid X)] & +\operatorname{Cov}[E(Y \mid X)]=E\left(Y Y^{\prime}\right)-E(Y)[E(Y)]^{\prime}=\operatorname{Cov}(Y) .
\end{aligned}
$$

Ex1: For $\binom{X}{Y} \sim N\left(\binom{\mu_{x}}{\mu_{y}},\left(\begin{array}{cc}\Sigma_{x x} & \Sigma_{x y} \\ \Sigma_{y x} & \Sigma_{y y}\end{array}\right)\right), Y \sim N\left(\mu_{y}, \Sigma_{y y}\right)$
$Y \mid X \sim N\left(\mu_{y}+\Sigma_{y x} \Sigma_{x x}^{-1}\left(X-\mu_{x}\right), \Sigma_{y y}-\Sigma_{y x} \Sigma_{x x}^{-1} \Sigma_{x y}\right)$.
$E(Y \mid X)=\mu_{y}+\Sigma_{y x} \Sigma_{x x}^{-1}\left(X-\mu_{x}\right) \sim N\left(\mu_{y}, \Sigma_{y x} \Sigma_{x x}^{-1} \Sigma_{x y}\right)$.
So $E[E(Y \mid X)]=\mu_{y}=E(Y)$ and
$E[\operatorname{Cov}(Y \mid X)]+\operatorname{Cov}[E(Y \mid X)]=\left(\Sigma_{y y}-\Sigma_{y x} \Sigma_{x x}^{-1} \Sigma_{x y}\right)+\Sigma_{y x} \Sigma_{x x}^{-1} \Sigma_{x y}=\Sigma_{y y}=\operatorname{Cov}(Y)$
2. Independence
(1) Independence
$X \in R^{p}$ and $Y \in R^{q}$ are independent $\stackrel{\text { def }}{\Longleftrightarrow} f_{X}(x)=f_{X \mid y}(x) \Longleftrightarrow f_{X}(x)=\frac{f(x, y)}{f_{Y}(y)}$
$\Longleftrightarrow \quad f(x, y)=f_{X}(x) f_{Y}(y) \neq 0$
$\Longleftrightarrow \quad f_{Y}(y)=f_{Y \mid x}(y)$.
(2) Impact of independence on parameters
$X \in R^{p}$ and $Y \in R^{q}$ are independent $\Rightarrow X$ and Y are uncorrelated.
Proof. We show $\operatorname{cov}\left(X_{i}, Y_{j}\right)=E\left(X_{i} Y_{j}\right)-E\left(X_{i}\right) E\left(Y_{j}\right)=0$.

$$
\begin{aligned}
E\left(X_{i} Y_{j}\right) & =\iint_{R^{p+q}} x_{i} y_{j} f\left(x_{1}, . ., x_{p}, y_{1}, . ., y_{q}\right) d x_{1}, . ., d x_{p}, d y_{1}, \ldots, d y_{q} \\
& =\iint_{R^{p+q}} x_{i} y_{j} f_{X}\left(x_{1}, . ., x_{p}\right) f_{Y}\left(y_{1}, \ldots, y_{q}\right) d x_{1}, . ., d x_{p}, d y_{1}, \ldots, d y_{q} \\
& =\iint_{R^{p}} x_{i} f_{X}\left(x_{1}, . ., x_{p}\right) d x_{1}, . ., d x_{p} \iint_{R^{q}} y_{j} f_{Y}\left(y_{1}, \ldots, y_{q}\right), d y_{1}, \ldots, d y_{q} \\
& =E\left(X_{i}\right) E\left(Y_{j}\right)
\end{aligned}
$$

(3) Independence for normal vectors

Suppose $\binom{X}{Y} \sim N\left(\binom{\mu_{x}}{\mu_{y}},\left(\begin{array}{ll}\Sigma_{x x} & \Sigma_{x y} \\ \Sigma_{y x} & \Sigma_{y y}\end{array}\right)\right)$. Then

$$
X \text { and } Y \text { are independent } \Longleftrightarrow X \text { and } Y \text { are uncorrelated }
$$

Proof. Only give the sketch for \Leftarrow.
X and Y are uncorrelated $\Longrightarrow \Sigma_{x y}=\operatorname{Cov}(X, Y)=0 \Longrightarrow \Sigma_{x y}=0$ and $\Sigma_{y x}=\Sigma_{x y}^{\prime}=0$.
With $\binom{X}{Y} \sim N\left(\binom{\mu_{x}}{\mu_{y}},\left(\begin{array}{cc}\Sigma_{x x} & 0 \\ 0 & \Sigma_{y y}\end{array}\right)\right), X \sim N\left(\mu_{x}, \Sigma_{x x}\right)$ and $Y \sim N\left(\mu_{y}, \Sigma_{y y}\right)$ one can check $f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{p}\right)=f_{X}\left(x_{1}, \ldots, x_{p}\right) f_{Y}\left(y_{1}, \ldots, y_{q}\right)$.
Ex2: In 4.3 on page $201 X=\left(\begin{array}{l}X_{1} \\ X_{2} \\ X_{3}\end{array}\right) \sim N(\mu, \Sigma)$ where $\Sigma=\left(\begin{array}{ccc}1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2\end{array}\right)$.
(i) Are X_{1} and X_{2} independent? $\operatorname{cov}\left(X_{1}, X_{2}\right)=-2 \neq 0$. So X_{1} and X_{2} are not independent.
(ii) Are X_{1} and X_{3} independent? $\operatorname{cov}\left(X_{1}, X_{3}\right)=0$. So X_{1} and X_{3} are independent.
(iii) Are X_{1} and $2 X_{1}+X_{2}+X_{3}$ independent?

$$
\operatorname{Cov}\left(X_{1}, 2 X_{1}+X_{2}+X_{3}\right)=(1,0,0)\left(\begin{array}{ccc}
1 & -2 & 0 \\
-2 & 5 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)=0
$$

So X_{1} and $2 X_{1}+X_{2}+X_{3}$ are independent.
3. Extended definitions for normality and independence
(1) Generalized normal vector
$X \sim N(\mu, \Sigma) \stackrel{\text { def }}{\Longleftrightarrow} X=A Z_{r}+\mu$ where $Z_{r} \sim N\left(0, I_{r}\right)$ and $A A^{\prime}=\Sigma$
So a vector is normal if it is transformed from a normal vector with pdf by function $A x+b$.
Under this definition there is a convenient transformation for normal vectors,

$$
X \sim N(\mu, \Sigma) \Longleftrightarrow A X+\beta \sim N\left(A \mu+\beta, A \Sigma A^{\prime}\right) \text { for all } A \text { and } \beta
$$

Caution: For a p-dimensional normal vector, its support may not be R^{p}.
Ex3: For $Z \sim N\left(0,1^{2}\right),\binom{X_{1}}{X_{2}}=\binom{1}{1} Z \sim N\left(\binom{0}{0},\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)\right)$ has support $x_{1}=x_{2}$.
(2) Concept of independence
$g(X)$ and $h(Y)$ are independent if X and Y are independent by pdfs or pmfs.
Under this extended definition, $\quad X$ and Y are independent $\Longrightarrow X$ and Y are uncorrelated.
For normal vectors $(X, Y)^{\prime}, \quad X$ and Y are independent $\Longleftrightarrow X$ and Y are uncorrelated.
(3) Independence from normal vectors

Suppose $X \sim N(\mu, \Sigma)$
(i) $A X$ and $B X$: $A \Sigma B^{\prime}=0 \Longleftrightarrow A X$ and $B X$ are independent.

Pf: $A X$ and $B X$ are independent $\Longrightarrow \operatorname{Cov}(A X, B X)=0 \Longleftrightarrow A \Sigma B^{\prime}=0$.
(ii) $A X$ and $X^{\prime} B X$ where $B^{\prime}=B: \quad A \Sigma B=0 \Longrightarrow A X$ and $X^{\prime} B X$ are independent.

Pf: By the compact form of $\mathrm{EVD}, B=P \Lambda P^{\prime}$. So $A \Sigma B=A \Sigma P \Lambda P^{\prime}=0 \Longrightarrow A \Sigma P=0$. So $A X$ and $P^{\prime} X$ are independent. Hence $A X$ and $X^{\prime} B X=\left(P^{\prime} X\right)^{\prime} \Lambda\left(P^{\prime} X\right)$ are independent.
(iii) $X^{\prime} A X$ and $X^{\prime} B X$ where $A^{\prime}=A$ and $B^{\prime}=B$
$A \Sigma B=0 \Longrightarrow X^{\prime} A X$ and $X^{\prime} B X$ are independent.
Pf: Skipped.

L04: Principal components

1. Principal components for X

(1) Components of $X \sim(\mu, \Sigma)$

The importance of the components of $X \in R^{p}$ is usually measured by their variances. The larger the variance, the more information provided by the component.
The information provided by correlated components overlapped.
So an ideal vector would have $\Sigma=V_{x}$ with non-increasing diagonal elements.
(2) Principal components of X

Among all linear combinations of the components of X with unit vector coefficients, select one with the largest variance and call it the first principal component of X.
Once the first k principal components of X are selected, among all linear combinations of the components of X with unit vector coefficients and uncorrelated to the first k principal components already selected, select one with the largest variance and call it the $k+1$ the principal component of X.
2. Eigenvalue decomposition and principal components
(1) Eigenvalue decomposition of Σ

If $\Sigma v=\lambda v$ where $0 \neq v \in R^{p}$, then λ is an eigenvalue of Σ, v is an eigenvector of Σ belonging to the eigenvalue λ.
$\Sigma>0$ has p eigenvalues, all are positive numbers. Those eigenvalues are the roots of the characteristic polynomial $|\Sigma-\lambda I|$, i.e., the solutions to the characteristic equation $|\Sigma-\lambda I|=0$.
All vectors except 0 in the eigenspace $\mathcal{N}(\Sigma-\lambda I)$ are eigenvectors belonging to λ.
For real symmetric Σ, the eigenvectors belonging to different eigenvalues are orthogonal.
So one can find eigenvalue matrix $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{p}\right)$ with $\lambda_{1} \geq \cdots \geq \lambda_{p}$ such that all diagonal elements of Λ are eigenvalues of Σ; and eigenvector matrix $P \in R^{p \times p}$ such that the P_{i}, ith column of P, is the eigenvector for $\lambda_{i},\left\|P_{i}\right\|=1$, and all columns of P are orthogonal. Thus P is an orthogonal matrix, i.e., $P^{\prime}=P^{-1}$.
Clearly $\Sigma P=P \Lambda \Longleftrightarrow \Sigma=P \Lambda P^{\prime}$, called the EVD for Σ.
$|\Sigma-\lambda I|$ is a polynomial of λ called characteristic polynomial of Σ.
Equation $|\Sigma-\lambda I|=0$ is called the characteristic equation for Σ.
The characteristic equation has p solutions $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{p}$ called the first, second,..., the p th largest eigenvalue of Σ.
Solution $x \neq 0$ to $\left(\Sigma-\lambda_{i} I\right) x=0$ is an eigenvector of Σ belonging to the eigenvalue λ_{i}.
It can be shown that $\Sigma=P \Lambda P^{\prime}$ where $P=\left(P_{1}, \ldots, P_{p}\right) \in R^{p \times p}$ is an orthogonal matrix such that $P^{\prime} P=I$, and P_{i} is an eigenvector of Σ belonging to λ_{i}.
$\Sigma=P \Lambda P^{\prime}$ is called an eigenvalue decomposition of Σ.
Ex1: Find eigenvalue decomposition for $\Sigma=\left(\begin{array}{cc}3 & -1 \\ -1 & 3\end{array}\right)$.

$$
\begin{aligned}
& |\Sigma-\lambda I|=\left|\begin{array}{cc}
3-\lambda & -1 \\
-1 & 3-\lambda
\end{array}\right|=(\lambda-3)^{2}-1=(\lambda-2)(\lambda-4) . \\
& |\Sigma-\lambda I|=0, \lambda_{1}=4 \text { and } \lambda_{2}=2 . \text { So } \Lambda=\left(\begin{array}{cc}
4 & 0 \\
0 & 2
\end{array}\right) . \\
& \left(\Sigma-\lambda_{1}\right) x=0,\left(\begin{array}{cc}
-1 & -1 \\
-1 & -1
\end{array}\right) x=0, x_{1}=-x_{2}, x=c\binom{1}{-1}, P_{1}=\frac{1}{\sqrt{2}}\binom{1}{-1} . \\
& \left(\Sigma-\lambda_{2}\right) x=0,\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right) x=0, x_{1}=x_{2}, x=c\binom{1}{1}, P_{2}=\frac{1}{\sqrt{2}}\binom{1}{1} . \\
& P=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) . \Sigma=P \Lambda P^{\prime}=\left[\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\right]\left(\begin{array}{cc}
4 & 0 \\
0 & 2
\end{array}\right)\left[\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\right]^{\prime} .
\end{aligned}
$$

(2) EVD and principal components

For $X \sim(\mu, \Sigma)$ with EVD $\Sigma=P \Lambda P^{\prime}$ with non-decreasing eigenvalues, the compoents of $Y=P^{\prime} X$ are the principal components of X.
Proof. First, note that $\operatorname{Cov}(Y)=P^{\prime} \Sigma P=P^{\prime} P \Lambda P^{\prime} P=\Lambda$. So $Y_{i}=P_{i}^{\prime} X$ with $\left\|P_{i}\right\|=1$; $\operatorname{Cov}\left(Y_{i}, Y_{j}\right)=0$ for $i \neq j$, and $\operatorname{var}\left(Y_{i}\right)=\lambda_{i}$ with $\lambda_{1} \geq \cdots \geq \lambda_{p}$.
Secondly we show that it is the best choice. When creating Y_{1}, in $\left\{\alpha^{\prime} X:\|\alpha\|=1\right\}$, $\operatorname{var}\left(\alpha^{\prime} X\right)=\alpha^{\prime} P \Lambda P^{\prime} \alpha=\beta^{\prime} \Lambda \beta=\beta_{1}^{2} \lambda_{1}+\cdots+\beta_{p}^{2} \lambda_{p}$. Here $\beta_{1}^{2}+\cdots+\beta_{p}^{2}=\alpha^{\prime} P P^{\prime} \alpha=1$.
When creating Y_{2}, in $\left\{\alpha^{\prime} X:\|\alpha\|=1\right.$ and $\left.\operatorname{cov}\left(\alpha^{\prime} X, Y_{1}\right)=0\right\}, \operatorname{var}(\alpha X)=\beta_{1}^{2} \lambda_{1}+\cdots+\beta_{p}^{2} \lambda_{p}$ where $\beta_{1}^{2}+\cdots+\beta_{p}^{2}=1$. But

$$
0=\operatorname{cov}\left(\alpha X, Y_{1}\right)=\operatorname{cov}\left(\alpha^{\prime} X, P_{1}^{\prime} X\right)=\alpha^{\prime} P \Sigma P^{\prime} P_{1}=\beta^{\prime} \Lambda e_{i}=\beta_{1} \lambda_{1}
$$

So $\beta_{1}=0$. Hence $\max \left[\operatorname{var}\left(\alpha^{\prime} X\right):\|\alpha\|=1, \operatorname{cov}\left(\alpha^{\prime} X, Y_{1}\right)=0\right)=\lambda_{2}$.
Similarly one can show max $\left[\operatorname{var}\left(\alpha^{\prime} X\right):\|\alpha\|=1\right.$ and $\operatorname{cov}\left(\alpha^{\prime} X, Y_{i}\right)=0$ for $\left.i=1, . ., k\right\}$ is λ_{k+1}.
Ex2: For X in Ex1, $\binom{Y_{1}}{Y_{2}}=P^{\prime} X=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)\binom{X_{1}}{X_{2}}=\frac{1}{\sqrt{2}}\binom{X_{1}-X_{2}}{X_{1}+X_{2}}$. Here Y_{1} and Y_{2} are the first and the second principal components of X, and $\operatorname{Cov}(Y)=\left(\begin{array}{ll}4 & 0 \\ 0 & 2\end{array}\right)$.

3. Properties

(1) Total variance

Total variance in X and total variance in Y, the principal component vector of X, are equal.
Proof. $\operatorname{Cov}(X)=\Sigma=P \Lambda P^{\prime}$. So $\operatorname{tr}(\Sigma)=\operatorname{tr}\left(P \Lambda P^{\prime}\right)=\operatorname{tr}\left(P^{\prime} P \Lambda\right)=\operatorname{tr}(\Lambda)=\lambda_{1}+\cdots+\lambda_{p}$.
Here $\operatorname{tr}(\Sigma)=\operatorname{var}\left(X_{1}\right)+\cdots+\operatorname{var}\left(X_{p}\right)$, the total variance in X.
With principal component vector $Y=P^{\prime} X$, the total variance in Y is
$\operatorname{var}\left(Y_{1}\right)+\cdots+\operatorname{var}\left(Y_{p}\right)=\lambda_{1}+\cdots+\lambda_{p}$.
Ex3: In Ex1, $\operatorname{var}\left(X_{1}\right)+\operatorname{var}\left(X_{2}\right)=3+3=6$. In $\operatorname{Ex} 2, \operatorname{var}\left(Y_{1}\right)+\operatorname{var}\left(Y_{2}\right)=4+2=6$.
(2) Variations explained by principal components

The proportion of total variation in the original X explained by the i th principal component is

$$
\frac{\operatorname{var}\left(Y_{i}\right)}{\text { Total varaince in } X}=\frac{\lambda_{i}}{\lambda_{1}+\cdots+\lambda_{p}} .
$$

The proportion of total variance explained by the first k principal components is

$$
\frac{\operatorname{var}\left(Y_{1}\right)+\cdots+\operatorname{var}\left(Y_{k}\right)}{\text { Total variance in } X}=\frac{\lambda_{1}+\cdots+\lambda_{k}}{\lambda_{1}+\cdots+\lambda_{p}} .
$$

Using principal components to achieve certain proportion of total variation explained, one can reduce the number of components in the vector.
Ex4: In Ex1, if we want to explain 60% of total variations in X, we have to use both X_{1} and X_{2}. But if using principal components, from Ex2, we see we onely need the first principal component since $\frac{4}{6}=66.7 \%>60 \%$.
Comment: The concept of principal component is a good mathematical work. But the new component might be $\frac{1}{\sqrt{3}}$ (Age) $+\frac{1}{\sqrt{3}}$ (Height) $+\frac{1}{\sqrt{3}}$ (Number of hours in study) that does not have clear meaning.

